2018年3月 第3卷 第3期

主管:中华人民共和国教育部
主办:中山大学
承办:中山大学中山眼科中心
主编:Ge Jian, Liu Yizhi
Retina and Posterior Segment

AB001. Innate immunity, aging and angiogenesis

AB001. Innate immunity, aging and angiogenesis

:-
 

Abstract: Disorders of lipid metabolism and macrophage function have been implicated in tissue aging and in diseases such as age-related macular degeneration (AMD). Genetic studies and expression profiling have identified widespread abnormalities in cholesterol metabolism in the aging macrophage. In addition, the molecular pathways that regulate the transition from aging to disease have not been elucidated. The current status regarding the mechanisms that regulate macrophage aging and the molecular mechanisms of transition to disease in the context of AMD will be presented with a special focus on factors that influence pathologic angiogenesis and neurodegeneration.

AB002. Guidance of vascular patterning in ocular development and disease

AB002. Guidance of vascular patterning in ocular development and disease

:-
 

Abstract: Ocular vessel networks develop in a highly stereotyped fashion. Abnormal ocular angiogenesis is associated with major diseases including age-related macular degeneration and diabetic retinopathy. Better understanding of mechanisms driving angiogenesis is expected to uncover novel targets to prevent vision loss. Capillary growth is driven by endothelial tip cells, which are selected by dynamic interplay between VEGF, Notch and BMP signaling, with VEGF acting as a positive regulator, and Notch and the BMP receptor Alk1 acting as negative regulators of tip cell formation. The concerted interplay between these molecules ensures that appropriate tip cell numbers leading new vessel branches are formed. In addition, guidance receptors including Neuropilins and Roundabout receptors contribute to vascular patterning by regulating VEGF and BMP signaling. Possibilities to target these pathways during pathological ocular neovascularization will be discussed.

AB003. Deregulated autophagy and energy-deficient photoreceptors drive angiogenesis in a model of age-related macular degeneration

AB003. Deregulated autophagy and energy-deficient photoreceptors drive angiogenesis in a model of age-related macular degeneration

:-
 

Abstract: Autophagy recycles intracellular substrate in part to fuel mitochondria during starvation. Deregulated autophagy caused by dyslipidemia, oxidative stress, and aging is associated with early signs of age-related macular degeneration (AMD), such as lipofuscin and perhaps drusen accumulation. Intracellular nutrient sensors for glucose and amino acids regulate autophagy. The role of lipid sensors in controlling autophagy, however, remains ill-defined. Here we will show that abundant circulating lipids trigger a satiety signal through FA receptors that restrain autophagy and oxidative mitochondrial metabolism. In the presence of excess dietary lipids, fatty acid sensors might protect tissues with high metabolic rates against lipotoxicity, favoring their storage, instead, in adipose tissues. However, sustained exposure to lipid reduces retinal metabolic efficiency. In photoreceptors with high metabolic needs, it predisposes to an energy failure and triggers compensatory albeit pathological angiogenesis, leading to blinding neovascular AMD.

AB004. Regulation of retinal angiogenesis and vascular permeability by bone morphogenetic protein signaling

AB004. Regulation of retinal angiogenesis and vascular permeability by bone morphogenetic protein signaling

:-
 

Abstract: The bone morphogenetic protein (BMP) family of proteins has a multitude of roles throughout the body. It plays important roles in development and in the adult vascular endothelium, by modulating the angiogenic response. The endothelial-specific receptor BMP receptor Alk1 is of particular importance in the proper remodeling of the vasculature and its ligand BMP9 has been shown to be a potent inhibitor of neovascularization. Dysregulated BMP signaling has been linked to multiple vascular diseases and can lead to the abnormal angiogenesis. We therefore investigated the role of BMP9/Alk1 signaling in retinal angiogenesis, and its therapeutic implications for vascular pathologies of the eye.

AB005. Perspectives on complement injury and choriocapillaris endothelial cell loss in aging and age-related macular degeneration

AB005. Perspectives on complement injury and choriocapillaris endothelial cell loss in aging and age-related macular degeneration

:-
 

Abstract: Genetic studies have revealed that variants in genes that encode regulators of the complement system are major risk factors for the development of age-related macular degeneration (AMD). The biochemical consequences of the common polymorphism in complement factor H (Tyr402His) include increased formation of the membrane attack complex (MAC), which is deposited at the level of the inner choroid and choriocapillaris. Whereas the MAC is normally protective against foreign pathogens, it can also damage resident bystander cells when it is insufficiently regulated. Indeed, human maculas with early AMD show loss of endothelial cells in the choriocapillaris, the principal site of MAC activation. Modeling of MAC injury of choroidal endothelial cells in vitro reveals that these cells are susceptible to cell lysis by the MAC, and that unlysed cells alter their gene expression profile to undergo a pro-angiogenic phenotype that includes increased expression of matrix metalloproteinase-9. Strategies for protecting choriocapillaris endothelial cells from MAC-mediated lysis and for replacing lysed endothelial cells will be discussed.

