Original Article

Subjective refractions determined by Dyop? and LogMAR chart as fixation targets

:-
 

Background: Dyop® is a dynamic optotype with a rotating and segmented visual stimulus. It can be used for visual acuity and refractive error measurement. The objective of the study was to compare refractive error measurement using the Dyop® acuity and LogMAR E charts.

Methods: Fifty subjects aged 18 or above with aided visual acuity better than 6/12 were recruited. Refractive error was measured by subjective refraction methods using the Dyop® acuity chart and LogMAR E charts and the duration of measurement compared. Thibo’s notation was used to represent the refractive error obtained for analysis.

Results: There was no significant difference in terms of spherical equivalent (M) (P=0.96) or J0 (P=0.78) and J45 (P=0.51) components measured using the Dyop® acuity and LogMAR E charts. However, subjective refraction measurement was significantly faster using the Dyop® acuity chart (t=4.46, P<0.05), with an average measurement time of 419.90±91.17 versus 452.04±74.71 seconds using the LogMAR E chart.

Conclusions: Accuracy of refractive error measurement using a Dyop® chart was comparable with use of a LogMAR E chart. The dynamic optotype Dyop® could be considered as an alternative fixation target to be used in subjective refraction.

Review Article
Review Article

Design and recent results of large-scale cohort epidemiology studies on refractive error in children in Shanghai

:-
 

Abstract: Between 2011 and 2013, two large-scale cohort epidemiology studies were launched in Shanghai: the SCALE study, which aimed to provide ocular public health services to cover the entire youth population in Shanghai, and the SCES, which was based on sample surveys and aimed to provide information on the prevalence and incidence of visual impairment and different types of refractive errors. A total of 910,245 children and adolescents were finally enrolled in the SCALE study; three possible methods for monitoring refractive error without mydriasis were tested, and the agreement between the refractive outcomes of three commonly used autorefractors were examined to ensure the accuracy of the results of the SCALE study. A total of 8,627 children were enrolled in the SCES, and the baseline prevalence of different refractive errors, different behaviors associated with 1 year myopic shifts, and the different patterns of 2-year myopia progression between internal migrant and local resident school children have been analyzed. In some subset samples of the SCALE study and the SCES, several refraction components such as choroidal thickness (ChT) and crystalline lens power were also measured, to further elucidate the relationships between the refraction components and myopia as well as the mechanism of myopia incidence and development. The three methods used in Shanghai to prevent and intervene with childhood myopia: increasing outdoor time, low concentration atropine, and use of orthokeratology lens are also addressed in this review.

Original Article

Subjective refractions determined by Dyop® and LogMAR chart as fixation targets

:-
 
Background: Dyop® is a dynamic optotype with a rotating and segmented visual stimulus. It can be used for visual acuity and refractive error measurement. The objective of the study was to compare refractive error
measurement using the Dyop® acuity and LogMAR E charts.
Methods: Fifty subjects aged 18 or above with aided visual acuity better than 6/12 were recruited. Refractive error was measured by subjective refraction methods using the Dyop® acuity chart and LogMAR E charts and the duration of measurement compared. Thibo’s notation was used to represent the refractive error obtained for analysis.
Results: There was no significant difference in terms of spherical equivalent (M) (P=0.96) or J0 (P=0.78) and J45 (P=0.51) components measured using the Dyop® acuity and LogMAR E charts. However, subjective refraction measurement was significantly faster using the Dyop® acuity chart (t=4.46, P<0.05), with an average measurement time of 419.90±91.17 versus 452.04±74.71 seconds using the LogMAR E chart.
Conclusions: Accuracy of refractive error measurement using a Dyop® chart was comparable with use of a LogMAR E chart. The dynamic optotype Dyop® could be considered as an alternative fixation target to be used in subjective refraction.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息