Background: Pterygium is a sun-related ocular surface disease secondary to ultraviolet (UV) radiation exposure. Outdoor occupational UV exposure is known to occur secondary to sun exposure. We present a unique case of pterygium associated with indoor occupational light-emitting diode (LED) exposure not previously described in the literature.
Case Description: A mobile phone repairer presented with blurred vision and a superotemporal pterygium of his dominant left eye associated with a magnifying glass LED work lamp was diagnosed. This was excised routinely with conjunctival autografting to the defect. Histopathology confirmed benign pterygium and recovery was uncomplicated with resolution of blur.
Conclusions: The development of pterygium in our patient may have arisen due to the LED lamp’s wavelengths possibly falling within the UV as well as the upper end of the visible light radiation spectrum. Given the increasing reliance on LED light sources in modern life, ocular conditions arising from exposure to these radiation sources may now need to be listed in the differential diagnoses of patients with pterygium. Appropriate UV protection counselling for these types of lights may also now need to be considered.
Abstract: The disease burden of diabetic retinopathy (DR) is tremendous around the world. While DR is correlated with hemoglobin A1c (HbA1c) and duration of diabetes, genetic differences likely account for variation in susceptibility to DR. DR is a polygenic disorder with demonstrated heritability. However, linkage and admixture analyses, candidate gene association studies, and genome-wide association studies (GWAS) have not identified many loci for DR that can be consistently replicated. Larger, collaborative, multi-ethnic GWAS are needed to identify common variants with small effects. Rigorous defining of controls groups as patients with a long duration of diabetes without DR, and case groups as patients with severe DR will also aid in finding genes associated with DR. Replication in independent cohorts will be key to establishing associated loci for DR. Investigations of mitochondrial DNA and epigenetics in DR are ongoing. Whole exome sequencing presents new opportunities to identify rare variants that might be implicated in DR development. Continued research in the genetic epidemiology of DR is needed, with the potential to elucidate pathogenesis and treatment of an important disease.
Abstract: Diabetic retinopathy (DR) is the most common microvascular complication in patients with diabetes mellitus (DM), and remains the single greatest cause of blindness in working age adults around the world. In this article, we review the evolution of pharmacotherapies for both diabetic macular edema (DME) and DR such as anti-vascular endothelial growth factor inhibitors and various steroid formulations, as well as other emerging pharmacotherapies currently in late stage clinical testing for this disease.
Background: Retinal endothelial cells are very active and contribute to the integrity of the neurovascular unit. Vascular dysfunction has been proposed to contribute to the pathogenesis of glaucoma. Here, we evaluated the hypothesis that ocular hypertension triggers mitochondrial alterations in endothelial cells impairing the integrity of the blood retinal barrier (BRB).
Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of EndoMito-EGFP mice, a strain expressing green fluorescent protein selectively in the mitochondria of endothelial cells. Capillary density, mitochondrial volume, and the number of mitochondrial components were quantified in 3D-reconstructed images from whole-mounted retinas using Imaris software. Dynamin-related protein (DRP-1), mitofusin-2 (MFN-2) and optic atrophy-1 (OPA-1) expression were assessed by western blot analysis of enriched endothelial cells. Mitochondrial structure was evaluated by transmission electron microscopy (TEM) and oxygen consumption rate was monitored by Seahorse analysis. The integrity of the BRB was evaluated by quantifying Evans blue leakage.
Results: Our data demonstrate that two and three weeks after ocular hypertension induction, the total mitochondria volume in endothelial cells decreased from 0.140±0.002 μm3 from non-injured retinas to 0.108±0.005 and 0.093±0.007 μm3, respectively in glaucomatous eyes (mean ± S.E.M, ANOVA, P<0.001; N=6/group). Frequency distribution showed a substantial increase of smaller mitochondria complexes (<0.5 μm3) in endothelial cells from glaucomatous retinas. Significant upregulation of DRP-1 was found in vessels isolated from glaucomatous retinas compared to the intact retinas, while MFN-2 and OPA-1 expression was not affected. Structural alteration in endothelial cell mitochondria was confirmed by TEM, which were accompanied by a 1.93-fold reduction in the oxygen consumption rate as well as 2.6-fold increase in vasculature leakage in glaucomatous retinas (n=3–6/group). In addition, this model did not trigger changes in the density of the vascular network, suggesting that mitochondrial fragmentation was not due to endothelial cell loss.