AB006. The co-receptor CD36 as a target in regulation of subretinal inflammation

AB006. The co-receptor CD36 as a target in regulation of subretinal inflammation

:-
 

Abstract: Subretinal inflammation plays a critical role in retinal degenerative diseases. Although activated macrophages have been shown to play a key role in the progression of retinopathies and specifically in age-related macular degeneration, little is known about the mechanisms involved in the loss of photoreceptors leading to vision impairment. In our study on retinal damages induced by photo-oxidative stress, we have observed that CD36-deficient mice featured less subretinal macrophage accumulation with attenuated photoreceptor degeneration compared to wild-type (WT) mice. Treatment with CD36-selective azapeptide ligand (labelled MPE-001) as modulator of the inflammatory environment of the retina reduced subretinal macrophage/activated microglia accumulation with preservation of photoreceptor layers and function assessed by ERG in WT, in a CD36-dependent manner. The azapeptide modulated the transcriptome of subretinal macrophage/activated microglia by reducing pro-inflammatory markers. In isolated macrophages, the CD36-selective azapeptide induced dissociation of the CD36-TLR2/6 heterodimer complex (using FRET) altering the TLR2 signaling pathway, thus decreasing NF-KB activation and inflammasome activity. The azapeptide also incurred cytoprotection against photoreceptor apoptosis elicited by activated macrophages. These findings suggest that the azapeptide as ligand of co-receptor CD36 decreases the inflammatory response by modulating CD36-TLR2/6 complex signaling pathway in macrophages, and suggests its potential application in the treatment of retinal degenerative diseases.

AB007. Tissue engineering of a choroidal substitute with pseudo-vascularization

AB007. Tissue engineering of a choroidal substitute with pseudo-vascularization

:-
 

Background: The goal of this study was to engineer an epithelialized and endothelialized pigmented choroidal substitute using the self-assembly approach of tissue engineering.

Methods: Cells from human choroids were isolated and cultured. Culture purity was assessed using immunostaining (CD31, HMB45, vimentin, keratins 8/18). To engineer the choroid, fibroblasts were cultured in the presence of serum and ascorbic acid to promote extracellular matrix (ECM) assembly. Endothelial cells, melanocytes or RPE cells were separately seeded on the stromal substitutes. Choroidal substitutes were further characterized by histology, mass spectrometry, immunostaining, and compared to native human choroids.

Results: The technique used to isolate choroidal cells yielded pure cultures of fibroblasts, melanocytes and vascular endothelial cells. The stromal substitutes engineered using the self-assembly approach were composed of collagen (types I, VI, XII and XIV), proteoglycans (decorin, lumican) and other ECM proteins. Protein expression was confirmed using immunostaining. Endothelial cells spontaneously assembled into capillary-like structures and vascular networks when cocultured with fibroblast-containing ECM sheets.

Conclusions: This study shows that the self-assembly approach of tissue engineering can be used to reconstruct a choroid using native cells. This model represents a unique tool to better understand the crosstalk between the different choroidal cell types and cell-ECM interactions.

AB008. Cellular senescence and retinal angiogenesis

AB008. Cellular senescence and retinal angiogenesis

:-
 

Abstract: Pathological retinal neovascularization is the hallmark of primary blinding diseases across all age groups, yet surprisingly little is known about the causative factors. These diseases include diabetic retinopathy and retinopathy of prematurity where progressive decay of retinal vasculature yields zones of neural ischemia. These avascular zones and the hypoxic neurons and glia that reside in them are the source of pro-angiogenic factors that mediate destructive pre-retinal angiogenesis. Central neurons such as retinal ganglion cells (RGCs), which are directly apposed to degenerating vasculature in ischemic retinopathies, require stable metabolic supply for proper function. However, we unexpectedly found that RGCs are resilient to hypoxia/ischemia and a generally compromised metabolic supply and instead of degenerating, trigger protective mechanisms of cellular senescence. Paradoxically, while potentially favoring neuronal survival, the senescent state of RGCs is incompatible with vascular repair as they adopt a senescence-associated secretory phenotype (SASP) that provokes release of a secretome of inflammatory cytokines that drives paracrine senescence and further exacerbates pathological angiogenesis. The mechanisms that lead to retinal cellular senescence and dormancy as well as the therapeutic potential of targeting these pathways will be discussed.

