您的位置: 首页 > 2022年5月 第37卷 第5期 > 文字全文
2023年7月 第38卷 第7期11
目录

内源性干细胞在晶状体再生修复中的应用及展望

Application and prospect of endogenous stem cells in lens regeneration and repair

来源期刊: 眼科学报 | 2022年5月 第37卷 第5期 360-373 发布时间: 收稿时间:2023/1/12 17:05:22 阅读量:5446
作者:
关键词:
内源性干细胞晶状体再生微创晶状体内容物移除术
endogenous stem cells lens regeneration minimally invasive lens-content removal surgery
DOI:
10.3978/j.issn.1000-4432.2021.10.05
收稿时间:
 
修订日期:
 
接收日期:
 
内源性干细胞在组织的损伤修复过程中组织相容性好、致瘤风险低,相较于外源性干细胞具有不需要体外扩增和培养、疾病传播风险低的优点,在细胞治疗领域具有显著优势。现在已经有多种使用内源性干细胞进行疾病治疗的成熟方式,应用领域包括了全身各种器质性和功能性疾病。在眼组织中,晶状体具有终生生长的能力且便于观察,是实现再生修复的突破点。哺乳动物中晶状体再生的实现有赖于晶状体内源性干细胞的定位和改良手术方式,以保留晶状体干细胞,并创造适合晶状体再生的微环境。对再生后的晶状体蛋白质组成分析,发现其类似成熟晶状体,而非胚胎期的晶状体,提示晶状体再生的调控与胚胎期的诱导发生并不相同;而调控晶状体再生的策略不仅着眼于干细胞的激活和正确分化的诱导,对其上皮间质转化过程也需要进行调控。在未来,为将晶状体再生的经验应用于其他眼组织中,动员内源性干细胞并促进其生长,可以添加细胞有效成分,比如外泌体、线粒体、小分子化合物等,模拟细胞应激;此外,还可以通过手术或生物材料辅助,恢复晶状体结构和环境。
Endogenous stem cells have significant advantages in cell therapy for excellent histocompatibility, low tumorigenicity risk, unnecessity for in vitro expansion and culture, and low disease transmission risk. There have been some applications for endogenous stem cells in treating diseases, targeting some organic and functional diseases throughout the body. In ocular tissue, the lens is a breakthrough for regenerative therapy due to its potential to grow throughout life and observation accessibility. Achieving lens regeneration in adult mammals attributes to some prerequisites. Firstly, the location of endogenous stem cells in the lens has been identified. Then, surgical approaches have been advanced to preserve lens stem cells and create a microenvironment suitable for lens regeneration. Protein compositional analysis of the regenerated lens reveals that it is similar to a mature lens rather than an embryonic lens, suggesting that the regulation of lens regeneration is not the same as the induction of embryonic onset. The strategy for regulating lens regeneration needs to focus not only on the activation and proper differentiation of stem cells but also on regulating the process of epithelial mesenchymal transition (EMT). In the future, in order to apply the experiences of lens regeneration to other ocular tissues, to mobilize endogenous cells and promote their growth, some strategies could be used. These strategies include mimicking cellular stress via the addition of cellular active ingredients, such as exosome, mitochondria, and small molecular compounds. Additionally, we can also try to restore lens tissue structure and microenvironment through surgical or biomaterial assistance.
2020年全球疾病负担调查[1]显示:目前全球总盲人数为4330万,2.95亿人中重度视力障碍,视力障碍的患病率为4.34%。白内障和未矫正的屈光不正是导致失明和中重度的视力障碍最主要的原因,在疾病的早期阶段发现并进行干预,能够在很大程度上减少致盲率[2],极大减少临床和社会经济负担。
干细胞相关疗法是治疗眼部疾病具有潜力的新方向。人体内的干细胞可以分为胚胎干细胞、成体干细胞和诱导多能干细胞。在临床上,成体干细胞是运用最为成熟的一类干细胞。组织特异性的成体干细胞称为内源性干细胞,能分化为特定的组织类型,并具有自我更新能力[3]。目前发现的内源性干细胞有皮肤、角膜、视网膜、血液和骨骼肌干细胞等[4]。现在已经有许多成熟的内源性干细胞治疗疾病方法,包括自体脂肪间充质干细胞治疗复杂性克罗恩病并发肛瘘[5]、自体表皮组织特异性干细胞移植治疗大疱性表皮松解症[6]、组织特异性角膜缘干细胞修复角膜[7]等。内源性干细胞无免疫原性,利于原位整合,致瘤风险更低,更容易得到成体细胞的经典基因表达模式。此外,相较于外源性干细胞,内源性干细胞不需要体外扩增和培养,疾病传播风险低[8]。眼球组织结构易于观察、体积小,在组织修复中对干细胞的需求相对较少,是利用内源性干细胞实现组织再生修复的理想器官。
在眼部,晶状体上皮细胞(lens epithelial cells,LECs)再生的情况可见于多种生物[9],在包括人类在内的哺乳动物中,LECs可以增殖分化,达到一定程度的晶状体再生。因此,晶状体再生是白内障手术后视觉功能重建的一种潜在方法[10]。本文介绍内源性干细胞介导的晶状体再生的应用,并初步展望内源性干细胞在眼组织器官修复中的应用。

1 晶状体损伤后再生:内源性干细胞实现眼组织修复的突破点

低等动物具有器官再生的能力,例如蝾螈的四肢断裂后,能够重新长出完整的肢体;斑马鱼视网膜损伤后,能通过Müller胶质细胞重编程产生视网膜前体细胞,实现视网膜原位再生[11]。与低等动物相比,高等动物原位再生组织器官的能力有限,再生速度、范围、再生组织器官的功能均不足[12-13]。值得注意的是,在包括人类在内的哺乳动物中,晶状体终身生长,并且损伤后可观察到一定程度的再生;此外,晶状体细胞类型简单,其形态、结构在活体内可被直接观察,是研究内
源性干细胞组织修复的有利模型。
脊椎动物的晶状体再生方式包括:Wolffian晶状体再生、角膜晶状体再生、以及晶状体上皮细胞晶状体再生(图1)。这些再生过程独立进化,机制不同。

1.1 两栖动物的晶状体再生

脊椎动物中,只有一些两栖动物在完全摘除晶状体后,可再生出完整的晶状体[14]。成年蝾螈的晶状体再生过程最早被人们所注意,并由Wolff[15]在1895年独立观察到,所以通常被称为“Wolffian再生”。此外,还有少数种类的鱼类[16]和前变态蛙类[17]也可以实现晶状体再生。
不同种类的动物,晶状体再生的机制和表现并不完全相同。鱼类和成年蝾螈晶状体再生有赖于色素上皮细胞(pigment epithelium cells,PECs)转分化,蛙类的晶状体再生来源于幼虫的角膜细胞,后者被称为“角膜晶状体再生”[14,18],其代表模型是非洲爪蟾。非洲爪蟾的晶体再生过程在过去被认为由转分化介导,但Perry等[19]对“角膜晶状体再生”的研究发现角膜上皮细胞表达了若干多能基因,使用胸腺嘧啶类似物(thymidine analog,EdU)标记核分裂活跃的细胞,观察到细胞增殖主要发生在角膜基底上皮细胞层,证明非洲爪蟾角膜内存在干细胞群体,并有利于“角膜晶状体再生”。此外,非洲爪蟾角膜神经能通过释放多种神经营养因子支持“角膜晶状体再生”[20]
20230112163908_6568.png
图1 3种晶状体再生的方式
Figure 1 Three approaches to lens regeneration.
(A)Wolffiffiffian晶状体再生:代表模型是蝾螈,取出完整晶状体及囊膜后,虹膜背侧PECs进行脱分化,形成LECs,实现晶状体再生。(B)角膜晶状体再生;代表模型是非洲爪蟾,取出完整晶状体及囊膜以后,角膜衍生细胞(干细胞或呈现在角膜基质中的瞬时扩增细胞)分化为LECs,实现晶状体再生。(C)晶状体上皮细胞晶状体再生:在哺乳动物中,去除晶状体内容物,保留晶状体囊膜和干细胞。晶状体囊腔封闭,晶状体纤维填充囊袋,逐渐形成再生晶状体。
(A) Wolffiffiffian lens regeneration: the representative model is the newts, where after removal of the crystalline lens, the PECs on the dorsal side of the iris undergo dedifferentiation to form LECs and achieve lens regeneration. (B) Corneal lens regeneration: the representative model is the Xenopus, where after removal of the crystalline lens, corneal-derived cells (stem cells or transient amplify cells presented in the corneal stroma) differentiate into LECs and achieve lens regeneration. (C) Lens epithelial cell lens regeneration: In mammals, the preserved lens capsule and cells are essential when the lens contents are removed, the cells will proliferate and differentiate to produce lens fibers filling the closed capsule cavity to achieve lens regeneration.

