Cornea and Anterior segment

AB093. Ocular tissues bank for vision health research

:-
 

Background: This infrastructure delivers biological material necessary for several research projects to Vision Health Research Network investigators (VHRN).

Methods: Héma-Québec is the organism in charge obtaining consent and retrieving donor eyes for patient treatment or for research. In Quebec City, donor eyes are sent to the eye bank of the “Centre Universitaire d’Ophtalmologie” (CUO) of Saint-Sacrement hospital. Technicians at the eye bank evaluate the quality of the tissues. Those unfit for graft are transferred to the infrastructure where the coordinator encodes samples prior to their distribution.

Results: Between 2013 and 2017, 27 fundamental investigators, clinical investigators and collaborators supported by 60 students, trainees and laboratory assistants used this infrastructure to move forward their projects. Since 2013, results from those projects generated 21 scientific publications and 232 presentations. The infrastructure helped VHRN investigators obtain near 4 million dollars in grants from many organisms (CIHR, NSERC, Foundations, etc.). These grants allowed recruitment and formation of highly qualified personnel. Last year (April 2016 to March 2017), 189 corneas and 23 eyes transited through the infrastructure.

Conclusions: This infrastructure is available for all investigators that are members of the VHRN. Many original projects have been elaborated thanks to the human ocular tissues provided by this infrastructure. These projects will advance our knowledge in vision health. A better understanding of eye functions will lead to new treatments for eye diseases.

Cornea and Anterior segment

AB089. Impact of WNK1 inhibition on corneal wound healing using a model of human tissue-engineered cornea

:-
 

Background: Because of its superficial anatomical localization, the cornea is particularly vulnerable to abrasive forces and various traumas, which can lead to significant visual impairments. Upon injury of the corneal epithelium, there are important changes that occur in the composition of the underlying extracellular matrix (ECM). Those changes are perceived by the integrins that recognize the ECM components as their ligand and activate different intracellular signalling pathways, ultimately leading to reepithelialisation and reorganization of the injured epithelium, both of which are necessary in order to restore the visual properties of the cornea. The goal of this study was to analyse the impact of the pharmacological inhibition of specific signal transduction mediators of integrin-dependant signalling pathways on corneal wound healing using both monolayers of hCECs and tissue-engineered human corneas (hTECs) as in vitro models.

Methods: hTECs were produced by the self-assembly approach and wounded with a 8-mm diameter biopsy punch. Total RNA and proteins were isolated from the wounded and unwounded hTECs to conduct gene profiling analyses and protein kinase arrays. The wounded tissues were then incubated with the WNK1 inhibitor WNK463 and wound healing was monitored over a period of 6 days. Control corneas were incubated with the vehicle alone (DMSO). The impact of WNK1 inhibition on hCECs monolayers was determined using a scratch wound assay.

Results: Gene profiling analyses and protein kinases arrays revealed important alterations in the expression and activity of several mediators from the integrin-dependent signalling pathways in response to the ECM changes taking place during corneal wound healing. Among these, WNK1 is considerably activated through phosphorylation during corneal wound healing. The pharmacological inhibition of WNK1 by WNK463 significantly reduced the dynamic of corneal wound closure in our hTECs and hCECs monolayers compared to their respective negative controls.

Conclusions: These results allowed the identification of WNK1 kinase as an important player for a proper healing of the cornea. Also, these results allowed for a better understanding of the cellular and molecular mechanisms involved in corneal wound healing and they may lead to the identification of new therapeutic targets in the field of corneal wounds.

其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息