Review Article

Ocular surface and tear film changes after eyelid surgery

:-
 

Abstract: Eyelid surgery is widely and extensively used in facial plastic and reconstructive surgeries. There are many categories of eyelid surgeries, the most common of which include blepharoplasty, ptosis surgery, and eyelid reconstruction. In many cases, these procedures are combined, and there are many different techniques for each type of operation. Upper eyelid blepharoplasty usually includes the excision of skin, preseptal orbicularis oculi muscle, and orbital fat. Common methods of lower eyelid blepharoplasty are the skin-muscle flap, the skin flap, and the transconjunctival. Ptosis surgery is mainly divided into three types: transcutaneous, transconjunctival, and sling surgery. Surgeons often used the Hughes or Cutler-Beard Bridge Flaps in eyelid reconstruction. Different types and methods of surgery have their own advantages and disadvantages, and postoperative complications may occur. Therefore, postoperative complications of eyelid surgeries, such as dry eye symptoms, should be taken into serious consideration. Relevant literature involving these complaints can be found in PubMed by searching the terms “dry eye”, “eyelid”, “surgery”, and other related keywords. Moreover, various ocular surface and tear film alterations may be detected using the Ocular Surface Disease Index (OSDI), tear film breakup time, Schirmer test, fluorescein staining, and lissamine green staining after various eyelid surgeries. As dry eye disease is prevalent in the general population, it is more urgent to figure out what we can learn from these complaints. Further exploration in this field may help surgeons to choose a better surgical method and give an accurate evaluation of the postoperative effect.

Review Article

Targeted therapy for malignant ocular melanomas

:-
 

Abstract: In a comprehensive literature review, PubMed, Embasem and Web of Science were searched for studies examining targeted therapy of ocular malignant melanomas to present and discuss targeted therapy treatment options of ocular tumors, mainly conjunctival and uveal melanoma (UM). Conjunctival malignant melanomas showed similarities in clinical and genetic aspects with cutaneous melanomas. Many therapies with checkpoint inhibitors already established for cutaneous melanomas may be a treatment option for conjunctival malignant melanomas with shared traits. Existing targeted therapies are for example checkpoint inhibitors like pembrolizumab or nivolumab. As a corollary, due to marked differences in clinics and genetics between UMs and conjunctival melanomas (CMs) or cutaneous melanomas, it has remained elusive whether the available possibilities of molecular targeted therapy will be an option for the therapy of metastasizing UMs. Possible novel ways of treating UM are being explored. Fotemustine or the inoculation of dendritic cells with tumorous RNA or sunitinib in combination with cisplatin and or tamoxifen may be used in future to treat UM. While CM are treatable using targeted therapies, UM have not been researched enough to find working targeted therapy options. Further research has to be done in order to find acceptable treatment options.

Review Article

Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits—a narrative review

:-
 

Abstract: Navigation technology in ophthalmology, colloquially called “eye-tracking”, has been applied to various areas of eye care. This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment. For instance, modern imaging instruments use a real-time eye-tracking system, which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography (OCT), microperimetry, and fluorescence and color imaging. Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation, and positioning guidance of intraocular lenses (IOL) during cataract surgery. It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer, more standardized, and more predictable procedures with better outcomes. Eye-tracking is essential in refractive surgery with excimer laser ablation. Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes. Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers. Eye-tracking has also been used in imaging diagnostics, where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging. This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.

Original Article

Hyperspectral autofluorescence characterization of drusen and sub-RPE deposits in age-related macular degeneration

:-
 

Background: Soft drusen and basal linear deposit (BLinD) are two forms of the same extracellular lipid rich material that together make up an Oil Spill on Bruch’s membrane (BrM). Drusen are focal and can be recognized clinically. In contrast BLinD is thin and diffusely distributed, and invisible clinically, even on highest resolution OCT, but has been detected on en face hyperspectral autofluorescence (AF) imaging ex vivo. We sought to optimize histologic hyperspectral AF imaging and image analysis for recognition of drusen and sub-RPE deposits (including BLinD and basal laminar deposit), for potential clinical application.

Methods: Twenty locations specifically with drusen and 12 additional locations specifically from fovea, perifovea and mid-periphery from RPE/BrM flatmounts from 4 AMD donors underwent hyperspectral AF imaging with 4 excitation wavelengths (λex 436, 450, 480 and 505 nm), and the resulting image cubes were simultaneously decomposed with our published non-negative matrix factorization (NMF). Rank 4 recovery of 4 emission spectra was chosen for each excitation wavelength.