1.2 哺乳动物的晶状体再生

高等脊椎动物的晶状体再生只有在保留晶状体囊和上皮细胞的情况下才能实现,即“晶状体上皮细胞晶状体再生”。哺乳动物的晶状体囊是一层无细胞的薄膜,前囊下和赤道内衬LECs。在晶状体再生的实现方式上,哺乳动物需要保留晶状体囊和上皮细胞,且再生缓慢而不完全,自然条件下无法达到功能性的再生[21]。对大鼠行晶状体囊外摘除术,用超长扫描深度谱域光学相干断层扫描仪(ultra-long scan depth OCT,UL-OCT)评价再生晶体,观察到晶体再生最先发生于周边部,1个月以后以中央为主,在术后前2个月增长速度较快,随后降速,术后3个月厚度可以达到(2324±352) μm[22]。药物可以对哺乳动物晶状体再生过程起到调控作用,比如用索比尼(Sorbinil)对醛糖还原酶在遗传和药理上进行抑制,对小鼠的晶状体再生过程有增强作用[23]。Liu等[24]发现:在兔再生模型中,与天然晶状体相比,再生晶状体的上皮细胞出现了一些形态上的变化,包括细胞核过密和凹陷、线粒体水肿、以及内质网扩张。

2 利用内源性干细胞实现晶状体再生

2.1 晶状体内源性干细胞

人类晶状体内源性干细胞位于哪个位置?已知LECs具有增殖能力,增殖能力最强的上皮细胞位于晶状体赤道。Andjeli?等[25]对白内障术后晶状体前囊下的上皮细胞进行培养,发现了部分上皮细胞具有增殖和迁移能力,Ki-67和Sox2 (Sex determining region Y-box 2)标志物阳性,表明这样一些细胞具有多能性或干性。但这还不能定位内源性干细胞,因为晶状体前囊下的上皮细胞范围过广,几乎包括了所有的LECs。Lin等[26]用溴脱氧尿嘧啶核苷(bromodeoxyuridine,BrdU)对LECs进行标记,发现赤道部的晶状体LECs具有高度自我更新能力,这种能力随着年龄增加而降低,在创伤后增加,从而确定了晶状体的内源性干细胞存在于赤道部。
一些蛋白质被证明对维持晶状体内源性干细胞的干细胞特性起到了重要作用。Wnt5a可以通过非经典Wnt/JNK信号通路对人类胚胎干细胞分化为类晶状体样结构起到促进作用[27]。在晶状体的体外模型中,Pax6和Six3可以诱导胚胎干细胞发育成晶状体[28]。通过在小鼠身上进行谱系追踪实验,人们又发现了Pax6有助于LECs实现晶状体纤维在出生后的更新。对BMI1的研究[26]表明:其功能丧失不利于LECs增殖,促进了白内障形成,证明了Pax6和BMI1是维持晶状体干细胞的干细胞特性的重要因子。

2.2 晶状体再生的微环境

2.2.1 晶状体囊完整性和撕囊大小
晶状体囊袋的相对完整性保证了晶体摘除术后晶状体的再生,前囊切口处晶体再生困难和前后囊粘连等因素阻止了再生晶状体形成自然的光学结构和形态[29]。Nagamoto等[30]在兔眼中行超声乳化术后,植入了囊膜接触抑制环(capsular adhesion-preventing ring,CAPR),8周以后通过立体显微镜和组织学检查评估,发现兔眼中既没有发生前后囊的黏附,也没有晶状体纤维的再生。该研究反映了房水进入囊袋内会抑制LECs的增生,但由于样本数量较少,其结论的可靠性需进一步验证。Zhou等[22]以UL-OCT评估囊外摘除术后大鼠再生晶状体的形态变化,发现前囊开口和后囊发生黏附以后,再生晶状体可以形成相对较为规则的形态,但形成的再生晶体尺寸小于同龄大鼠的正常晶状体。该研究反映了晶状体囊的粘连可能在一定程度上能封闭晶状体囊袋,帮助晶状体再生,但粘连阻碍了晶状体纤维的生长和重构,使得再生晶体的形状结构无法达到自然状态。
许多的病例报告[31-33]报道了晶状体前囊口的收缩和纤维化影响视力,甚至完全封堵了撕囊口,导致视轴混浊或者屈光漂移的现象。有研究者[34]以胶原蛋白补片闭合晶状体囊,注入不可降解的聚合物,得到了皮质结构正常但核混浊的再生晶状体。Tan等[35]观察到灵长类动物和人类婴儿晶状体手术后微切口囊收缩、局部混浊的形成、囊的再封闭。在组织学上,这是LECs的上皮间质转化,导致了后囊膜混浊(posterior capsular opacification,PCO)。
撕囊口的大小与撕囊后残留LECs的数量、术后创口的恢复时间和术后炎症反应等因素相关,大的撕囊口能通过破坏囊袋完整性、形成疤痕和导致LECs脱落抑制晶状体再生。
2.2.2 LECs和残余晶体物质
哺乳动物的晶体上皮细胞决定了晶状体的再生潜能,其中增殖能力最强的细胞在赤道。赤道的晶状体干细胞或前体细胞在向弓状区迁移的过程中逐渐伸长并分化为晶状体纤维细胞,这是晶状体终身生长的基础。晶状体内容物被取出后,大量晶状体干细胞被激活,晶状体纤维出现短暂的快速再生期。
在哺乳动物晶状体再生过程中,晶状体前囊下的LECs起着引导晶状体纤维对接和排列的作用。当LECs受伤时,周围的LECs会移动到缺损区域,并发生上皮间质转化(epithelial-mesenchymal transition,EMT),从而导致前囊下的瘢痕和混浊[26]。受伤以后,LECs会立即产生促炎细胞因子[36]。此外,LECs功能障碍、囊膜的完整性破坏可能导致水、离子和一些其他的分子通过基底膜进入囊袋内,导致晶状体的混浊[37]。有研究[38-39]在人工晶体表面涂上抗增殖药物后,LECs的黏附、增殖和迁移都受到了明显的抑制。

