Original Article

Hyperspectral autofluorescence characterization of drusen and sub-RPE deposits in age-related macular degeneration

:-
 

Background: Soft drusen and basal linear deposit (BLinD) are two forms of the same extracellular lipid rich material that together make up an Oil Spill on Bruch’s membrane (BrM). Drusen are focal and can be recognized clinically. In contrast BLinD is thin and diffusely distributed, and invisible clinically, even on highest resolution OCT, but has been detected on en face hyperspectral autofluorescence (AF) imaging ex vivo. We sought to optimize histologic hyperspectral AF imaging and image analysis for recognition of drusen and sub-RPE deposits (including BLinD and basal laminar deposit), for potential clinical application.

Methods: Twenty locations specifically with drusen and 12 additional locations specifically from fovea, perifovea and mid-periphery from RPE/BrM flatmounts from 4 AMD donors underwent hyperspectral AF imaging with 4 excitation wavelengths (λex 436, 450, 480 and 505 nm), and the resulting image cubes were simultaneously decomposed with our published non-negative matrix factorization (NMF). Rank 4 recovery of 4 emission spectra was chosen for each excitation wavelength.

Results: A composite emission spectrum, sensitive and specific for drusen and presumed sub-RPE deposits (the SDr spectrum) was recovered with peak at 510–520 nm in all tissues with drusen, with greatest amplitudes at excitations λex 436, 450 and 480 nm. The RPE spectra of combined sources Lipofuscin (LF)/Melanolipofuscin (MLF) were of comparable amplitude and consistently recapitulated the spectra S1, S2 and S3 previously reported from all tissues: tissues with drusen, foveal and extra-foveal locations.

Conclusions: A clinical hyperspectral AF camera, with properly chosen excitation wavelengths in the blue range and a hyperspectral AF detector, should be capable of detecting and quantifying drusen and sub-RPE deposits, the earliest known lesions of AMD, before any other currently available imaging modality.

Original Article

Characteristics of normal human retinal pigment epithelium cells with extremes of autofluorescence or intracellular granule count

:-
 

Background: Cells of the retinal pigment epithelium (RPE) accumulate different kinds of granules (lipofuscin, melanolipofuscin, melanosomes) within their cell bodies, with lipofuscin and melanolipofuscin being autofluorescent after blue light excitation. High amounts of lipofuscin granules within the RPE have been associated with the development of RPE cell death and age-related macular degeneration (AMD); however, this has not been confirmed in histology so far. Here, based on our previous dataset of RPE granule characteristics, we report the characteristics of RPE cells from human donor eyes that show either high or low numbers of intracellular granules or high or low autofluorescence (AF) intensities.

Methods: RPE flatmounts of fifteen human donors were examined using high-resolution structured illumination microscopy (HR-SIM) and laser scanning microscopy (LSM). Autofluorescent granules were analyzed regarding AF phenotype and absolute number of granules. In addition, total AF intensity per cell and granule density (number of granules per cell area) were determined. For the final analysis, RPE cells with total granule number below 5th or above the 95th percentile, or a total AF intensity ± 1.5 standard deviations above or below the mean were included, and compared to the average RPE cell at the same location. Data are presented as mean ± standard deviation.

Results: Within 420 RPE cells examined, 42 cells were further analyzed due to extremes regarding total granule numbers. In addition, 20 RPE cells had AF 1.5 standard deviations below, 28 RPE cells above the mean local AF intensity. Melanolipofuscin granules predominate in RPE cells with low granule content and low AF intensity. RPE cells with high granule content have nearly twice (1.8 times) as many granules as an average RPE cell.

Conclusions: In normal eyes, outliers regarding autofluorescent granule load and AF intensity signals are rare among RPE cells, suggesting that granule deposition and subsequent AF follows intrinsic control mechanisms at a cellular level. The AF of a cell is related to the composition of intracellular granule types. Ongoing studies using AMD donor eyes will examine possible disease related changes in granule distribution and further put lipofuscin′s role in aging and AMD further into perspective.