AB009. The age-related macular degeneration genetic-risk promotes pathogenic subretinal inflammation

AB009. The age-related macular degeneration genetic-risk promotes pathogenic subretinal inflammation

:-
 

Abstract: Mononuclear phagocytes (MP) comprise a family of cells that include microglial cells (MC), monocytes, and macrophages. The subretinal space, located between the RPE and the photoreceptor outer segments, is physiologically devoid of MPs and a zone of immune privilege mediated, among others, by immunosuppressive RPE signals. Age-related macular degeneration (AMD) is a highly heritable major cause of blindness, characterized by a breakdown of the subretinal immunosuppressive environment and an accumulation of pathogenic inflammatory MPs. Studies in mice and humans suggest that the AMD-associated APOE2 isoform promotes the breakdown of subretinal immunosuppression and increased MP survival. Of all genetic factors, variants of complement factor H (CFH) are associated with greatest linkage to AMD. Using loss of function genetics and orthologous models of AMD, we provide mechanistic evidence that CFH inhibits the elimination of subretinal MPs. Importantly, the AMD-associated CFH402H isoform markedly increased this inhibitory effect on microglial cells, indicating a causal link to disease etiology. Pharmacological acceleration of resolution of subretinal inflammation might be a powerful tool for controlling inflammation and neurodegeneration in late AMD.

AB010. Promotion of BMP9/ALK1 quiescence signaling for the prevention of diabetic macular edema (DME)

AB010. Promotion of BMP9/ALK1 quiescence signaling for the prevention of diabetic macular edema (DME)

:-
 

Background: Sight-threatening diabetic macular edema (DME) is caused by increased microvascular permeability. While few direct vascular targeting strategies are available, VEGF pathway inhibition has shown to be effective in reducing retinal vascular leakage but is associated with non-negligible side effects. Thus, more options are needed. Vascular specific Activin-like kinase receptor type I (ALK1) pathway and its circulating ligand Bone morphogenetic protein-9 (BMP9) is known for its potent quiescent and stabilizing effect on the vasculature. However, little is known about this pathway in the context of microvascular permeability associated with diabetes. We hypothesize that BMP9/ALK1 pathway is inhibited in diabetic (DB) retinas leading to vascular destabilization and leakage and that its activation could re-establish proper vascular endothelial barrier functions (EBF).

Methods: The effect of hyperglycemia (i.e., HG >10 mM of D-glucose) on Alk1 signaling was evaluated in vitro by subjecting endothelial cells (EC) to increasing concentrations of D-glucose (5, 11, 25 mM) and in vivo using DB mice (Streptozotocin-induced diabetes). The contribution of Alk1 signaling on EBF was evaluated using Evans Blue permeation in inducible endothelial specific Alk1 KO mice. To evaluate the potential protective effects of BMP9/Alk1 signaling on EBF, BMP9 overexpression was achieved using adenoviral delivery in DB mice. Statistical-One-Way ANOVA or Student’s t-test was used.

Results: Endothelial tissue from DB mice showed a significant inhibition of BMP9/ALK1-canonical Smad1,5,8 quiescence signaling (DB n=5; CTL n=4; P<0.01), which was associated with reduced expression of target genes (JAG1, Id1,3, Hey1,2 & HES). Moreover, we showed that retinal hyperpermeability associated with diabetes was exacerbated in Alk1 heterozygote mice (n=4–9/group; P<0.0001). Finally, we demonstrated that activation of Alk1 signaling in ECs prevented vascular permeability induced by HG, both in vitro (n=3; P=0.009) and in vivo (n=4–9/group; P<0.0001).

Conclusions: Consistent with our hypothesis, vascular stability and quiescence induced by BMP9-ALK1 signaling is inhibited in the DB/HG endothelium which could be an important factor in vascular leakage leading to DME. Our results show that activation of this pathway could offer a therapeutically interesting future option to slow down the onset of DME.

AB011. Live imaging of retinal pericytes: evidence for early calcium uptake, capillary constriction and vascular dysregulation in ocular hypertension glaucoma

AB011. Live imaging of retinal pericytes: evidence for early calcium uptake, capillary constriction and vascular dysregulation in ocular hypertension glaucoma

:-
 

Background: Pericytes are contractile cells that wrap along the walls of capillaries. In the brain, pericytes play a crucial role in the regulation of capillary diameter and vascular blood flow in response to metabolic demand. The contribution of pericytes to microvascular deficits in glaucoma is currently unknown. To address this, we used two-photon excitation microscopy for longitudinal monitoring of retinal pericytes and capillaries in a mouse glaucoma model.

Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of albino mice expressing red fluorescent protein selectively in pericytes (NG2-DsRed). Minimally invasive, multiphoton imaging through the sclera of live NG2-DsRed mice was used to visualize pericytes and capillary diameter at one, two and three weeks after glaucoma induction. In vivo fluctuations in pericyte intracellular calcium were monitored with the calcium indicator Fluo-4. Ex vivo stereological analysis of retinal tissue prior to and after injection of microbeads was used to confirm our in vivo findings.

Results: Live two-photon imaging of NG2-DsRed retinas demonstrated that ocular hypertension induced progressive accumulation of intracellular calcium in pericytes. Calcium uptake correlated directly with the narrowing of capillaries in the superficial, inner, and outer vascular plexuses (capillary diameter: na?ve control =4.7±0.1 μm, glaucoma =4.0±0.1 μm, n=5–6 mice/group, Student’s t-test P<0.05). Frequency distribution analysis showed a substantial increase in the number of small-diameter capillaries (≤3 μm) and a decrease in larger-diameter microvessels (≥5–9 μm) at three weeks after induction of ocular hypertension (n=5–6 mice/group, Student’s t-test P<0.05).