2.3 微创晶状体内容物移除术

晶状体囊的完整性和干细胞的保存是实现人类晶状体功能性原位再生的先决条件。手术技术的进步,包括飞秒激光辅助白内障手术(femtosecond laser assisted cataract surgery,FLACS)的出现,提高了微撕囊的成功率。Lin等[26]建立了一种新型的手术策略微创晶状体内容物移除术(minimally invasive lens-content removal surgery,MILS),在新西兰兔、食蟹猴进行了动物模型的验证,证明其可以最大程度保留晶状体内源性干细胞和再生微环境的完整性,并最终在先天性白内障患儿中实现了功能性晶状体再生。MILS在晶状体前囊外周直径1~1.5 mm的囊外开孔,有利于术后早期撕囊口的收缩和闭合,减少撕囊口瘢痕对再生晶状体形态的影响(图2)。未来用植入物代替疤痕收缩实现囊膜闭合,防止囊膜开口处前后囊膜粘连,可能有利于进一步改善再生晶状体的形状。
MILS操作在取出晶状体内容物的过程中,保护了前囊下和赤道处的LECs。水分离的操作要求尽量轻柔,可以使用黏弹性剂代替平衡盐溶液(balanced salt solution,BSS),以降低晶状体前囊下上皮细胞脱落的风险。此外,水分离要求尽量充分,幼年哺乳动物和人类先天性白内障患儿的晶状体核柔软但黏性大,充分的水分离有助于避免将超声乳化手柄和灌注抽吸手柄过度插入囊袋,保护前囊下细胞层的完整性。
20230112164924_5193.png
2 晶状体微创手术
Figure 2 Minimally invasive lens-content removal surgery
MILS手术在晶状体外周撕囊,开口大小为1.0~1.5 mm,用0.9 mm的超声乳化探头去除晶状体内容物和/或皮质混浊,手术保存了晶状体干细胞和完整囊膜,囊膜作为1个封闭的腔,晶体纤维填充囊袋,逐渐形成再生晶状体。ACCC:连续环形前囊撕开。
During the procedure, a periphery capsulorhexis opening of 1–1.5 mm in diameter will be made, the lens content and/or cortical opacities will be removed with a 0.9 mm phacoemulsification probe. With the reservation of the lens stem cells and the intact capsule membrane, the closed capsule accommodates the lens fibers. Intact lens will regenerate if microenvironment is proper. ACCC: anterior continuous curvilinear capsulorhexis.

2.4 哺乳动物再生晶状体的蛋白质组成

在大鼠再生晶状体模型中进行不同时间点的裂隙灯检查和组织学分析发现晶状体纤维再生的时序性与胚胎发育相似,再生晶状体蛋白质与正常晶状体相似[40]。对兔再生晶体的蛋白质组成分析发现不同年龄的兔再生晶状体蛋白表达与成年兔相似,但与幼兔(2周龄)不同[24],表明了兔再生晶状体的蛋白质组模仿了一个“成熟”的晶状体,而不是再现胚胎过程晶状体的发育。在哺乳动物中,对由基因缺陷引起的先天性白内障术后再生晶体进行蛋白质组成分析发现,即使不进行额外的分子干预,也可能获得透明的再生晶状体[24]。Wu等[41]构建了人类再生晶状体的蛋白质组数据库,并对先天性白内障进行了全基因组测序,为进一步了解人类再生晶状体的蛋白质组成提供了基础。

