Review Article

Psychophysics in the ophthalmological practice—I. visual acuity

:-
 
Perception is the ability to see, hear, or become aware of external stimuli through the senses. Visual stimuli are electromagnetic waves that interact with the eye and elicit a sensation. Sensations, indeed, imply the detection, resolution, and recognition of objects and images, and their accuracy depends on the integrity of the visual system. In clinical practice, evaluating the integrity of the visual system relies greatly on the assessment of visual acuity, that is to say on the capacity to identify a signal. Visual acuity, indeed, is of utmost importance for diagnosing and monitoring ophthalmological diseases. Visual acuity is a function that detects the presence of a stimulation (a signal) and resolves its detail(s). This is the case of a symbol like “E”: the stimulus is detected, then it is resolved as three horizontal bars and a vertical bar. In fact, within the clinical setting visual acuity is usually measured with alphanumeric symbols and is a three-step process that involves not only detection and resolution, but, due to the semantic content of letters and numbers, their recognition. Along with subjective (psychophysical) procedures, objective methods that do not require the active participation of the observer have been proposed to estimate visual acuity in non-collaborating subjects, malingerers, or toddlers. This paper aims to explain the psychophysical rationale underlying the measurement of visual acuity and revise the most common procedures used for its assessment.
Brain and Perception

AB074. Link between interocular correlation sensitivity and stereoscopic vision

:-
 

Background: Stereoscopic Vision uses the disparity between the two images received by the two eyes in order to create a tridimensional representation. With this study, we aimed at providing an estimate of binocular vision at a level prior to disparity processing. In particular, we wanted to assess the spatial properties of the visual system for detecting interocular correlations (IOC).

Methods: We developed dichoptic stimuli, made of textures which IOC is sinusoidally modulated at various correlation spatial frequencies. Then, we compared the sensitivity to these stimuli to the sensitivity to analogous stimuli with disparity modulation.

Results: We observed that IOC sensitivity presents a low-pass/band-pass profile and increases as a function of presentation duration and contrast, in a similar way as disparity sensitivity.

Conclusions: IOC sensitivity is weakly—though significantly—correlated with disparity sensitivity in the general population, which suggests that it could provide a marker for binocular vision, prior to disparity processing.

Brain and Perception

AB056. Multisensory stochastic facilitation: effect of thresholds and reaction times

:-
 

Background: The concept of stochastic facilitation suggests that the addition of precise amounts of white noise can improve the perceptibility of a stimulus of weak amplitude. We know from previous research that tactile and auditory noise can facilitate visual perception, respectively. Here we wanted to see if the effects of stochastic facilitation generalise to a reaction time paradigm, and if reaction times are correlated with tactile thresholds. We know that when multiple sensory systems are stimulated simultaneously, reaction times are faster than either stimulus alone, and also faster than the sum of reaction times (known as the race model).

Methods: Five participants were re-tested in five blocks each of which contained a different background noise levels, randomly ordered across sessions. At each noise level, they performed a tactile threshold detection task and a tactile reaction time task.

Results: Both tactile threshold and tactile reaction times were significantly affected by the background white noise. While the preferred amplitude for the white noise was different for every participant, the average lowest threshold was obtained with white noise presented binaurally at 70 db. The reaction times were analysed by fitting an ex-Gaussian, the sum of a Gaussian function and an exponential decay function. The white noise significantly affected the exponential parameter (tau) in a way that is compatible with the facilitation of thresholds.

Conclusions: We therefore conclude that multisensory reaction time facilitation can, at least in part, be explained by stochastic facilitation of the neural signals.

Review Article

Psychophysics in the ophthalmological practice—I. visual acuity

:-
 
Perception is the ability to see, hear, or become aware of external stimuli through the senses. Visual stimuli are electromagnetic waves that interact with the eye and elicit a sensation. Sensations, indeed, imply the detection, resolution, and recognition of objects and images, and their accuracy depends on the integrity of the visual system. In clinical practice, evaluating the integrity of the visual system relies greatly on the assessment of visual acuity, that is to say on the capacity to identify a signal. Visual acuity, indeed, is of utmost importance for diagnosing and monitoring ophthalmological diseases. Visual acuity is a function that detects the presence of a stimulation (a signal) and resolves its detail(s). This is the case of a symbol like “E”: the stimulus is detected, then it is resolved as three horizontal bars and a vertical bar. In fact, within the clinical setting visual acuity is usually measured with alphanumeric symbols and is a three-step process that involves not only detection and resolution, but, due to the semantic content of letters and numbers, their recognition. Along with subjective (psychophysical) procedures, objective methods that do not require the active participation of the observer have been proposed to estimate visual acuity in non-collaborating subjects, malingerers, or toddlers. This paper aims to explain the psychophysical rationale underlying the measurement of visual acuity and revise the most common procedures used for its assessment.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息