Conclusions: Our data support two main conclusions. First, two-photon excitation microscopy is an effective strategy to monitor longitudinal changes in retinal pericytes and capillaries in live animals at glaucoma onset and progression. Second, ocular hypertension triggers rapid intracellular calcium increase in retinal pericytes leading to substantial capillary constriction. This study identifies retinal pericytes as important mediators of early microvascular dysfunction in glaucoma.

AB016. A standardized approach to correlating OCT images to histopathology using paraffin embedded specimens: clarification of the ellipsoid zone and new opportunities

AB016. A standardized approach to correlating OCT images to histopathology using paraffin embedded specimens: clarification of the ellipsoid zone and new opportunities

:-
 

Background: The aim of this project is to develop a new standardized and cost-efficient method to compare optical coherence tomography (OCT) scans to their corresponding paraffin embedded histopathology sections in post-mortem eyes. This correlation will clarify the interpretation of OCT images, and it will also enable direct immunohistochemical characterization of features observed on OCT.

Methods: Study design: donor eyes were obtained from two separate eye banks. In order to minimize post-mortem change like retinal detachment and vitreous opacification, the eyes were fixed in a previously tested fixative solution. Time between death and fixation has been kept under 6 hours. Methods: Using a customized imaging device, nine post-mortem eyes were imaged with a SD-OCT machine. Subsequently, an 8mm trephine was used to isolate a portion of the posterior pole including the macular area and the optic nerve head for histopathological analysis. Paraffin embedded cross sections of the retina were obtained and visually compared to each OCT image (b-scans).

Results: To facilitate the correlation of OCT images to their histopathological sections, three principle aspects were controlled during tissue processing: rotation, tilt and location. Using markings as well as anatomical landmarks, serial histopathological sections in an orientation comparable to OCT b-scans were obtained, thereby facilitating image pairing.

Conclusions: Compared to other well-established methods using resin and electron microscopy, our standardized Methods allowed us to successfully compare OCT b-scans to serial retinal cross sections of a wider macular area at a lower cost. Our novel approach allows us to translate features observed on OCT images into well-established histopathological images, providing the clinician with additional tools to obtain difficult diagnoses with more confidence.

AB017. Investigation of the effect of lymphocyte-derived microparticles on retinal macrophages in the oxygen-induced retinopathy model

AB017. Investigation of the effect of lymphocyte-derived microparticles on retinal macrophages in the oxygen-induced retinopathy model

:-
 

Background: Retinopathy of prematurity (ROP) is the major cause of blindness in children, mainly caused by the retinal neovascularization (NV). Mounting of evidences shown that macrophage plays a pivotal role in the regulation of angiogenesis in ROP. Numerous studies confirmed that the deletion of macrophage significantly reduce the neovascularized areas in the oxygen-induced retinopathy (OIR) model. We have been studied the effect of lymphocyte derived-microparticles (LMPs) over ten years. LMPs are extracellular vesicles derived from apoptotic human CEM T lymphocytes. Our previous studies demonstrated that LMPs possess strong anti-angiogenic effect. Recently we observed that LMPs are capable to switch the phenotype of macrophage, thus to suppress the choroidal neovascularization (CNV). However, the role of LMPs on macrophage in ROP has not been clarified. Thus, my project is to disclose the relationship between LMPs and macrophage in ROP using the OIR model. Hypothesis: LMPs may inhibit retinal NV in the OIR model through targeting at macrophage by affecting the migration of macrophage, thus to inhibit pathological angiogenesis in ROP.

Methods: Cell culture [RAW 264.7 and bone marrow-derived macrophage (BMDM)] for cell migration and viability assay. Generate the OIR model for in vivo detection of macrophage recruitment. Quantification of retinal NV, immunohistostaining of the macrophage in vivo, ex vivo retinal explants for cell migration and qPCR.

Results: LMPs do not affect RAW 264.7 and BMDM cell viability (P>0.05). LMPs significantly decrease the BMDM cell migration indirectly (P<0.05). I successfully generate the OIR model and confirm that more macrophages infiltrate during retinal angiogenesis with counting the F4/80 immunostaining in the retinal flat mount. LMPs exert inhibiting effect on retinal angiogenesis through decreasing the migration of macrophages in vivo.

Conclusions: LMPs have the negative effect on retinal angiogenesis via reducing the infiltrated macrophages to the neovascularized areas in the OIR model.