2.5 促进晶状体再生的分子机制和策略

2.5.1 晶状体干细胞的激活和分化
人类和其他哺乳动物的晶状体细胞只能由晶状体囊内残留的晶状体上皮(干)细胞再生。
2.5.1.1 表观遗传学
表观遗传学调控了组织再生的过程,如DNA甲基化与成人胰岛β细胞的再生障碍相关[42];糖尿病骨质疏松动物模型中DNA甲基化通过抑制JNK1/MAPK8关联膜蛋白( JNK1-associated membrane protein,JKAMP)的表达和Wnt信号通路,抑制脂肪干细胞的成骨能力[43];长的非编码RNA(long non-coding RNA,lncRNA)产生微小RNA-22-3p(microRNA-22-3p,miR-22-3p),抑制组蛋白去乙酰化酶4(histone deacetylases-4,HDAC4)表达,促进骨骼肌的分化和再生[44]。晶状体中组织再生修复也与表观遗传学密切相关。
选择性转录表达的调控在眼组织发育和分化中起到了重要作用。其中,DNA甲基化调控了在发育过程中细胞命运的决定[45],是介导哺乳动物发育形成正常眼结构的重要过程[46],参与了再生修复过程[47]。比如在大鼠晶状体中,以碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)诱导LECs分化为成纤维细胞,可以观察到bFGF的阶段性出现控制了晶状体结构蛋白基因启动子激活和关闭,表明其启动子甲基化状态逐渐丧失[48]
眼组织的再生修复也受表观遗传学中基因转录后的调控。Chen等[49]通过体内和体外实验证明了miRNA家族中miR-26a和-26b通过负调控Jagged-1/Notch信号通路抑制LECs的增殖和迁移,表明LECs的增殖分化受到了miRNA的调控。
2.5.1.2 生长因子
许多生长因子可激活残余的LECs重新进入细胞周期,然后增殖分化为再生晶状体。外源性FGFs可以诱导体外LECs以剂量依赖的方式增殖、迁移和分化为晶状体纤维细胞[50]。表皮生长因子(epidermal growth factor,EGF)在体内有调节细胞生长、增殖和分化的作用,同时EGF可以通过增强转化生长因子-β2(transforming growth factor beta 2,TGF-β2)活性,增强LECs纤维化过程[51]
研究[52]显示:晶状体分化受新的肝细胞生长因子(hepatocyte growth factor,HGF)衍生肽H-RN和TGF-β2控制,H-RN抑制TGF-β2诱导的LECs转化为纤维细胞,且其机制可能是通过TGF- β/SMAD和Akt/mTOR信号转导途径。
2.5.1.3 转录因子
与晶状体发育密切相关的转录因子在再生过程中也起关键作用。Lin等[26]通过干细胞系谱追踪和组织特异性基因敲除等一系列实验,发现Pax6和BMI1是决定晶状体干细胞自我更新的关键点。既往也有研究[53]提示:同源结构域转录因子Pax6和Prox1对晶状体发育过程中的基因表达有关键性的调节作用,Pax6突变会导致各种眼内组织的发育缺陷,Prox1缺失会导致小鼠严重的晶状体异常。白内障相关核糖核酸结合蛋白(RNA-bindingprotein,RBP)CELF1可以在转录后调节晶状体发育过程中Pax6和Prox1蛋白的表达[53]。近来有研究[54]表明:小鼠晶状体纤维细胞发育过程中FGF激活的信号主要作用是促进细胞的纤维化,但其下游的3种转录因子(Etw1、Etw4和Etw5)与FGF信号作用相反,能抑制细胞的纤维化,说明了转录因子工作机制的复杂性,以及对晶状体再生过程调控具有网络性,还需要进一步的探索。
其他与晶状体发育相关的重要转录因子还有核因子-κB(nuclear factor kappa-B,NF-κB)[55]、Sox2、c-Myc和Klf4[56]等。此外,DNase-seq(DNase I hypersensitive sites sequencing)、ATAC-seq(Assay for Transposase-Accessible Chromatin using sequencing)等表观遗传学新技术有利于发现新的调控晶状体分化的转录因子或DNA结合区,如gatad1和NF1[57]等。
2.5.2 EMT和免疫反应在晶状体再生过程中的作用
2.5.2.1 EMT是晶状体再生和纤维化的常见过程
当EMT发生时,干细胞被激活进入新的细胞周期并进一步增殖、分化,残余上皮细胞转化为间质细胞,这一过程与晶状体损伤后的纤维化过程相似。EMT也发生在晶状体损伤后瘢痕形成的病理过程中。既往诸多研究[58-59]表明:EMT是细胞干化和纤维化的交叉点。因此,对EMT过程的调控有望成为再生医学的新方向。
2.5.2.2 晶状体再生能力与免疫系统的进化呈负相关
从物种进化的一般趋势来看,免疫系统的成熟度与受损组织的再生能力成反比[60]。成人具有发达的特殊眼免疫系统,以保证当损伤发生时,不会自身免疫反应的不良反应导致屈光介质混浊[61]其特点是血-眼屏障在结构上由少数淋巴和血管组织组成,上皮细胞和血管内皮细胞之间连接紧密;在功能上,当眼球受伤或抗原经前房进入眼内时,可以及时清除F4/80阳性和CD11b阳性的单核巨噬细胞,不会引起延迟超敏反应或者由补体介导的细胞免疫反应。儿童的晶状体再生能力较强,但眼免疫系统不成熟,白内障摘除后的炎症和增殖反应较老年人强。婴儿在白内障术后发生PCO的概率高达100%[62],老年性白内障术后PCO的5年发病率仅为7.1%~22.6%[63]
2.5.2.3 平衡免疫反应有利于晶状体再生
晶状体囊外摘除术后残留物质的再生和纤维化是晶状体损伤后修复的两种结果。一方面,免疫细胞的招募可清除伤口碎片,诱导细胞增殖分化,促进了组织的再生修复;另一方面,促炎免疫调节过强会抑制促组织再生免疫调节,抑制再生,导致瘢痕形成。因此,成功的再生修复需要平衡的免疫反应、适当数量准确极化的免疫细胞和调节良好的细胞因子网络。
晶状体一直被认为是一个免疫豁免器官,不能引起常规的免疫反应,作为透明的非血管组织,其免疫细胞主要通过虹膜和睫状体的血管招募。近来发现淋巴特异性标志物——淋巴管内皮透明质酸受体(lymphatic vessel endothelial hyaluronan receptor-1,LYVE-1)沿连接晶状体和睫状体的悬韧带到达晶状体,证明晶状体与淋巴系统相通,为免疫循环提供了潜在的结构基础[64]
多种细胞因子和生长因子与免疫细胞形成晶状体免疫调节网络。研究[36]显示:小鼠白内障摘除后,晶状体囊内有中性粒细胞和巨噬细胞的浸润,招募时间均晚于细胞因子的上调时间。手术会造成血-房水体屏障的破坏和刺激,水体中多种细胞因子和生长因子过度表达,如白细胞介素-1(interleukin-1,IL-1)、TGF-βs、FGF-2、IL-6、EGF和HGF等。在小鼠白内障摘除模型中发现,手术后24 h内调节先天性免疫反应的基因表达明显上调,如CXCL1、S100a9、CSF3和COX-2等[36]
免疫系统在调节组织修复和再生方面具有两面性。一些炎症因子的基因在晶状体再生的过程中表达,可能利于伤口愈合和/或直接促进晶状体的再生[65]。但在炎症、组织修复和瘢痕形成的过程中,也可能导致许多脊椎动物再生能力的丧[66]。而免疫调节在修复再生中的这种两面性,使得通过调节免疫系统来促进成体组织再生已成为再生医学中一种有吸引力的方法。主要策略包括通过释放促炎调节剂启动愈合和再生过程,或通过释放抗炎/抗纤维化抗炎调节剂抑制纤维化和/或瘢痕形成。更为复杂的策略是依靠促炎因子和抗炎因子的顺序传递,对组织愈合过程进行更全面的控制。
目前,尚无通过输送免疫调节因子直接促进晶状体再生的报道。在晶状体术后纤维化的治疗中,主要采用激光治疗,打开混浊的纤维化囊。也有研究采用人工晶体(intraocular lens,IOL)装载药物抑制炎症[67-68]、光动力涂层修饰IOL表面[69]方法治疗PCO。目前,药物治疗和其他疗法的局限性主要在于控制角膜内皮细胞的毒性反应。进一步研究晶状体再生的免疫调节,可以为我们带来PCO治疗的新景象。
2.5.3 现存晶状体再生机制研究的局限性和调控晶状体再生研究方向
如前所述,内源性干细胞促进晶状体再生的分子机制涉及了表观遗传学、生长因子和转录因子 、EMT和免疫反应过程。调控晶状体再生的策略不仅需着眼于干细胞的激活和正确分化的诱导,也需调控其上皮间质转化过程。鉴定出关键生物标志物是机制研究的主要目的。现有的对分子机制的研究较为分散,多使用动物模型,对人类中的再生晶体研究较少,得到的一些成果尚存争议。针对各种不同的分子机制,现有研究也未能阐明晶状体再生有序调控的关键所在,后续需要更多的探索。
近年来,越来越多的文献报道了EMT和免疫反应对再生过程的影响。MILS术式尽管最大程度地保留了哺乳动物中晶状体再生的环境,在动物模型和人类婴幼儿中都实现了晶状体再生,但仍不可避免地对晶状体再生微环境产生了影响,导致眼内各种不同的生长因子、细胞因子表达水平都发生了改变。但是具体是哪一些因子和对应的免疫细胞起到关键作用,尚未可知。既往研究[70]证实巨噬细胞是成体组织损伤修复过程中的中心调控细胞之一,但其在晶状体中其具体的作用还不清晰,寻找关键免疫调控环节的道路仍然比较漫长。
对于实现再生晶体长期功能维持,MILS术后的长期干预必不可少。因此,探明再生微环境中调控信息的最佳运送载体也很重要。研究[71]证实外泌体这种天然的细胞间信使深度参与了成体细胞的再生修复。此外,一些工程策略,比如3D打印技术制备载体运送关键组分送入眼内也是潜在的方法。未来也许可以通过3 D打印包含外泌体的支架,运送关键有效药物、经过基因修饰的关键生长因子等治疗组分,植入眼内调控晶状体再生。
因此,将来亟待解决的关键问题包括了探明再生调控过程中的关键生物标志物、关键免疫途径和最佳临床应用载体。最终研究目的是找到调控晶状体再生的治疗靶点,并在晶状体功能性再生后的后续进展过程发挥调节作用,创建内源性再生晶状体的稳定可靠治疗模式。

2.6 小结

晶状体再生的例子在生物学中很常见,主要可以在哺乳动物和两栖动物中找到。然而,不同物种的晶状体再生过程存在实质性差异。Wolffian晶状体再生采用的是不同于胚胎发育的独特机制,晶状体的再生是通过虹膜的转分化进行的,虹膜的发育系与角膜或晶状体的发育系不同。另一方面,角膜晶状体的再生似乎更接近于在晶状体最初的胚胎发育过程,因为角膜和晶状体都来源于表皮外胚层。在哺乳动物中,依赖晶状体上皮的晶状体再生过程与胚胎发育过程相似,但表达的蛋白成分不同,晶状体再生能力也最有限。在哺乳动物中实现晶状体再生的先决条件是:1 )获得相对完整的晶状体囊膜;2 )内源性干细胞的存留。从技术策略上看,微创提取晶状体内容物可以获得完整的晶状体囊,并保持完整的前囊下细胞层。生物材料的使用可帮助晶状体囊早期闭合,避免前后囊之间瘢痕的形成。促进晶状体再生的分子机制涉及表观遗传学、生长因子和转录因子。在再生调控方面,根据功能再生不同阶段,提高哺乳动物再生晶状体质量需要解决的关键问题是依次激活和停用干细胞,平衡再生和纤维化,诱导晶状体纤维的正常分化和有序排列(表1)。

表1 内源性干细胞实现晶状体再生修复
Table 1 Application of endogenous stem cells for lens regeneration and repair