Results: A composite emission spectrum, sensitive and specific for drusen and presumed sub-RPE deposits (the SDr spectrum) was recovered with peak at 510–520 nm in all tissues with drusen, with greatest amplitudes at excitations λex 436, 450 and 480 nm. The RPE spectra of combined sources Lipofuscin (LF)/Melanolipofuscin (MLF) were of comparable amplitude and consistently recapitulated the spectra S1, S2 and S3 previously reported from all tissues: tissues with drusen, foveal and extra-foveal locations.

Conclusions: A clinical hyperspectral AF camera, with properly chosen excitation wavelengths in the blue range and a hyperspectral AF detector, should be capable of detecting and quantifying drusen and sub-RPE deposits, the earliest known lesions of AMD, before any other currently available imaging modality.

Review Article

Psychophysics in the ophthalmological practice—I. visual acuity

:-
 
Perception is the ability to see, hear, or become aware of external stimuli through the senses. Visual stimuli are electromagnetic waves that interact with the eye and elicit a sensation. Sensations, indeed, imply the detection, resolution, and recognition of objects and images, and their accuracy depends on the integrity of the visual system. In clinical practice, evaluating the integrity of the visual system relies greatly on the assessment of visual acuity, that is to say on the capacity to identify a signal. Visual acuity, indeed, is of utmost importance for diagnosing and monitoring ophthalmological diseases. Visual acuity is a function that detects the presence of a stimulation (a signal) and resolves its detail(s). This is the case of a symbol like “E”: the stimulus is detected, then it is resolved as three horizontal bars and a vertical bar. In fact, within the clinical setting visual acuity is usually measured with alphanumeric symbols and is a three-step process that involves not only detection and resolution, but, due to the semantic content of letters and numbers, their recognition. Along with subjective (psychophysical) procedures, objective methods that do not require the active participation of the observer have been proposed to estimate visual acuity in non-collaborating subjects, malingerers, or toddlers. This paper aims to explain the psychophysical rationale underlying the measurement of visual acuity and revise the most common procedures used for its assessment.
Original Article

Changes in crystalline lens parameters during accommodation evaluated using swept source anterior segment optical coherence tomography

:-
 
Backgrounds: To assess changes in anterior segment biometry during accommodation using a swept source anterior segment optical coherence tomography (SS-OCT). Methods: One hundred-forty participants were consecutively recruited in the current study. Each participant underwent SS-OCT scanning at 0 and -3 diopter (D) accommodative stress after refractive compensation, and ocular parameters including anterior chamber depth (ACD), anterior and posterior lens curvature, lens thickness (LT) and lens diameter were recorded. Anterior segment length (ASL) was defined as ACD plus LT. Lens central point (LCP) was defined as ACD plus half of the LT. The accommodative response was calculated as changes in total optical power during accommodation. Results: Compared to non-accommodative status, ACD (2.952±0.402 vs. 2.904±0.382 mm, P<0.001), anterior (10.771±1.801 vs. 10.086±1.571 mm, P<0.001) and posterior lens curvature (5.894±0.435 vs. 5.767±0.420 mm, P<0.001), lens diameter (9.829±0.338 vs. 9.695±0.358 mm, P<0.001) and LCP (4.925±0.274 vs. 4.900±0.259 mm, P=0.010) tended to decreased and LT thickened (9.829±0.338 vs. 9.695±0.358 mm, P<0.001), while ASL (6.903±0.279 vs. 6.898±0.268 mm, P=0.568) did not change significantly during accommodation. Younger age (β=0.029, 95% CI: 0.020 to 0.038, P<0.001) and larger anterior lens curvature (β=-0.071, 95% CI: -0.138 to -0.003, P=0.040) were associated with accommodation induced greater steeping amplitude of anterior lens curvature. The optical eye power at 0 and -3 D accommodative stress was 62.486±2.284 and 63.274±2.290 D, respectively (P<0.001). Age was an independent factor of accommodative response (β=-0.027, 95% CI: -0.038 to -0.016, P<0.001). Conclusions: During -3 D accommodative stress, the anterior and posterior lens curvature steepened, followed by thickened LT, fronted LCP and shallowed ACD. The accommodative response of -3 D stimulus is age-dependent.
Case Report

Prolonged conjunctivitis mimicking nodular episcleritis as a manifestation of granulomatosis with polyangiitis—a case report