AB018. Ocular hypertension promotes early mitochondrial fragmentation in retinal endothelial cells in a mouse model of glaucoma

AB018. Ocular hypertension promotes early mitochondrial fragmentation in retinal endothelial cells in a mouse model of glaucoma

:-
 

Background: Retinal endothelial cells are very active and contribute to the integrity of the neurovascular unit. Vascular dysfunction has been proposed to contribute to the pathogenesis of glaucoma. Here, we evaluated the hypothesis that ocular hypertension triggers mitochondrial alterations in endothelial cells impairing the integrity of the blood retinal barrier (BRB).

Methods: Ocular hypertension was induced by injection of magnetic microbeads into the anterior chamber of EndoMito-EGFP mice, a strain expressing green fluorescent protein selectively in the mitochondria of endothelial cells. Capillary density, mitochondrial volume, and the number of mitochondrial components were quantified in 3D-reconstructed images from whole-mounted retinas using Imaris software. Dynamin-related protein (DRP-1), mitofusin-2 (MFN-2) and optic atrophy-1 (OPA-1) expression were assessed by western blot analysis of enriched endothelial cells. Mitochondrial structure was evaluated by transmission electron microscopy (TEM) and oxygen consumption rate was monitored by Seahorse analysis. The integrity of the BRB was evaluated by quantifying Evans blue leakage.

Results: Our data demonstrate that two and three weeks after ocular hypertension induction, the total mitochondria volume in endothelial cells decreased from 0.140±0.002 μm3 from non-injured retinas to 0.108±0.005 and 0.093±0.007 μm3, respectively in glaucomatous eyes (mean ± S.E.M, ANOVA, P<0.001; N=6/group). Frequency distribution showed a substantial increase of smaller mitochondria complexes (<0.5 μm3) in endothelial cells from glaucomatous retinas. Significant upregulation of DRP-1 was found in vessels isolated from glaucomatous retinas compared to the intact retinas, while MFN-2 and OPA-1 expression was not affected. Structural alteration in endothelial cell mitochondria was confirmed by TEM, which were accompanied by a 1.93-fold reduction in the oxygen consumption rate as well as 2.6-fold increase in vasculature leakage in glaucomatous retinas (n=3–6/group). In addition, this model did not trigger changes in the density of the vascular network, suggesting that mitochondrial fragmentation was not due to endothelial cell loss.

Conclusions: This study shows that ocular hypertension leads to early alterations in the dynamic of endothelial cell mitochondria, contributing to vascular dysfunction in glaucoma.

AB021. The effect of anti-VEGF on retinal inflammation and its relationship with the Kinin system in a rat model of laser-induced choroidal neovascularization

AB021. The effect of anti-VEGF on retinal inflammation and its relationship with the Kinin system in a rat model of laser-induced choroidal neovascularization

:-
 

Background: The neovascular aged-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly. It is presently treated by anti-VEGF intravitreal injection in order to stop the neovascularization. In seeking of more efficient treatments to prevent retinal damage, it has been proposed that the kinin-kallikrein system (KKS), a key player in inflammation, could be involved in AMD etiology. However, the role of kinin receptors and their interaction with VEGF in AMD is poorly understood.

Methods: In order to address this question, choroidal neovascularization (CNV) was induced in the left eye of Long-Evans rat. After laser induction, anti-VEGF or IgG control were injected into the vitreal cavity. Gene expression was measured by qRT-PCR, retinal adherent leukocytes were labelled with FITC-Concanavalin A lectin, vascular leakage by the method of Evans blue and cellular localisation by immunohistochemistry.

Results: The number of labelled adherent leucocytes was significantly increased in laser-induced CNV compared to the control eye. This was significantly reversed by one single injection of anti-VEGF. Extravasation of Evans blue dye was significantly increased in laser-induced CNV eyes compared to control eyes and partially reversed by one single injection of anti-VEGF or by R954 treatment. The mRNA expression of inflammatory mediators was significantly increased in the retina of CNV rats. Immunodetection of B1R was significantly increased in CNV eyes. B1R immunolabeling was detected on endothelial and ganglion cells.

Conclusions: This study is the first to highlight an effect of the kinin/kallikrein system in a model of CNV that could be reduced by both anti-VEGF therapy and topically administered B1R antagonist R-954.

AB022. Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8

AB022. Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8

:-
 

Background: Retinol dehydrogenase 8 (RDH8) is a 312-amino acid (aa) protein involved in the visual cycle. Bound to the outer segment disk membranes of photoreceptors, it reduces all-trans-retinal to all-trans-retinol1 as one of the rate-limiting steps of the visual cycle2. RDH8 is a member of the short-chain dehydrogenase/reductase family. Its C-terminal segment allows its membrane-anchoring through the postulated presence of an amphipathic α-helix and of 1 to 3 acyl groups at positions 299, 302 and 3043. The secondary structure and membrane binding characteristics of RDH8 and its C-terminal segment have not yet been described.