20230112170010_2488.png
20230112170028_0246.png

3 内源性干细胞应用于眼组织的未来研究方向

3.1 调控内源性干细胞用于眼组织修复

晶状体原位再生的成功使我们看到了组织修复的新的解决方案,成体干细胞无伦理争议、无免疫排斥、有组织特异性、原位有序排列、容易与原组织整合及功能连接,具有显著的原位再生治疗优势,利用存在于人体组织器官中有再生分化潜能的成体干细胞修复眼内组织,可能成为解决不可逆的视力下降问题的另一重要策略。例如在视网膜中,哺乳动物与非哺乳脊椎动物相比,视网膜损伤后缺乏内源性神经元替代,Müller细胞在鱼类和鸟类中可以实现视网膜细胞再生,但在哺乳动物中这一过程难以实现。通过靶向小鼠视网膜中Müller细胞,测试原神经转录因子Ascl1的体内表达及其与再生能力的关系后发现,损伤视网膜能够在Ascl1表达的情况下发生类似斑马鱼早期视网膜再生阶段的反应[72]。此后,Yao等[73]培养转基因病毒注入先天盲的小鼠眼内成功激活了Müller细胞,联合促进神经元分化的转录因子成功地唤醒了Müller细胞的神经元再生机制。新生神经元成功整合到了视觉信号传递系统,使先天盲的小鼠产生了视觉反应。
与此相似的是,在角膜内皮细胞中存在有再生潜能的内皮祖细胞休眠群体[74]。在体外和体内动物模型中发现,使用特定的ROCK抑制剂Y-27632抑制RHO/ROCK信号可以激活祖细胞休眠群体,促进上皮修复[75]
对小牛的小梁网干细胞进行体外分离和培养,利用蛋白质印迹法评估其衍生的小梁网细胞中的细胞外基质(extracellular matrix,ECM),发现了ECM多种蛋白成分的表达,这对生理功能的维持具有重要意义,表明了小梁网干细胞替代高眼压诱导的受损小梁网细胞的潜质[76]
事实上,不同内源性干细胞的生物学特征存在显著差异。因此,动员不同类型内源性干细胞的策略取决于其特性。例如,不同来源的内源性干细胞自我更新能力显著不同,增殖分化速度存在较大差异:肠上皮在5 d内完成自我更新,滤泡表皮需4周更新,而肺上皮则需长达6个月来完成更新[77-78]。另外,再生修复能力也随着年龄的增加不断减弱[3]。例如,成年哺乳动物再生晶状体厚度不足,这也是目前晶体再生疗法无法用于成人白内障治疗的原因[79]
因此,内源性干细胞原位再生治疗需要重点解决以下问题:1 )面对因组织特性、年龄影响,增殖能力不足的组织细胞,应如何处理;2 )去除病灶的同时,如何保存干细胞、重构再生环境和结构;3)部分组织无再生能力,需如何动员。

3.2 促进不同类型眼组织内源性修复的分子机制和策略

外源性治疗可以促进内源性细胞再生。在视网膜再生研究[80]中,应用外源性视网膜胶质细胞移植,可以促进内源性信号释放,进而诱导轴突长出。在另一项临床研究[81]中,研究者发现眼内注射细胞可促进角膜内皮功能恢复。外源性治疗促进内源性细胞再生可能的机理包括模拟细胞应激、促进细胞物质交换和外泌体释放。例如在损伤刺激下,哺乳动物上皮细胞释放病原相关分子模式(pathogen-associated molecular patterns,PAMPs)、危险相关模式分子(danger associated molecular patterns,DAMPs)、活性氧类(reactive oxygen species,ROS)等坏死物质,并刺激组织内大量生长因子分泌,诱导成体干细胞的增殖分化,促进内源性再生[82]。在衰老过程中,静止的神经干细胞(neural stem cell,NSCs)的溶酶体发生缺陷,蛋白聚集体的积累增加,激活能力降低。通过巴伐洛霉素A(bafilomycin A,BafA)刺激老年静止期NSCs,激活溶酶体,促进聚集蛋白质的清除,改善静止期NSCs的激活能力,使它们能够恢复更年轻的状态[83]
另外,物质交换也是外源性治疗促进内源性细胞再生的重要机制之一。用脐带间充质干细胞(umbilical cord-mesenchymal stem cells,UC-MSCs)治疗顺铂诱导的急性肾损伤(acute kidney injury,AKI)小鼠的研究[84]中,治疗后小鼠近端小管线粒体的融合增加,促进了抗氧化防御和ATP的产生。从机制上来说,这一现象与过氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferators-activated receptor-γ coactivator-l alpha,PGC-1α)表达增强、NAD+生物合成增加和Sirtuin 3(SIRT3)活性改变相关。在另外的研究中,胰岛素可激活Akt、trbl转录,使NSCs由静息进入增殖状态[85]补充细胞外基质关键组分Agrin1可促进小鼠心肌再[86]。这些研究提示找到外源性有效治疗的核心组分可能是进一步临床转化的关键。
外泌体是含RNA和蛋白质等的功能分子膜性纳米囊泡,是干细胞/靶细胞间相互作用的重要通讯信使,具有母体细胞的多种生物学特征。在已发表的研究中,干细胞外泌体可促进心肌梗死后、肝损伤、皮肤溃疡等多种组织的内源性修复。例如外泌体治疗可提高脑组织内下丘脑区干细胞的数量[87];我们的前期研究也发现,干细胞外泌体进入受损视网膜后,可促进视神经功能修复。
在再生修复体系中,添加由外源性细胞分泌的有效组分可能是细胞治疗的新策略,能有效避免细胞移植后续的细胞存活困难、排异反应、难以与原组织整合连接等问题。另外,通过基因编辑技术改造间充质干细胞(mesenchymal stem cells,MSC)等干细胞,可建立工程化干细胞,实现外泌体等有效成分的规模化生产;并可通过基因编辑修饰外泌体,构建人工修饰的靶向药物。这些工程化技术将进一步促进外泌体等有效成分的临床转化应用。
而对于几乎没有内源干细胞的组织器官,原位重编程是目前的可行策略。在视网膜的研究中,门冬氨酸甲酯(N-methyl-D aspartate,NMDA)加上曲古菌素-A(trichostatin A,TSA)在成年鼠中将Müller细胞重编程为中间神经元[88];转入β-连环蛋白(β-catenin)基因将成年鼠中Müller细胞重编程为视杆细胞,这些都为视网膜神经退行性疾病的治疗带来了希望[73]。在心肌损伤模型中,注射关键小分子可有效实现原位重编程,促进成纤维细胞向心肌细胞转化[89]
由此,我们提出人类内源性细胞介导组织器官修复是再生医学重要的新方向,通过以下策略:1 )添加细胞有效成分:外泌体、线粒体、小分子化合物等,模拟细胞应激;2 )通过手术或生物材料辅助,恢复结构和环境。对于无内源性干细胞的组织结构,重编程可能是可行的策略,但需考虑提高治疗的靶向性。干细胞介导的组织再生修复将有望更快面向临床,进入应用阶段。

