Original Article

Longitudinal analysis of quantitative biomarkers using projection-resolved OCT angiography in retinal vein occlusion

:-
 

Background: To evaluate a fully automated vascular density (VD), skeletal density (SD) and fractal dimension (FD) method for the longitudinal analysis of retinal vein occlusion (RVO) eyes using projection-resolved optical coherence tomography angiography (OCTA) images and to evaluate the association between these quantitative variables and the visual prognosis in RVO eyes.

Methods: Retrospective longitudinal observational case series. Patients presenting with RVO to Creteil University Eye Clinic between October 2014 and December 2018 and healthy controls were retrospectively evaluated. Group 1 consisted of central RVO (CRVO) eyes, group 2 consisted of eyes with branch RVO (BRVO) and group 3 of healthy control eyes. OCTA acquisitions (AngioVue RTVue XR Avanti, Optovue, Inc., Freemont, CA) were performed at baseline and last follow up visit. VD, SD, and FD analysis were computed on OCTA superficial and deep vascular complex (SVC, DVC) images at baseline and final follow up using an automated algorithm. Logistic regression was performed to find if and which variable (VD, SD, FD) was predictive for the visual outcome.

Results: Forty-one eyes, of which 21 consecutive eyes of 20 RVO patients (13 CRVO in group 1, 8 BRVO in group 2), and 20 eyes of 20 healthy controls were included. At the level of SVC, VD and FD were significantly lower in RVO eyes compared to controls (P<0.0001 and P=0.0008 respectively). Best-corrected visual acuity (BCVA) at last follow-up visit was associated with baseline VD (P=0.013), FD (P=0.016), and SD (P=0.01) at the level of the SVC, as well as with baseline FD at the DVC level (P=0.046).

Conclusions: Baseline VD, SD, and FD are associated with the visual outcome in RVO eyes. These parameters seem valuable biomarkers and may help improve the evaluation and management of RVO patients.

Review Article

Comparison between sodium iodate and lipid peroxide murine models of age-related macular degeneration for drug evaluation—a narrative review

:-
 

Objective: In this review, non-transgenic models of age-related macular degeneration (AMD) are discussed, with focuses on murine retinal degeneration induced by sodium iodate and lipid peroxide (HpODE) as preclinical study platforms.

Background: AMD is the most common cause of vision loss in a world with an increasingly aging population. The major phenotypes of early and intermediate AMD are increased drusen and autofluorescence, Müller glia activation, infiltrated subretinal microglia and inward moving retinal pigment epithelium (RPE) cells. Intermediate AMD may progress to advanced AMD, characterized by geography atrophy and/or choroidal neovascularization (CNV). Various transgenic and non-transgenic animal models related to retinal degeneration have been generated to investigate AMD pathogenesis and pathobiology, and have been widely used as potential therapeutic evaluation platforms.

Methods: Two retinal degeneration murine models induced by sodium iodate and HpODE are described. Distinct pathological features and procedures of these two models are compared. In addition, practical protocol and material preparation and assessment methods are elaborated.

Conclusions: Retina degeneration induced by sodium iodate and HpODE in mouse eye resembles many clinical aspects of human AMD and complimentary to the existent other animal models. However, standardization of procedure and assessment protocols is needed for preclinical studies. Further studies of HpODE on different routes, doses and species will be valuable for the future extensive use. Despite many merits of murine studies, differences between murine and human should be always considered.

Study Protocol

In vitro models of retinal diseases

:-
 

Background: Continuous and primary in vitro cultures are largely used to study cellular mechanisms occurring in several pathologic-like or pathological conditions. Continuous cell lines allow to perform long-lasting experiments since they do not undergo senescence.

Methods: The immortalized Moorfields/Institute of Ophtalmology-Müller 1 (MIO-M1) cell type represents a valuable model to analyze the mechanistic pathways characterizing Müller glial cells, both in health and in disease. MIO-M1 can be used to dissect the response of these glial cells following treatments which mimic pathological condition. For instance, MIO-M1 are useful to study the response of this cell type to stress condition as the case of oxidative stress (OS) (cultured with hydrogen peroxide), pathological neovascularization (cultured with VEGF), hypoxic or hyperoxic condition (cultured in low or high oxygen chamber). On the other hand, primary cultures allow to specifically analyze cellular responses without the interference of the whole organ, although the experimental treatment is performed in vivo. Primary Müller cells can be used to perform electrophysiological analyses of different cell sites.

Discussion: We describe how to manage MIO-M1 cells and how to analyze their response to different stress conditions; moreover, we report how to isolate and identify primary Müller cells and how to perform patch clamp and single cell recordings on them.

Study Protocol

Experimental models of retinopathy of prematurity

:-
 

Background: Retinopathy of prematurity (ROP) is considered as the most common reason for blindness in children, particularly in preterm infants. The disease is characterized by the dysregulation of angiogenic mechanisms due to preterm birth, leading ultimately to vascular abnormalities and pathological neovascularization (NV). Retinal detachment and vision loss could represent a concrete risk connected to the most severe forms of ROP, also characterized by inflammation and retinal cell death.

Methods: During the last decades, many animal models of oxygen-induced retinopathy (OIR) have been recognized as useful tools to study the mechanisms of disease, since they reproduce the hallmarks typical of human ROP. Indeed, modulation of retinal vascular development by exposure to different oxygen protocols is possible in these animals, reproducing the main pathological phenotypes of the disease. The easy quantification of abnormal NV and the possibility to perform electrophysiologic, histological and molecular analyses on these models, make OIR animals a fundamental instrument in studying the pathophysiology of ROP and the effects of novel treatments against the disease.

Discussion: Here, the most commonly used OIR protocols in rodents, such as mice and rats, are described as well as the main pathological outcomes typical of these models. Despite their limitations and variables which should be considered whilst using these models, OIR models display several characteristics which have also been confirmed in human patients, validating the usefulness of such animals in the pre-clinical research of ROP.

Review Article

Subthreshold laser systems: a narrative review of the current status and advancements for retinal diseases

:-
 

Background and Objective: Subthreshold laser therapy has emerged as a therapeutic alternative to traditional laser photocoagulation for certain ophthalmic diseases including central serous chorioretinopathy (CSCR), diabetic macular edema (DME), macular edema secondary to branch retinal vein occlusion (BRVO), and age-related macular degeneration (AMD). The objective of this paper is to review and discuss the clinical applications of subthreshold laser and the mechanisms of different subthreshold laser techniques including subthreshold micropulse laser (SMPL), selective retina therapy (SRT), subthreshold nanosecond laser (SNL), endpoint management (EpM), and transpupillary thermotherapy (TTT).

Methods: A narrative review of English literature and publicly available information published before November 2021 from literature databases and computerized texts. We discuss the currently available subthreshold laser systems and the advancements made to perform different subthreshold laser techniques for various ophthalmic diseases. We highlight various clinical studies and therapeutic techniques that have been conducted to further understand the effectiveness of subthreshold laser in the clinical setting. We conclude the article by covering emerging subthreshold laser systems that are currently being developed for future clinical use. The PubMed database was utilized for peer-reviewed articles and pertinent information on subthreshold systems was cited from publicly available online websites covering specific systems.

Key Content and Findings: Various subthreshold laser systems have been developed to treat certain retinal diseases. Several systems are currently in development for future clinical applications.

Conclusions: While conventional laser photocoagulation has been effective in treating various retinal diseases, subthreshold laser systems aim to provide a therapeutic effect without visible signs of damage to the underlying tissue. This technology may be particularly effective in treating macular disorders. Further clinical studies are needed to evaluate their role in the management of retinal diseases.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息