Methods: To evaluate the membrane binding of RDH8, the full-length protein (aa 1–312), a truncated form (aa 1–296), its C-terminal segment (aa 281–312 and 297–312) as well as different additional variants of this segment were used. The truncated protein binds membranes less efficiently than the full-length form. Thus, the C-terminal segment of RDH8 is essential for the binding and has thus been further examined. The intrinsic fluorescence of tryptophan residues at positions 289 and 310 of the wild-type C-terminal segment of RDH8 and the mutants W289F, W310F and W310R have thus been used to determine their extent of binding to lipid vesicles and to monitor their local environment. Unilamellar lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or a mixture of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) were used to mimic the phospholipid content of the outer segment disk membranes of photoreceptors.

Results: An increase in fluorescence intensity and in fluorescence lifetime is observed upon increasing the concentration of lipid vesicles. These data allowed calculating values of partition coefficient of the C-terminal segment of RDH8 varying between Kp =1.1 E6 to 1.7 E6. It is noteworthy that the observation of a more intense shift to lower wavelengths upon membrane binding of the mutant W310R and W310F indicates a deeper incorporation of the remaining tryptophan residue at position 289 into the lipid bilayer. The secondary structure of the C-terminal segment of RDH8 observed by circular dichroism and infrared spectroscopy shows a superposition of α-helical, β-turn and unordered structures.

Conclusions: The peptides derived from the C-terminal segment of RDH8 show a strong binding to lipid vesicles. These strength of binding is independent of the type of lipid and the presence of a mutation.

AB025. Machine learning applied to the oxygen induced retinopathy model

AB025. Machine learning applied to the oxygen induced retinopathy model

:-
 

Background: The oxygen induced retinopathy rodent model is widely used, notably for the assessment of developmental dystrophies in preclinical studies of vascular retinal diseases. Typically, the quantification of vessel tufts and avascular regions is computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. However, such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective alternative is required.

Methods: We employ a machine learning approach to segment and characterize vascular tufts. The proposed quantitative retinal vascular assessment (QuRVA) technique uses quadratic discrimination analysis and morphological techniques to provide reliable measurements of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. Our algorithms allow also delineating the whole vasculature network, and identifying and analyzing avascular regions.

Results: Our first experiment shows the high degree of error and variability of manual segmentations. In consequence, we developed a set of algorithms to perform this task automatically. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. We describe the method, provide details for reproducing the algorithm, and validate all aspects of the analysis.

Conclusions: Manual and semi-automated procedures for tuft detection present strong fluctuations among users, demonstrating the need for fast and unbiased tools in this highly active research field with tremendous implications for basic research and industry.

AB029. The role of inducible nitric oxide synthase in deleterious effects of Kinin B1 receptor in diabetic retinopathy

AB029. The role of inducible nitric oxide synthase in deleterious effects of Kinin B1 receptor in diabetic retinopathy

:-
 

Background: Overexpression of inducible nitric oxide synthase (iNOS) has been reported in diabetic retinopathy (DR). The kinin B1 receptor (B1R) is also overexpressed in DR, and can stimulate iNOS via Gαi/ERK/MAPK pathway. We previously showed that the topical administration of a B1R antagonist, LF22-0542, significantly reduces leukocyte infiltration, increased vascular permeability and overexpression of several inflammatory mediators, including iNOS in DR. Thus, the aim of this study was to determine whether the pro-inflammatory effects of B1R are attributed to oxidative stress caused by the activation of iNOS pathway in order to identify new therapeutic targets for the treatment of DR. iNOS and B1R being absent in the normal retina, their inhibition is unlikely to result in undesirable side effects. The approach will be no invasive by eye application of drops.

Methods: Diabetes was induced in male Wistar rats (200–230 g) by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg b.w). One week later, rats were randomly divided into four groups (N=5) and treated for one week as follows: Gr 1: control rats treated with the selective iNOS inhibitor (1,400 W, 0.06 μM twice a day by eye-drops ×7 days), Gr 2, STZ-diabetic rats treated with 1,400 W, Gr 3: control rats received a selective B1R agonist [Sar (D-Phe8)-des-Arg9-BK, 100 μg twice a week] by intravitreal injections (itrv) and treated with 1,400 W, Gr 4: STZ-diabetic rats + B1R agonist +1,400 W. At the end of treatment and two weeks post-STZ, three series of experiments were carried out to measure vascular permeability (by Evans blue dye method) and the expression of vasoactive and inflammatory mediators, including iNOS, VEGF-A, VEGF-R2, IL-1β, Cox-2, TNF-α, bradykinin 1 and 2 receptors and carboxypeptidase M/kininase 1 (by Western Blotting and qRT-PCR). The nitrosative stress (nitrosylation of proteins) was also assessed by Western Blotting. One-way Anova test with Bonferroni post hoc was used for statistical analysis.

Results: STZ-diabetic rats showed a significant increase in retinal vascular permeability (22.8 μg/g Evans blue dye per g of fresh retinas, P=0.016) compared with control rats and control treated rats (17.2 and 16.8 μg/g respectively). The injections of B1R agonist amplified the increase of vascular permeability which was normalized by the 1,400 W. The overexpression of inflammatory markers was also normalized by the 1,400 W in STZ-diabetic rats received or not the B1R agonist.