4 结语

再生医学的发展为许多难治性疾病的治疗带了新的曙光。随着外科技术、生物材料和实验法的进步,对再生的本质、规律和转化策略的认识不断深化和推进。再生医学实现功能康复的临床转化比以往任何时候都更接近现实。
本文从临床应用的角度讨论了晶状体的再生修复及未来研究方向。老化、遗传、损伤等因素都可能会导致不可逆的视力下降,眼组织的损伤修复为患者视力的恢复带来了新的希望。同时,眼的结构利于观察,修复损伤需要的材料相对较少,组织本身具有免疫豁免特性等特点都促成了干细胞治疗在眼组织的蓬勃发展。晶状体一生都在不停生长更新,眼科医生经常观察到晶体摘除后残留囊膜上会出现新的透明物质,从而促成了内源性干细胞原位再生的重大研究成果,开启了应用内源性干细胞对眼组织进行修复的新展望。尽管晶状体的原位再生很难被直接复制,但是通过外源性治疗促进内源性细胞再生,应用新型生物材料,重编程干细胞等方法,有望开启内源性干细胞修复眼组织的新时代。

开放获取声明

    本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[ J]. Lancet Glob Health, 2021, 9(2): e130-e143.GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[ J]. Lancet Glob Health, 2021, 9(2): e130-e143.
2、GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study[ J]. Lancet Glob Health, 2021, 9(2): e144-e160.GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study[ J]. Lancet Glob Health, 2021, 9(2): e144-e160.
3、Xia H, Li X, Gao W, et al. Tissue repair and regeneration with endogenous stem cells[ J]. Nat Rev Mater, 2018, 3(7): 174-193.Xia H, Li X, Gao W, et al. Tissue repair and regeneration with endogenous stem cells[ J]. Nat Rev Mater, 2018, 3(7): 174-193.
4、Stern JH, Tian Y, Funderburgh J, et al. Regenerating eye tissues to preserve and restore vision[ J]. Cell Stem Cell, 2018, 22(6): 834-849.Stern JH, Tian Y, Funderburgh J, et al. Regenerating eye tissues to preserve and restore vision[ J]. Cell Stem Cell, 2018, 22(6): 834-849.
5、Dietz AB, Dozois EJ, Fletcher JG, et al. Autologous mesenchymal stem cells, applied in a bioabsorbable matrix, for treatment of perianal fistulas in patients with Crohn's disease[ J]. Gastroenterology, 2017, 153(1): 59-62.e2.Dietz AB, Dozois EJ, Fletcher JG, et al. Autologous mesenchymal stem cells, applied in a bioabsorbable matrix, for treatment of perianal fistulas in patients with Crohn's disease[ J]. Gastroenterology, 2017, 153(1): 59-62.e2.
6、Eichstadt S, Barriga M, Ponakala A, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa[ J]. JCI Insight, 2019, 4(19): 130554.Eichstadt S, Barriga M, Ponakala A, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa[ J]. JCI Insight, 2019, 4(19): 130554.
7、Gonzalez G, Sasamoto Y, Ksander BR, et al. Limbal stem cells: identity, developmental origin, and therapeutic potential[ J]. Wiley Interdiscip Rev Dev Biol, 2018, 7(2): 10.1002/wdev.303.Gonzalez G, Sasamoto Y, Ksander BR, et al. Limbal stem cells: identity, developmental origin, and therapeutic potential[ J]. Wiley Interdiscip Rev Dev Biol, 2018, 7(2): 10.1002/wdev.303.
8、Jiang S, Tian G, Li X, et al. Research progress on stem cell therapies for articular cartilage regeneration[ J]. Stem Cells Int, 2021, 2021: 8882505.Jiang S, Tian G, Li X, et al. Research progress on stem cell therapies for articular cartilage regeneration[ J]. Stem Cells Int, 2021, 2021: 8882505.
9、Henry JJ, Hamilton PW. Diverse evolutionary origins and mechanisms of lens regeneration[ J]. Mol Biol Evol, 2018, 35(7): 1563-1575.Henry JJ, Hamilton PW. Diverse evolutionary origins and mechanisms of lens regeneration[ J]. Mol Biol Evol, 2018, 35(7): 1563-1575.
10、Sukhija J, Kaur S. Nature nurtures: lens regeneration, a breakthrough in ophthalmology[ J]. Ann Eye Sci, 2017, 2: 17.Sukhija J, Kaur S. Nature nurtures: lens regeneration, a breakthrough in ophthalmology[ J]. Ann Eye Sci, 2017, 2: 17.
11、Wan J, Goldman D. Retina regeneration in zebrafish[ J]. Curr Opin Genet Dev, 2016, 40: 41-47.Wan J, Goldman D. Retina regeneration in zebrafish[ J]. Curr Opin Genet Dev, 2016, 40: 41-47.
12、Brockes JP. Amphibian limb regeneration: rebuilding a complex structure[ J]. Science, 1997, 276(5309): 81-87.Brockes JP. Amphibian limb regeneration: rebuilding a complex structure[ J]. Science, 1997, 276(5309): 81-87.
13、Goldman D. Müller glial cell reprogramming and retina regeneration[ J]. Nat Rev Neurosci, 2014, 15(7): 431-442.Goldman D. Müller glial cell reprogramming and retina regeneration[ J]. Nat Rev Neurosci, 2014, 15(7): 431-442.
14、Henry JJ, Tsonis PA. Molecular and cellular aspects of amphibian lens regeneration[ J]. Prog Retin Eye Res, 2010, 29(6): 543-555.Henry JJ, Tsonis PA. Molecular and cellular aspects of amphibian lens regeneration[ J]. Prog Retin Eye Res, 2010, 29(6): 543-555.
15、Wolff G. Entwickelungsphysiologische studien[ J]. Arch Entwicklmech Org, 1895, 1(3): 380-390.Wolff G. Entwickelungsphysiologische studien[ J]. Arch Entwicklmech Org, 1895, 1(3): 380-390.
16、Ledwon JK, Turin SY, Gosain AK, et al. The expression of fgfr3 in the zebrafish head[ J]. Gene Expr Patterns, 2018, 29: 32-38.Ledwon JK, Turin SY, Gosain AK, et al. The expression of fgfr3 in the zebrafish head[ J]. Gene Expr Patterns, 2018, 29: 32-38.
17、Filoni S, Bosco L, Cioni C. Reconstruction of the crystalline lens from fragments of capsular membrane and epithelium in larvae of Rana esculenta[ J]. Acta Embryol Exp (Palermo), 1977, (1): 41-49.Filoni S, Bosco L, Cioni C. Reconstruction of the crystalline lens from fragments of capsular membrane and epithelium in larvae of Rana esculenta[ J]. Acta Embryol Exp (Palermo), 1977, (1): 41-49.
18、Tsonis PA. Lens regeneration[M]//Encyclopedia of the eye. Oxford: Academic Press, 2010: 557-564.Tsonis PA. Lens regeneration[M]//Encyclopedia of the eye. Oxford: Academic Press, 2010: 557-564.
19、Perry KJ, Thomas AG, Henry JJ. Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells[ J]. Dev Biol, 2013, 374(2): 281-294.Perry KJ, Thomas AG, Henry JJ. Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells[ J]. Dev Biol, 2013, 374(2): 281-294.
20、Perry KJ, Hamilton PW, Sonam S, et al. The role of sensory innervation in cornea-lens regeneration[ J]. Dev Dyn, 2019, 248(7): 530-544.Perry KJ, Hamilton PW, Sonam S, et al. The role of sensory innervation in cornea-lens regeneration[ J]. Dev Dyn, 2019, 248(7): 530-544.
21、刘晓敏, 代云海, 谢立信. 哺乳动物晶状体再生的研究进展[ J]. 中华眼科杂志, 2019, 55(7): 549-553.
LIU Xiaomin, DAI Yunhai, XIE Lixin. Advances and clinical application of lens regeneration in mammal[ J]. Chinese Journal of Ophthalmology, 2019, 55(7): 549-553.
刘晓敏, 代云海, 谢立信. 哺乳动物晶状体再生的研究进展[ J]. 中华眼科杂志, 2019, 55(7): 549-553.
LIU Xiaomin, DAI Yunhai, XIE Lixin. Advances and clinical application of lens regeneration in mammal[ J]. Chinese Journal of Ophthalmology, 2019, 55(7): 549-553.
