Medical Education Column
Letter to the Editor
Editorial
Review Article

Treatment of congenital ptosis

:-
 

Abstract: Congenital ptosis is an abnormally low position of the upper eyelid, with respect to the visual axis in the primary gaze. It can be present at birth or manifest itself during the first year of life and can be bilateral or unilateral. Additionally, it may be an isolated finding or part of a constellation of signs of a specific syndrome or systemic associations. Depending on how much it interferes with the visual axis, it may be considered as a functional or a cosmetic condition. In childhood, functional ptosis can lead to deprivation amblyopia and astigmatism and needs to be treated. However, even mild ptosis with normal vision can lead to psychosocial problems and correction is also advised, albeit on a less urgent basis. Although, patching and glasses can be prescribed to treat the amblyopia, the mainstay of management is surgical. There are several types of surgical procedure available depending on the severity and etiology of the droopy eyelid. The first part of this paper will review the different categories of congenital ptosis, including more common associated syndromes. The latter part will briefly cover the different surgical approaches, with emphasis on how to choose the correct condition. In spite of many complex factors inherent to the treatment of congenital ptosis, the overall outcomes are quite satisfactory, and most surgeons feel that ptosis management can be both challenging and rewarding at the same time.

Review Article

Retinal imaging in inherited retinal diseases

:-
 

Abstract: Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population. The advances in ocular genetics, retinal imaging and molecular biology, have conspired to create the ideal environment for establishing treatments for IRD, with the first approved gene therapy and the commencement of multiple therapy trials. The scope of this review is to familiarize clinicians and scientists with the current landscape of retinal imaging in IRD. Herein we present in a comprehensive and concise manner the imaging findings of: (I) macular dystrophies (MD) [Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), pattern dystrophy (PRPH2), Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)], (II) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4 and RPGR), (III) cone dysfunction syndromes [achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6], blue-cone monochromatism (OPN1LW/OPN1MW array), oligocone trichromacy, bradyopsia (RGS9/R9AP) and Bornholm eye disease (OPN1LW/OPN1MW), (IV) Leber congenital amaurosis (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (V) rod-cone dystrophies [retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)], (VI) rod dysfunction syndromes (congenital stationary night blindness, fundus albipunctatus (RDH5), Oguchi disease (SAG, GRK1), and (VII) chorioretinal dystrophies [choroideremia (CHM), gyrate atrophy (OAT)].

Review Article

Novel treatments and genetics of age-related macular degeneration-a narrative review

:-
 

Abstract: Age-related macular degeneration (AMD) remains a leading cause of severe visual impairment in developing countries. Although dry-type AMD and geographic atrophy (GA) are progressive conditions with the associated decrease of visual functions, no well-established treatment regimen was proposed for the disease. Wet-type AMD is effectively treated with intravitreal anti-angiogenic agents, but frequent injections are a major issue for the affected patients. Recent advances in AMD genetics have provided new insights into the pathogenesis and novel therapeutic targets of AMD, but the benefits of using genetic testing and genotype-based risk models for AMD development and progression still lacks evidence. Novel AMD treatments aim to increase the interval among intravitreal injections through new therapeutic agents and modern delivery devices. Simultaneously, gene therapy for dry and wet AMD is widely studied. Although gene therapy possesses a major superiority over other novel treatments regarding a persistent cure of disease, many challenges exist in the way of its broad impact on the ocular health of AMD patients.

Review Article

Statins for age related macular degeneration: promising but unproven

:-
 

Abstract: Statins are used widely to treat hypercholesterolemia and atherosclerotic cardiovascular disease. They have inflammatory and immunomodulatory effects potentially useful for managing systemic autoimmune diseases such as rheumatoid arthritis, lupus erythematosus and multiple sclerosis. Statins also have anti-oxidative and large-vessel endothelial supportive properties that occur independent of their lipid-lowering effects. Additionally, statins can suppress macrophage and microglial activation responsible for initiating inflammatory cytokine release. More than forty percent of adults aged 65 years or older use statins in the United States and Australia, a prevalence that increases with age. The effects of statin usage on ophthalmic practice are probably underrecognized. Cardiovascular disease and age-related macular degeneration (AMD) share common risk factors, consistent with the “vascular model” of AMD pathogenesis that implicates impaired choroidal circulation in Bruch’s membrane lipoprotein accumulation. AMD has a complex multifactorial pathogenesis involving oxidative stress, choroidal vascular dysfunction, dysregulated complement-cascade-mediated inflammation and pro-inflammatory and pro-angiogenic growth factors. Many of these components are hypothetically amenable to the primary (cholesterol lowering) and secondary (anti-inflammatory, anti-oxidative, anti-vasculopathy) effects of statin use. Experimental studies have been promising, epidemiological trails have produced conflicting results and three prospective clinical trials have been inconclusive at demonstrating the value of statin therapy for delaying or preventing AMD. Cumulative evidence to date has failed to prove conclusively that statins are beneficial for preventing or treating AMD.