Conclusions: This study shows that ocular hypertension leads to early alterations in the dynamic of endothelial cell mitochondria, contributing to vascular dysfunction in glaucoma.
Abstract: Autophagy recycles intracellular substrate in part to fuel mitochondria during starvation. Deregulated autophagy caused by dyslipidemia, oxidative stress, and aging is associated with early signs of age-related macular degeneration (AMD), such as lipofuscin and perhaps drusen accumulation. Intracellular nutrient sensors for glucose and amino acids regulate autophagy. The role of lipid sensors in controlling autophagy, however, remains ill-defined. Here we will show that abundant circulating lipids trigger a satiety signal through FA receptors that restrain autophagy and oxidative mitochondrial metabolism. In the presence of excess dietary lipids, fatty acid sensors might protect tissues with high metabolic rates against lipotoxicity, favoring their storage, instead, in adipose tissues. However, sustained exposure to lipid reduces retinal metabolic efficiency. In photoreceptors with high metabolic needs, it predisposes to an energy failure and triggers compensatory albeit pathological angiogenesis, leading to blinding neovascular AMD.
Abstract: To describe the current aging population in China and globally, especially as it applies to age-related macular degeneration (AMD). To review the current standards of care for treating both wet (exudative) eAMD and dry (atrophic) aAMD. And to introduce a model for experimentation that is based on the Age-Related Eye Disease Study (AREDS) using eye bank tissue. A literature search that outlines current aging populations, standards of clinical treatment as defined by large, multicenter, randomized clinical trials that present level-I data with a low risk for bias. An experimental model system of AMD is presented that enables scientific analysis of AMD pathogenesis by applying grading criteria from the AREDS to human eye bank eyes. Analysis includes proteomic, cellular, and functional genomics. The standard of care for the treatment of eAMD is currently defined by the use of several anti-vascular endothelial growth (anti-VEGF) agents alone or in combination with photodynamic therapy. Monotherapy treatment intervals may be monthly, as needed, or by using a treat-and-extend (TAE) protocol. There are no proven therapies for aAMD. AMD that is phenotypically defined at AREDS level 3, should be managed with the use of anti-oxidant vitamins, lutein/zeaxanthin and zinc (AREDS-2 formulation). By understanding the multiple etiologies in the pathogenesis of AMD (i.e., oxidative stress, inflammation, and genetics), the use of human eye bank tissues graded according to the Minnesota Grading System (MGS) will enable future insights into the pathogenesis of AMD. Initial AMD management is with lifestyle modification such as avoiding smoking, eating a healthy diet and using appropriate vitamin supplements (AREDS-2). For eAMD, anti-VEGF therapies using either pro re nata (PRN) or TAE protocols are recommended, with photodynamic therapy in appropriate cases. New cellular information will direct future, potential therapies and these will originate from experimental models, such as the proposed eye bank model using the MGS, that leverages the prospective AREDS database.
Abstract: Congenital ptosis is an abnormally low position of the upper eyelid, with respect to the visual axis in the primary gaze. It can be present at birth or manifest itself during the first year of life and can be bilateral or unilateral. Additionally, it may be an isolated finding or part of a constellation of signs of a specific syndrome or systemic associations. Depending on how much it interferes with the visual axis, it may be considered as a functional or a cosmetic condition. In childhood, functional ptosis can lead to deprivation amblyopia and astigmatism and needs to be treated. However, even mild ptosis with normal vision can lead to psychosocial problems and correction is also advised, albeit on a less urgent basis. Although, patching and glasses can be prescribed to treat the amblyopia, the mainstay of management is surgical. There are several types of surgical procedure available depending on the severity and etiology of the droopy eyelid. The first part of this paper will review the different categories of congenital ptosis, including more common associated syndromes. The latter part will briefly cover the different surgical approaches, with emphasis on how to choose the correct condition. In spite of many complex factors inherent to the treatment of congenital ptosis, the overall outcomes are quite satisfactory, and most surgeons feel that ptosis management can be both challenging and rewarding at the same time.