Conclusions: These results support a contribution of iNOS in the deleterious effects of B1R in this model of diabetic retinopathy. Hence, iNOS inhibition by ocular application of 1,400 W may represent a promising and non-invasive therapeutic approach in the treatment of diabetic retinopathy.

AB031. Switching to aflibercept in diabetic macular edema not responding to bevacizumab in a Canadian real-life setting

AB031. Switching to aflibercept in diabetic macular edema not responding to bevacizumab in a Canadian real-life setting

:-
 

Background: Diabetic macular edema (DME) is a leading cause of severe visual impairments in older and the working-age population. An important target of current therapy is vascular endothelial growth factor (VEGF), which plays a role in the pathogenesis of DME by inducing angiogenesis and increasing vascular permeability. Currently available anti-VEGF agents include off-label use of Bevacizumab, which has been shown to be effective in the treatment of DME. However, many patients with DME do not respond or demonstrate only a partial response to this agent. As of November 2016, the Canadian Health authorities approved Aflibercept as an anti-VEGF agent for treatment of DME, and the patients who are non-responders to Bevacizumab are switched to this non-off label medication. We aimed to investigate the anatomical and functional visual changes associated with response to Aflibercept in a real-life Canadian population of Bevacizumab non-responders.

Methods: A retrospective review of chronic DME patients refractory to bevacizumab treatment who were switched to Aflibercept was done. Best-corrected visual acuity (BCVA), Intraocular pressure (IOP), central subfield thickness (CST), average macular thickness, and total macular volume were extracted at the visit prior to switching to Aflibercept (baseline) as well as the first, second and third follow-up visits after switching. Anatomical and functional visual changes were compared using Generalized Estimating Equations and the association between variables was tested using Pearson correlation test with significance set at P<0.05.

Results: Twenty-six eyes with mean age of 63 were included. Average CST at baseline was 421.5±116.1 μm and the number of Bevacizumab injections received prior to switching was 15.3±8.0. No significant changes were observed in terms of BCVA and IOP, from baseline to any of the follow-ups. Switching to Aflibercept significantly improved CST, average macular thickness, and total macular volume. From baseline to the first follow-up visit, CST decreased from 421.5±116.1 to 333.0±91.2 μm (P=0.001) and average macular thickness reduced from 344.6±74.9 to 322.2±60.5 μm (P=0.008). Similarly, total macular volume decreased from 12.4±2.7 to 11.6±2.2 μm3, measured at baseline and the first follow-up (P=0.007). No further improvements were observed from the first follow-up to the subsequent ones. The median CST value at baseline (378 μm) was used to classify the patients into low and high CST groups. We observed that those with higher CST at baseline (>378 μm) showed a trend for improvements in visual acuity (P=0.058). Pearson correlation test confirmed the association between higher CST at baseline and better visual outcomes in response to switching to Aflibercept (P=0.018).

Conclusions: Our data evidenced significant anatomical improvements in macula, which did not translate to immediate functional vision improvements. Bevacizumab non-responders with higher CST might also gain visual acuity and benefit functionally from switching to Aflibercept.

AB033. Implication of beta-adrenergic receptor in choroidal neovascularization

AB033. Implication of beta-adrenergic receptor in choroidal neovascularization

:-
 

Background: We investigated the role of beta-adrenergic receptor (B-AR) on choroidal neovascularization (CNV) in an animal model of age-related macular degeneration in mice.

Methods: The angiogenic effect of the B-AR was evaluated in retinal pigment epithelium (RPE)-choroid explants from C57Bl6 mice stimulated with propranolol or isoproterenol (10 μM) (respectively antagonist and agonist of the B-AR) during 24 h. Conversely, a classic choroidal neovascularization (CNV) model induced by laser burn in C57Bl6 mice (8 weeks) was used to assess the anti-angiogenic effect of propranolol. In this experiment, mice were treated with intraperitoneal propranolol (6 mg/kg/d) or vehicle (saline solution) daily for 10 days, starting on day 4 after laser burn and until sacrifice (day 14). Immunostaining analysis on retinal flatmounts and cryosections were performed to determine the surface of CNV, the distribution of B-AR and the number and morphology of microglia/macrophages associated with CNV. To explore if the antiangiogenic effect of propranolol involved the modulation of the inflammatory microenvironment associated with CNV, we used RPE primary cells, J774 macrophages cell line and polarized M1 and M2 bone marrow-derived macrophage (BMDM). Choroidal explants treated with conditioned media (CM) from J774 or polarized M1/M2 BMDM pre-treated with propranolol to confirm the anti-angiogenic effect of propranolol. Expression of angiogenic factors was evaluated by RT PCR and Elisa.