:-
 

Abstract: Red eye is common in our daily practice. It ranges from non-inflammatory to inflammatory causes. An extended course of disease should prompt suspicion and the possibility of diagnosis revision. A prolonged conjunctivitis mimicking nodular episcleritis can be presented as a manifestation of granulomatosis with polyangiitis (GPA). A 57-year-old woman complained of eye redness and tearing for two weeks which partially resolved with antibiotics. She was subsequently commenced on topical and oral non-steroidal anti-inflammatory drugs (NSAIDs) and topical anti-allergic. However, in the following reviews she developed cornea thinning and her systemic examination revealed an injected uvula with absence of upper respiratory tract infection. She was investigated for connective tissue disease and found to have raised anti-inflammatory markers and her antinuclear antibody and C-ANCA tests were positive. She was diagnosed with GPA. Her conditions improved followed by the commencement of topical corticosteroid with high dose of systemic corticosteroid, which followed by a tapering regime with oral corticosteroid. Although red eye is common, it is associated with a variety of diseases. GPA manifestation can be as subtle as a red eye. Any prolonged partially treated red eye should prompt suspicion of a more sinister cause. Sensitive detection of other subtle systemic signs is very important.

Review Article

Comparison between sodium iodate and lipid peroxide murine models of age-related macular degeneration for drug evaluation—a narrative review

:-
 

Objective: In this review, non-transgenic models of age-related macular degeneration (AMD) are discussed, with focuses on murine retinal degeneration induced by sodium iodate and lipid peroxide (HpODE) as preclinical study platforms.

Background: AMD is the most common cause of vision loss in a world with an increasingly aging population. The major phenotypes of early and intermediate AMD are increased drusen and autofluorescence, Müller glia activation, infiltrated subretinal microglia and inward moving retinal pigment epithelium (RPE) cells. Intermediate AMD may progress to advanced AMD, characterized by geography atrophy and/or choroidal neovascularization (CNV). Various transgenic and non-transgenic animal models related to retinal degeneration have been generated to investigate AMD pathogenesis and pathobiology, and have been widely used as potential therapeutic evaluation platforms.

Methods: Two retinal degeneration murine models induced by sodium iodate and HpODE are described. Distinct pathological features and procedures of these two models are compared. In addition, practical protocol and material preparation and assessment methods are elaborated.

Conclusions: Retina degeneration induced by sodium iodate and HpODE in mouse eye resembles many clinical aspects of human AMD and complimentary to the existent other animal models. However, standardization of procedure and assessment protocols is needed for preclinical studies. Further studies of HpODE on different routes, doses and species will be valuable for the future extensive use. Despite many merits of murine studies, differences between murine and human should be always considered.

Study Protocol

In vitro models of retinal diseases

:-
 

Background: Continuous and primary in vitro cultures are largely used to study cellular mechanisms occurring in several pathologic-like or pathological conditions. Continuous cell lines allow to perform long-lasting experiments since they do not undergo senescence.

Methods: The immortalized Moorfields/Institute of Ophtalmology-Müller 1 (MIO-M1) cell type represents a valuable model to analyze the mechanistic pathways characterizing Müller glial cells, both in health and in disease. MIO-M1 can be used to dissect the response of these glial cells following treatments which mimic pathological condition. For instance, MIO-M1 are useful to study the response of this cell type to stress condition as the case of oxidative stress (OS) (cultured with hydrogen peroxide), pathological neovascularization (cultured with VEGF), hypoxic or hyperoxic condition (cultured in low or high oxygen chamber). On the other hand, primary cultures allow to specifically analyze cellular responses without the interference of the whole organ, although the experimental treatment is performed in vivo. Primary Müller cells can be used to perform electrophysiological analyses of different cell sites.

Discussion: We describe how to manage MIO-M1 cells and how to analyze their response to different stress conditions; moreover, we report how to isolate and identify primary Müller cells and how to perform patch clamp and single cell recordings on them.

Review Article

Animal models of uveal melanoma

:-
 

Abstract: Animal models are crucial for the study of tumorigenesis and therapies in oncology research. Though rare, uveal melanoma (UM) is the most common intraocular tumor and remains one of the most lethal cancers. Given the limitations of studying human UM cells in vitro, animal models have emerged as excellent platforms to investigate disease onset, progression, and metastasis. Since Greene’s initial studies on hamster UM, researchers have dramatically improved the array of animal models. Animals with spontaneous tumors have largely been replaced by engrafted and genetically engineered models. Inoculation techniques continue to be refined and expanded. Newer methods for directed mutagenesis have formed transgenic models to reliably study primary tumorigenesis. Human UM cell lines have been used to generate rapidly growing xenografts. Most recently, patient-derived xenografts have emerged as models that closely mimic the behavior of human UM. Separate animal models to study metastatic UM have also been established. Despite the advancements, the prognosis has only recently improved for UM patients, especially in patients with metastases. There is a need to identify and evaluate new preclinical models. To accomplish this goal, it is important to understand the origin, methods, advantages, and disadvantages of current animal models. In this review, the authors present current and historic animal models for the experimental study of UM. The strengths and shortcomings of each model are discussed and potential future directions are explored.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息