22、Zhou KJ, Li YN, Huang FR , et al. In vivo observation of lens regeneration in rat using ultra-long scan depth optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(15): 6615-6623.Zhou KJ, Li YN, Huang FR , et al. In vivo observation of lens regeneration in rat using ultra-long scan depth optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(15): 6615-6623.
23、Zukin LM, Pedler MG, Chyung K, et al. Aldose reductase inhibition enhances lens regeneration in mice[ J]. Chem Biol Interact, 2019, 307: 58-62.Zukin LM, Pedler MG, Chyung K, et al. Aldose reductase inhibition enhances lens regeneration in mice[ J]. Chem Biol Interact, 2019, 307: 58-62.
24、柳夏林,张新愉,刘奕志,等. 兔眼晶状体再生模型的建立及观 察[ J]. 眼科学报, 2002, 18(4): 230-234.
LIU Xialin, ZHANG Xinyu, LIU Yizhi, et al. To establish and observe the experimental lens regeneration model in rabbits[ J]. Yan Ke Xue Bao, 2002, 18(4): 230-234.
柳夏林,张新愉,刘奕志,等. 兔眼晶状体再生模型的建立及观 察[ J]. 眼科学报, 2002, 18(4): 230-234.
LIU Xialin, ZHANG Xinyu, LIU Yizhi, et al. To establish and observe the experimental lens regeneration model in rabbits[ J]. Yan Ke Xue Bao, 2002, 18(4): 230-234.
25、Andjeli? S, Dra?lar K, Lumi X, et al. Morphological and proliferative studies on ex vivo cultured human anterior lens epithelial cells - relevance to capsular opacification[ J]. Acta Ophthalmol, 2015, 93(6): e499-e506.Andjeli? S, Dra?lar K, Lumi X, et al. Morphological and proliferative studies on ex vivo cultured human anterior lens epithelial cells - relevance to capsular opacification[ J]. Acta Ophthalmol, 2015, 93(6): e499-e506.
26、Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[ J]. Nature, 2016, 531(7594): 323-328.Lin H, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function[ J]. Nature, 2016, 531(7594): 323-328.
27、Han C, Li J, Wang C, et al. Wnt5a contributes to the differentiation of human embryonic stem cells into lentoid bodies through the noncanonical Wnt/JNK signaling pathway[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3449-3460.Han C, Li J, Wang C, et al. Wnt5a contributes to the differentiation of human embryonic stem cells into lentoid bodies through the noncanonical Wnt/JNK signaling pathway[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3449-3460.
28、Anchan RM, Lachke SA, Gerami-Naini B, et al. Pax6- and Six3- mediated induction of lens cell fate in mouse and human ES cells[ J]. PLoS One, 2014, 9(12): e115106.Anchan RM, Lachke SA, Gerami-Naini B, et al. Pax6- and Six3- mediated induction of lens cell fate in mouse and human ES cells[ J]. PLoS One, 2014, 9(12): e115106.
29、Gwon A . Lens regeneration in mammals: a rev iew[ J]. Sur v Ophthalmol, 2006, 51(1): 51-62.Gwon A . Lens regeneration in mammals: a rev iew[ J]. Sur v Ophthalmol, 2006, 51(1): 51-62.
30、Nagamoto T, Tanaka N, Fujiwara T. Inhibition of posterior capsule opacification by a capsular adhesion-preventing ring[ J]. Arch Ophthalmol, 2009, 127(4): 471-474.Nagamoto T, Tanaka N, Fujiwara T. Inhibition of posterior capsule opacification by a capsular adhesion-preventing ring[ J]. Arch Ophthalmol, 2009, 127(4): 471-474.
31、Shammas HJ. Relaxing the fibrosed capsulorhexis rim to correct induced hyperopia after phacoemulsification[ J]. J Cataract Refract Surg, 1995, 21(2): 228-229.Shammas HJ. Relaxing the fibrosed capsulorhexis rim to correct induced hyperopia after phacoemulsification[ J]. J Cataract Refract Surg, 1995, 21(2): 228-229.
32、Martínez Toldos JJ, Artola Roig A, Chipont Benabent E. Total anterior capsule closure after silicone intraocular lens implantation[ J]. J Cataract Refract Surg, 1996, 22(2): 269-271.Martínez Toldos JJ, Artola Roig A, Chipont Benabent E. Total anterior capsule closure after silicone intraocular lens implantation[ J]. J Cataract Refract Surg, 1996, 22(2): 269-271.
33、Hurvitz LM. YAG anterior capsulectomy and lysis of posterior synechiae after cataract surgery[ J]. Ophthalmic Surg, 1992, 23(2): 103-107.Hurvitz LM. YAG anterior capsulectomy and lysis of posterior synechiae after cataract surgery[ J]. Ophthalmic Surg, 1992, 23(2): 103-107.
34、Gwon A , Gruber L. Engineering the cr ystalline lens w ith a biodegradable or non-degradable scaffold[ J]. Exp Eye Res, 2010, 91(2): 220-228.Gwon A , Gruber L. Engineering the cr ystalline lens w ith a biodegradable or non-degradable scaffold[ J]. Exp Eye Res, 2010, 91(2): 220-228.
35、Tan X, Zhu Y, Chen C, et al. Sprouty2 suppresses epithelial- mesenchymal transition of human lens epithelial cells through blockade of Smad2 and ERK1/2 pathways[ J]. PLoS One, 2016, 11(7): e0159275.Tan X, Zhu Y, Chen C, et al. Sprouty2 suppresses epithelial- mesenchymal transition of human lens epithelial cells through blockade of Smad2 and ERK1/2 pathways[ J]. PLoS One, 2016, 11(7): e0159275.
36、Jiang J, Shihan MH, Wang Y, et al. Lens epithelial cells initiate an inflammatory response following cataract surgery[ J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4986-4997.Jiang J, Shihan MH, Wang Y, et al. Lens epithelial cells initiate an inflammatory response following cataract surgery[ J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4986-4997.
37、Inanc M, Tekin K, Erol YO, et al. The ultrastructural alterations in the lens capsule and epithelium in eyes with traumatic white cataract[ J]. Int Ophthalmol, 2019, 39(1): 47-53.Inanc M, Tekin K, Erol YO, et al. The ultrastructural alterations in the lens capsule and epithelium in eyes with traumatic white cataract[ J]. Int Ophthalmol, 2019, 39(1): 47-53.
38、Han Y, Tang J, Xia J, et al. Anti-adhesive and antiproliferative synergistic surface modification of intraocular lens for reduced posterior capsular opacification[ J]. Int J Nanomedicine, 2019, 14: 9047-9061.Han Y, Tang J, Xia J, et al. Anti-adhesive and antiproliferative synergistic surface modification of intraocular lens for reduced posterior capsular opacification[ J]. Int J Nanomedicine, 2019, 14: 9047-9061.
39、Lin L, Lin Q, Li J, et al. ROCK inhibitor modified intraocular lens as an approach for inhibiting the proliferation and migration of lens epithelial cells and posterior capsule opacification[ J]. Biomater Sci, 2019, 7(10): 4208-4217.Lin L, Lin Q, Li J, et al. ROCK inhibitor modified intraocular lens as an approach for inhibiting the proliferation and migration of lens epithelial cells and posterior capsule opacification[ J]. Biomater Sci, 2019, 7(10): 4208-4217.
40、Huang Y, Xie L. Expression of transcription factors and crystallin proteins during rat lens regeneration[ J]. Mol Vis, 2010, 16: 341-352.Huang Y, Xie L. Expression of transcription factors and crystallin proteins during rat lens regeneration[ J]. Mol Vis, 2010, 16: 341-352.