Results: The expression and distribution of the B-1, B-2 and B-3 adrenergic receptors were localized in the choroid and RPE cells. The stimulation of RPE-choroid explants with isoproterenol increased CNV compared to vehicle, while propranolol decreased CNV. In vivo, propranolol inhibited significantly the levels of VEGF and CNV growth in laser burn model compared to the vehicle. Additionally, the treatment with propranolol decremented the number of activated (amoeboid shape) microglia/macrophages but surprisingly, the number of non-activated microglia/macrophages around the CNV was higher than with the vehicle treatment. In vitro, propranolol modulated the angiogenic balance in macrophages promoting anti-angiogenic factors expression, especially with M2 BMDM. CM from macrophages pre-treated with propranolol reduced CNV on choroidal explants.

AB035. Lactate receptor GPR81 modulates epigenetic modification in the subretina

AB035. Lactate receptor GPR81 modulates epigenetic modification in the subretina

:-
 

Background: Retinal pigment epithelium (RPE) is vital for the homeostasis of the subretina including photoreceptors and choroid. Interestingly, our previous results suggested that the recently discovered lactate receptor GPR81 is abundantly expressed in RPE. To date, only one previous study has shown that activating GPR81 could enhance DNA repair by activating HDAC1. Consequently, we investigated whether GPR81 exhibits epigenetic modification in the subretina by using GPR81?/? mice.

Methods: GPR81?/? mice and wide type littermates were generated on a background of C57BL/6J mice. The thicknesses of their choroid were evaluated by immunohistochemistry. Meanwhile, Q-PCR, western blot and choroid sprout assay were performed. In vitro, primary retinal pigment epithelium (pRPE) cells were isolated from mice, and cultured for treatments.

Results: The thickness of choroid was reduced in GPR81?/? mice compared to GPR81+/+ mice, suggesting that GPR81 is important for the integrity of choroid. In the choroid sprout assay, lactate treated RPE/choroid complex showed a significant increase in angiogenesis compared to controls while lactate treated KO RPE/choroid complex showed no difference compared to their controls. For Q-PCR, most of the genes screened elevated their expression in GPR81?/? mice compared to WT mice, suggesting epigenetic modification may exist, which were confirmed by histone acetylation and HDACs activity assay.

Conclusions: Taking together, the lactate receptor GPR81 in RPE is very important for maintaining homeostasis of the subretina. This novel discovery sheds new light on the relationship between metabolism and epigenetic modification.

Perspective

The inverted retina and the evolution of vertebrates: an evo-devo perspective

The inverted retina and the evolution of vertebrates: an evo-devo perspective

:-
 

Abstract: The inverted retina is a basic characteristic of the vertebrate eye. This implies that vertebrates must have a common ancestor with an inverted retina. Of the two groups of chordates, cephalochordates have an inverted retina and urochordates a direct retina. Surprisingly, recent genetics studies favor urochordates as the closest ancestor to vertebrates. The evolution of increasingly complex organs such as the eye implies not only tissular but also structural modifications at the organ level. How these configurational modifications give rise to a functional eye at any step is still subject to debate and speculation. Here we propose an orderly sequence of phylogenetic events that closely follows the sequence of developmental eye formation in extant vertebrates. The progressive structural complexity has been clearly recorded during vertebrate development at the period of organogenesis. Matching the chain of increasing eye complexity in Mollusca that leads to the bicameral eye of the octopus and the developmental sequence in vertebrates, we delineate the parallel evolution of the two-chambered eye of vertebrates starting with an early ectodermal eye. This sequence allows for some interesting predictions regarding the eyes of not preserved intermediary species. The clue to understanding the inverted retina of vertebrates and the similarity between the sequence followed by Mollusca and chordates is the notion that the eye in both cases is an ectodermal structure, in contrast to an exclusively (de novo) neuroectodermal origin in the eye of vertebrates. This analysis places cephalochordates as the closest branch to vertebrates contrary to urochordates, claimed as a closer branch by some researchers that base their proposals in a genetic analysis.

Editorial
Review Article

Pediatric neuro-ophthalmology: not simply neuro-ophthalmology for small adults

Pediatric neuro-ophthalmology: not simply neuro-ophthalmology for small adults

:-
 

Abstract: Pediatric neuro-ophthalmology is a subspecialty within neuro-ophthalmology. Pediatric neuro-ophthalmic diseases must be considered separate from their adult counterparts, due to the distinctive nature of the examination, clinical presentations, and management choices. This manuscript will highlight four common pediatric neuro-ophthalmic disorders by describing common clinical presentations, recommended management, and highlighting recent developments. Diseases discussed include pediatric idiopathic intracranial hypertension (IIH), pseudopapilledema, optic neuritis (ON) and optic pathway gliomas (OPG). The demographics, diagnosis and management of common pediatric neuro-ophthalmic disease require a working knowledge of the current research presented herein. Special attention should be placed on the differences between pediatric and adult entities such that children can be appropriately diagnosed and treated.

Preface
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
出版者信息