Review Article

Animal models of uveal melanoma

:-
 

Abstract: Animal models are crucial for the study of tumorigenesis and therapies in oncology research. Though rare, uveal melanoma (UM) is the most common intraocular tumor and remains one of the most lethal cancers. Given the limitations of studying human UM cells in vitro, animal models have emerged as excellent platforms to investigate disease onset, progression, and metastasis. Since Greene’s initial studies on hamster UM, researchers have dramatically improved the array of animal models. Animals with spontaneous tumors have largely been replaced by engrafted and genetically engineered models. Inoculation techniques continue to be refined and expanded. Newer methods for directed mutagenesis have formed transgenic models to reliably study primary tumorigenesis. Human UM cell lines have been used to generate rapidly growing xenografts. Most recently, patient-derived xenografts have emerged as models that closely mimic the behavior of human UM. Separate animal models to study metastatic UM have also been established. Despite the advancements, the prognosis has only recently improved for UM patients, especially in patients with metastases. There is a need to identify and evaluate new preclinical models. To accomplish this goal, it is important to understand the origin, methods, advantages, and disadvantages of current animal models. In this review, the authors present current and historic animal models for the experimental study of UM. The strengths and shortcomings of each model are discussed and potential future directions are explored.

Review Article

A revisit to staining reagents for neuronal tissues

:-
 

Abstract: In the early days of deciphering the injured neuronal tissues led to the realization that contrast is necessary to discern the parts of the recovering tissues from the damaged ones. Early attempts relied on available (and often naturally occurring) staining substances. Incidentally, the active ingredients of most of them were small molecules. With the advent of time, the knowledge of chemistry helped identify compounds and conditions for staining. The staining reagents were even found to enhance the visibility of the organelles. Silver impregnation identification of Golgi bodies was discovered in owl optic nerve. Staining reagents since the late 1800s were widely used across all disciplines and for nerve tissue and became a key contributor to advancement in nerve-related research. The use of these reagents provided insight into the organization of the neuronal tissues and helped distinguish nerve degeneration from regeneration. The neuronal staining reagents have played a fundamental role in the clinical research facilitating the identification of biological mechanisms underlying eye and neuropsychiatric diseases. We found a lack of systematic description of all staining reagents, whether they had been used historically or currently used. There is a lack of readily available information for optimal staining of different neuronal tissues for a given purpose. We present here a grouping of the reagents based on their target location: (I) the central nervous system (CNS), (II) the peripheral nervous system (PNS), or (III) both. The biochemical reactions of most of the staining reagents is based on acidic or basic pH and specific reaction partners such as organelle or biomolecules that exists within the given tissue type. We present here a summary of the chemical composition, optimal staining condition, use for given neuronal tissue and, where possible, historic usage. Several biomolecules such as lipids and metabolites lack specific antibodies. Despite being non-specific the reagents enhance contrast and provide corroboration about the microenvironment. In future, these reagents in combination with emerging techniques such as imaging mass spectrometry and kinetic histochemistry will validate or expand our understanding of localization of molecules within tissues or cells that are important for ophthalmology and vision science.

Original Article

Evidence-based practice with knowledge, attitude and practice of ophthalmic nursing staffs: a cross-sectional study in south China

:-
 

Background: This study aims to investigate the current status and influencing factors of evidence-based practice (EBP) with knowledge, attitude and practice (KAP) of ophthalmic nursing staffs in south China.

Methods: Using a convenient sampling method, we selected 429 ophthalmic nursing staffs from 28 ophthalmology specialist hospitals or general hospitals in south China, and investigated their general information and implemented the evidence-based practice questionnaire (EBPQ).