Review Article

Subthreshold laser systems: a narrative review of the current status and advancements for retinal diseases

:-
 

Background and Objective: Subthreshold laser therapy has emerged as a therapeutic alternative to traditional laser photocoagulation for certain ophthalmic diseases including central serous chorioretinopathy (CSCR), diabetic macular edema (DME), macular edema secondary to branch retinal vein occlusion (BRVO), and age-related macular degeneration (AMD). The objective of this paper is to review and discuss the clinical applications of subthreshold laser and the mechanisms of different subthreshold laser techniques including subthreshold micropulse laser (SMPL), selective retina therapy (SRT), subthreshold nanosecond laser (SNL), endpoint management (EpM), and transpupillary thermotherapy (TTT).

Methods: A narrative review of English literature and publicly available information published before November 2021 from literature databases and computerized texts. We discuss the currently available subthreshold laser systems and the advancements made to perform different subthreshold laser techniques for various ophthalmic diseases. We highlight various clinical studies and therapeutic techniques that have been conducted to further understand the effectiveness of subthreshold laser in the clinical setting. We conclude the article by covering emerging subthreshold laser systems that are currently being developed for future clinical use. The PubMed database was utilized for peer-reviewed articles and pertinent information on subthreshold systems was cited from publicly available online websites covering specific systems.

Key Content and Findings: Various subthreshold laser systems have been developed to treat certain retinal diseases. Several systems are currently in development for future clinical applications.

Conclusions: While conventional laser photocoagulation has been effective in treating various retinal diseases, subthreshold laser systems aim to provide a therapeutic effect without visible signs of damage to the underlying tissue. This technology may be particularly effective in treating macular disorders. Further clinical studies are needed to evaluate their role in the management of retinal diseases.

Review Article

Current systems and recent developments of subthreshold laser systems in glaucoma: a narrative review

:-
 

Background and Objective: Subthreshold laser technologies and their applications in ophthalmology have greatly expanded in the past few decades. Initially used for retinal diseases such as central serous chorioretinopathy and diabetic macular edema, subthreshold lasers have recently shown efficacy in the treatment of various types of glaucoma. Our primary objectives are to review the clinical applications of subthreshold laser in the context of glaucoma treatment and discuss the mechanisms of different subthreshold laser techniques, including subthreshold selective laser trabeculoplasty (SSLT), micropulse laser trabeculoplasty (MLT), pattern-scanning laser trabeculoplasty (PSLT), titanium laser trabeculoplasty (TLT), and micropulse transscleral cyclophotocoagulation (MP-TSCPC).

Methods: This was a narrative review compiled from literature of PubMed and Google Scholar. The review was performed from March 2021 to October 2021 and included publications in English. We also included information from web pages to cover details of relevant laser systems. We discuss the history of subthreshold laser, recent advancements in subthreshold techniques, and commercially available systems that provide subthreshold capabilities for glaucoma. We highlight basic science and clinical studies that deepen the understanding of treatment mechanisms and treatment effectiveness in the clinical setting respectively. We review commonly used parameters for each technique and provide comparisons to conventional treatments.

Key Content and Findings: We found five distinct types of subthreshold laser used in the management of glaucoma. Numerous subthreshold laser systems are commercially available and can provide this treatment. Therefore, understanding the differences between subthreshold techniques and laser systems will be critical in utilizing subthreshold laser in the clinical setting.

Conclusions: Traditional laser trabeculoplasty (LT) and cyclophotocoagulation (CPC) have shown effectiveness in the treatment of various types of glaucoma but are associated with visible damage to the underlying tissue and adverse effects. Subthreshold laser systems aim to provide the therapeutic effect found in traditional lasers, while minimizing unwanted treatment related effects. Further clinical studies are needed to evaluate the role of subthreshold lasers in the management of glaucoma.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息