Review Article

Novel mitochondrial therapies for the treatment of age-related macular degeneration

:-
 

Abstract: The purpose of this article is to review current literature and data regarding treatment options for age-related macular degeneration (AMD) related to mitochondrial therapy. This article considers the presence of flavoprotein fluorescence as a potential biomarker to test the effectiveness of the treatments. We focus primarily on two major mitochondrial targets, nuclear factor erythroid 2-related factor (NFE2L2) and PGC-1α, that function in controlling the production and effects of reactive oxidative species (ROS) directly in the mitochondria. PU-91 is an FDA approved drug that directly targets and upregulates PGC-1α in AMD cybrid cell lines. Although neither NFE2L2 nor PGC1-α have yet been tested in clinical trials, their effects have been studied in rodent models and offer promising results. MTP-131, or elamipretide?, and metformin are two drugs in phase II clinical trials that focus on the treatment of advanced, non-exudative AMD. MTP-131 functions by associating with cardiolipin (CL) whereas metformin targets adenosine-monophosphate protein kinase (AMPK) in the mitochondria. The current results of their clinical trials are elucidated in this article. The molecular targets and drugs reviewed in this article show promising results in the treatment of AMD. These targets can be further pursued to improve and refine treatment practices of this diagnosis.

Review Article

Targeted therapy for malignant ocular melanomas

:-
 

Abstract: In a comprehensive literature review, PubMed, Embasem and Web of Science were searched for studies examining targeted therapy of ocular malignant melanomas to present and discuss targeted therapy treatment options of ocular tumors, mainly conjunctival and uveal melanoma (UM). Conjunctival malignant melanomas showed similarities in clinical and genetic aspects with cutaneous melanomas. Many therapies with checkpoint inhibitors already established for cutaneous melanomas may be a treatment option for conjunctival malignant melanomas with shared traits. Existing targeted therapies are for example checkpoint inhibitors like pembrolizumab or nivolumab. As a corollary, due to marked differences in clinics and genetics between UMs and conjunctival melanomas (CMs) or cutaneous melanomas, it has remained elusive whether the available possibilities of molecular targeted therapy will be an option for the therapy of metastasizing UMs. Possible novel ways of treating UM are being explored. Fotemustine or the inoculation of dendritic cells with tumorous RNA or sunitinib in combination with cisplatin and or tamoxifen may be used in future to treat UM. While CM are treatable using targeted therapies, UM have not been researched enough to find working targeted therapy options. Further research has to be done in order to find acceptable treatment options.

Review Article

Animal models of uveal melanoma

:-
 

Abstract: Animal models are crucial for the study of tumorigenesis and therapies in oncology research. Though rare, uveal melanoma (UM) is the most common intraocular tumor and remains one of the most lethal cancers. Given the limitations of studying human UM cells in vitro, animal models have emerged as excellent platforms to investigate disease onset, progression, and metastasis. Since Greene’s initial studies on hamster UM, researchers have dramatically improved the array of animal models. Animals with spontaneous tumors have largely been replaced by engrafted and genetically engineered models. Inoculation techniques continue to be refined and expanded. Newer methods for directed mutagenesis have formed transgenic models to reliably study primary tumorigenesis. Human UM cell lines have been used to generate rapidly growing xenografts. Most recently, patient-derived xenografts have emerged as models that closely mimic the behavior of human UM. Separate animal models to study metastatic UM have also been established. Despite the advancements, the prognosis has only recently improved for UM patients, especially in patients with metastases. There is a need to identify and evaluate new preclinical models. To accomplish this goal, it is important to understand the origin, methods, advantages, and disadvantages of current animal models. In this review, the authors present current and historic animal models for the experimental study of UM. The strengths and shortcomings of each model are discussed and potential future directions are explored.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息