Results: The scores of EBP and KAP of ophthalmic nursing staffs in south China from high to low were as follows: practical attitude (4.85±1.07 points), practical behavior (4.42±1.14 points), practical knowledge and skills (4.30±0.65 points). The single factor analysis results showed that the first graduation degree, technical title, scientific research achievements, whether or not participate in EBP training, the frequency of reading literature at ordinary time, and whether or not participate in EBP project were the influencing factors of EBP level; the multi-factor analysis results showed that EBP attitude, EBP knowledge and skills, whether or not participate in EBP training were independent influencing factors of EBP.

Conclusions: The ophthalmic nursing staffs in south China have a positive attitude towards EBP, however, their EBP knowledge, skills and behavioral capabilities need to be focused and improved. The ophthalmic nursing administrators should fully master the factors affecting the implementation of EBP, and take effective intervention measurement to improve the EBP abilities of ophthalmic nursing staffs, and promote the development of EBP in ophthalmology specialty.

Editorial
Review Article

Subthreshold laser systems: a narrative review of the current status and advancements for retinal diseases

:-
 

Background and Objective: Subthreshold laser therapy has emerged as a therapeutic alternative to traditional laser photocoagulation for certain ophthalmic diseases including central serous chorioretinopathy (CSCR), diabetic macular edema (DME), macular edema secondary to branch retinal vein occlusion (BRVO), and age-related macular degeneration (AMD). The objective of this paper is to review and discuss the clinical applications of subthreshold laser and the mechanisms of different subthreshold laser techniques including subthreshold micropulse laser (SMPL), selective retina therapy (SRT), subthreshold nanosecond laser (SNL), endpoint management (EpM), and transpupillary thermotherapy (TTT).

Methods: A narrative review of English literature and publicly available information published before November 2021 from literature databases and computerized texts. We discuss the currently available subthreshold laser systems and the advancements made to perform different subthreshold laser techniques for various ophthalmic diseases. We highlight various clinical studies and therapeutic techniques that have been conducted to further understand the effectiveness of subthreshold laser in the clinical setting. We conclude the article by covering emerging subthreshold laser systems that are currently being developed for future clinical use. The PubMed database was utilized for peer-reviewed articles and pertinent information on subthreshold systems was cited from publicly available online websites covering specific systems.

Key Content and Findings: Various subthreshold laser systems have been developed to treat certain retinal diseases. Several systems are currently in development for future clinical applications.

Conclusions: While conventional laser photocoagulation has been effective in treating various retinal diseases, subthreshold laser systems aim to provide a therapeutic effect without visible signs of damage to the underlying tissue. This technology may be particularly effective in treating macular disorders. Further clinical studies are needed to evaluate their role in the management of retinal diseases.

Review Article
Review Article

Vitreoretinal surgical training—assessment of simulation, models, and rubrics—a narrative review

:-
 

Background and Objective: Vitreoretinal surgery requires fine micro-surgical training and handling of delicate tissue. To aid in the training of residents and fellows, unique educational modalities exist to help facilitate the development of these microsurgical skills. From virtual simulators to artificial eye models, simulation of the posterior segment has gained an increased focus in vitreoretinal surgical training programs. Development of surgical curricula for vitreoretinal training and attainment of surgical milestones has been a key component in integrating these educational training modalities. We will explore various simulators, eye models, and potential rubrics and discuss unique ways each may help and complement one another to train future vitreoretinal surgeons.

Methods: We conducted a systematic PubMed search of various review studies (from publications in English ranging from January 1978 to December 2020) discussing surgical simulators, eye models, and surgical rubrics for vitreoretinal surgery and their potential impacts upon training.

Key Contents and Findings: Our review assesses the benefits and applicability of various simulators, eye models, and surgical rubrics upon training.

Conclusions: Utilization of vitreoretinal surgical training tools may aid in complementing the hands-on surgical training experience for vitreoretinal surgical fellows. By using simulators and rubrics, we may better be able to standardize training for reaching vitreoretinal surgical milestones and providing adequate feedback to improve surgical competency and ultimately patient outcomes.

Original Article
Original Article
Original Article
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息