Editorial
Perspective

Stem cell therapy for glaucoma—there is still a long way to go

:-
 

Abstract: Glaucoma is now the second leading reason of blindness in the world and is characterized by gradual loss of retinal ganglion cells. Stem cells have the ability to regenerate human structures. Although there are still problems unsolved, stem cell therapy might provide brighter future for treatment of glaucoma.

Original Article
Review Article

Diabetic retinopathy: an inflammatory disease

:-
 

Abstract: Diabetic retinopathy (DR) is a complex multifactorial disease and one of the leading causes of visual impairment worldwide. DR pathogenesis is still not completely understood and, even if studies performed in the past focused on microvascular dysfunction as the main event, growing body of scientific evidence has demonstrated an important role of inflammation and neurodegeneration in the onset and progression of DR. This review summarizes current literature on the role of inflammation in the pathogenesis and progression of DR. In particular, it focuses on clinical inflammatory biomarkers detectable with non-invasive retinal imaging, suggestive of a local inflammatory condition. Current available treatments are applicable only at advanced stages of disease, therefore, there is the need to detect biomarkers of subclinical or early DR that can help in DR management before irreversible damage occurs. A better understanding of inflammatory pathways involved in DR may permit to implement more specific and personalized therapeutic strategies and clinical biomarkers may be a helpful tool in the everyday clinical practice to direct the patient to the most appropriate treatment option.

Review Article

New pharmacotherapies for diabetic retinopathy

:-
 

Abstract: Diabetic retinopathy (DR) is the most common microvascular complication in patients with diabetes mellitus (DM), and remains the single greatest cause of blindness in working age adults around the world. In this article, we review the evolution of pharmacotherapies for both diabetic macular edema (DME) and DR such as anti-vascular endothelial growth factor inhibitors and various steroid formulations, as well as other emerging pharmacotherapies currently in late stage clinical testing for this disease.

Retina and Posterior Segment

AB040. Pou2f1/2 are required for the specification of cone photoreceptors in the developing retina

:-
 

Background: Rods and cones are critical for light detection. Although there has been considerable work done in elucidating the molecular mechanisms involved in rod development, not much is known about how the cone cell fate decision is made by the multipotent retinal progenitor cells during development. Analysis of the promoter regions of Nrl and trβ2, rod and cone differentiation factors respectively, revealed DNA binding motifs of two POU-domain containing transcription factors, Pou2f1 and Pou2f2. Preliminary experiments showed that Pou2f1/2 are expressed during the peak of cone genesis in the embryonic retina. Therefore, we hypothesize that Pou2f1/2 specify cone cell fate in the developing retina.

Methods: We used immunofluorescence and in situ hybridization to establish the spatiotemporal expression of Pou2f1/2 during retinogenesis. We performed in vivo electroporation in post-natal mice to misexpress Pou2f1/2 and used antibodies specific to proteins expressed in cones such as Rxrγ and S-opsin to count cones. Using ex vivo electroporation of embryonic retinal explants, we knocked out Pou2f1 and Pou2f2 using CRISPR/Cas9 gRNAs at the peak of cone production window. Finally, we transfected post-natal retinal explants with a combination of regulatory elements of Nrl or thrb with control backbone vector, Pou2f1 or Pou2f2 using electroporation.

Results: We found that Pou2f1/2 are expressed in retinal progenitor cells in the developing retina and subsequently in the differentiated cones. Pou2f1/2 misexpression outside the cone genesis window led to an increase in cones at the expense of rods. Pou2f1/2 indel knockouts generated by CRISPR/Cas9 gRNAs led to a decrease in cones and a converse increase in rods. Finally, we found that Pou2f1/2 activate the cis-regulatory module (CRM) of the thrb gene and repress the activity of the CRM of Nrl.

Conclusions: These results uncover novel players that establish the complex gene regulatory network for cone photoreceptor fate specification in the retinal progenitor cells. We anticipate that this work should help us devise improved replacement therapies in the future utilizing stem cells for retinal degenerative diseases such as aged-related macular degeneration (AMD) and Stargardt’s disease.

Retina and Posterior Segment
Review Article

The present and the prospect of bioengineering cornea

:-
 

Abstract: Corneal blindness represents one of the world’s three major causes of blindness, and the fundamental problem of corneal transplantation is a severe shortage of donor tissues worldwide, resulting in approximately 1.5 million new cases of blindness annually. To address the growing need for corneal transplants two main approaches are being pursued: allogenic and bioengineering cornea. Bioengineering corneas are constructed by naturally generating an extracellular matrix (ECM) component as the scaffold structure with or without corneal cells. It is well established that the scaffold structure directs the fate of cells, therefore, the fabrication of the correct scaffold structure components could produce an ideal corneal substitute, able to mimic the native corneal function. Another key factor in the construction of tissue engineering cornea is seed cells. However, unlike the epithelium and stroma cells, human cornea endothelium cells (HCECs) are notorious for having a limited proliferative capacity in vivo because of the mitotic block at the G1 phase of the cell cycle due to “contact-inhibition”. This review will focus on the main concepts of recent progress towards the scaffold and seed cells, especially endothelial cells for bioengineering cornea, along with future perspectives.

Review Article

The development of tissue engineering corneal scaffold: which one the history will choose?

:-
 

Abstract: Since the 21st century, the development of corneal tissue engineering technology has been developing rapidly. With the progress of biomaterials, cell culture and tissue engineering technology, tissue engineering cornea has gained great development in both basic scientific research and clinical application. In particular, tissue engineered corneal scaffolds are the core components of tissue engineered corneas. It is the focus of current research on tissue engineering cornea to search for scaffolds with good biocompatibility, high safety and good biomechanical properties. In this paper, the recent research progress of tissue engineering corneal materials is reviewed.

Review Article

Scleral remodelling in myopia and its manipulation: a review of recent advances in scleral strengthening and myopia control

:-
 

Abstract: The biological mechanisms of eye growth and refractive development are increasingly well characterised, a result of many careful studies that have been carried out over many years. As the outer coat of the eye, the sclera has the ultimate impact on the restraint or facilitation of eye growth, thus any changes in its biochemistry, ultrastructure, gross morphology and/or biomechanical properties are critical in refractive error development and, in particular, the development of myopia. The current review briefly revisits our basic understanding of the structure and biomechanics of the sclera and how these are regulated and modified during eye growth and myopia development. The review then applies this knowledge in considering recent advances in our understanding of how the mechanisms of scleral remodelling may be manipulated or controlled, in order to constrain eye growth and limit the development of myopia, in particular the higher degrees of myopia that lead to vision loss and blindness. In doing so, the review specifically considers recent approaches to the strengthening of the sclera, through collagen cross-linking, scleral transplantation, implantation or injection of biomaterials, or the direct therapeutic targeting and manipulation of the biochemical mechanisms known to be involved in myopia development. These latest approaches to the control of scleral changes in myopia are, where possible, placed in the context of our understanding of scleral biology, in order to bring a more complete understanding of current and future therapeutic interventions in myopia, and their consequences.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息