41、Wu X, Liu Z, Zhang X, et al. Proteomics analysis and proteogenomic characterization of different physiopathological human lenses[ J]. BMC Ophthalmol, 2017, 17(1): 253.Wu X, Liu Z, Zhang X, et al. Proteomics analysis and proteogenomic characterization of different physiopathological human lenses[ J]. BMC Ophthalmol, 2017, 17(1): 253.
42、Khurana I, Al-Hasani K, Maxwell S, et al. DNA methylation status correlates with adult β-cell regeneration capacity[ J]. NPJ Regen Med, 2021, 6(1): 7.Khurana I, Al-Hasani K, Maxwell S, et al. DNA methylation status correlates with adult β-cell regeneration capacity[ J]. NPJ Regen Med, 2021, 6(1): 7.
43、Peng S, Shi S, Tao G, et al. JKAMP inhibits the osteogenic capacity of adipose-derived stem cells in diabetic osteoporosis by modulating the Wnt signaling pathway through intragenic DNA methylation[ J]. Stem Cell Res Ther, 2021, 12(1): 120.Peng S, Shi S, Tao G, et al. JKAMP inhibits the osteogenic capacity of adipose-derived stem cells in diabetic osteoporosis by modulating the Wnt signaling pathway through intragenic DNA methylation[ J]. Stem Cell Res Ther, 2021, 12(1): 120.
44、Li R, Li B, Cao Y, et al. Long non-coding RNA Mir22hg-derived miR- 22-3p promotes skeletal muscle differentiation and regeneration by inhibiting HDAC4[ J]. Mol Ther Nucleic Acids, 2021, 24: 200-211.Li R, Li B, Cao Y, et al. Long non-coding RNA Mir22hg-derived miR- 22-3p promotes skeletal muscle differentiation and regeneration by inhibiting HDAC4[ J]. Mol Ther Nucleic Acids, 2021, 24: 200-211.
45、Sevilla A, Papatsenko D, Mazloom AR, et al. An Esrrb and Nanog cell fate regulatory module controlled by feed forward loop interactions[ J]. Front Cell Dev Biol, 2021, 9: 630067.Sevilla A, Papatsenko D, Mazloom AR, et al. An Esrrb and Nanog cell fate regulatory module controlled by feed forward loop interactions[ J]. Front Cell Dev Biol, 2021, 9: 630067.
46、Wang Y, Guan H. The Role of DNA methylation in lens development and cataract formation[ J]. Cell Mol Neurobiol, 2017, 37(6): 979-984.Wang Y, Guan H. The Role of DNA methylation in lens development and cataract formation[ J]. Cell Mol Neurobiol, 2017, 37(6): 979-984.
47、Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision[ J]. Nature, 2020, 588(7836): 124-129.Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision[ J]. Nature, 2020, 588(7836): 124-129.
48、Dirks RP, Klok EJ, van Genesen ST, et al. The sequence of regulatory events controlling the expression of the gamma D-crystallin gene during fibroblast growth factor-mediated rat lens fiber cell differentiation[ J]. Dev Biol, 1996, 173(1): 14-25.Dirks RP, Klok EJ, van Genesen ST, et al. The sequence of regulatory events controlling the expression of the gamma D-crystallin gene during fibroblast growth factor-mediated rat lens fiber cell differentiation[ J]. Dev Biol, 1996, 173(1): 14-25.
49、Chen X, Xiao W, Chen W, et al. MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[ J]. Cell Death Differ, 2017, 24(8): 1431-1442.Chen X, Xiao W, Chen W, et al. MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[ J]. Cell Death Differ, 2017, 24(8): 1431-1442.
50、McAvoy JW, Chamberlain CG. Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration[ J]. Development, 1989, 107(2): 221-228.McAvoy JW, Chamberlain CG. Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration[ J]. Development, 1989, 107(2): 221-228.
51、Shu DY, Lovicu FJ. Enhanced EGF receptor-signaling potentiates TGFβ-induced lens epithelial-mesenchymal transition[ J]. Exp Eye Res, 2019, 185: 107693.Shu DY, Lovicu FJ. Enhanced EGF receptor-signaling potentiates TGFβ-induced lens epithelial-mesenchymal transition[ J]. Exp Eye Res, 2019, 185: 107693.
52、Huang X, Wang Y, Zhang P, et al. A HGF-derived peptide suppresses EMT in human lens epithelial cells via the TGF-β/Smad and Akt/ mTOR signaling pathways[ J]. Mol Med Rep, 2020, 22(1): 551-558.Huang X, Wang Y, Zhang P, et al. A HGF-derived peptide suppresses EMT in human lens epithelial cells via the TGF-β/Smad and Akt/ mTOR signaling pathways[ J]. Mol Med Rep, 2020, 22(1): 551-558.
53、Aryal S, Viet J, Weatherbee BAT, et al. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development[ J]. Hum Genet, 2020, 139(12): 1541-1554.Aryal S, Viet J, Weatherbee BAT, et al. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development[ J]. Hum Genet, 2020, 139(12): 1541-1554.
54、Garg A, Hannan A, Wang Q, et al. Etv transcription factors functionally diverge from their upstream FGF signaling in lens development[ J]. Elife, 2020, 9: 51915.Garg A, Hannan A, Wang Q, et al. Etv transcription factors functionally diverge from their upstream FGF signaling in lens development[ J]. Elife, 2020, 9: 51915.
55、Sun Y, Rong X, Li D, et al. NF-κB/cartilage acidic protein 1 promotes ultraviolet B irradiation-induced apoptosis of human lens epithelial cells[ J]. DNA Cell Biol, 2020, 39(4): 513-521.Sun Y, Rong X, Li D, et al. NF-κB/cartilage acidic protein 1 promotes ultraviolet B irradiation-induced apoptosis of human lens epithelial cells[ J]. DNA Cell Biol, 2020, 39(4): 513-521.
56、Maki N, Suetsugu-Maki R, Tarui H, et al. Expression of stem cell pluripotency factors during regeneration in newts[ J]. Dev Dyn, 2009, 238(6): 1613-1616.Maki N, Suetsugu-Maki R, Tarui H, et al. Expression of stem cell pluripotency factors during regeneration in newts[ J]. Dev Dyn, 2009, 238(6): 1613-1616.
57、Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways[ J]. Epigenetics Chromatin, 2019, 12(1): 27.Zhao Y, Zheng D, Cvekl A. Profiling of chromatin accessibility and identification of general cis-regulatory mechanisms that control two ocular lens differentiation pathways[ J]. Epigenetics Chromatin, 2019, 12(1): 27.
58、Shaw TJ, Martin P. Wound repair: a showcase for cell plasticity and migration[ J]. Curr Opin Cell Biol, 2016, 42: 29-37.Shaw TJ, Martin P. Wound repair: a showcase for cell plasticity and migration[ J]. Curr Opin Cell Biol, 2016, 42: 29-37.
59、Arnoux V, Nassour M, L'Helgoualc'h A, et al. Erk5 controls Slug expression and keratinocyte activation during wound healing[ J]. Mol Biol Cell, 2008, 19(11): 4738-4749.Arnoux V, Nassour M, L'Helgoualc'h A, et al. Erk5 controls Slug expression and keratinocyte activation during wound healing[ J]. Mol Biol Cell, 2008, 19(11): 4738-4749.
60、Aurora AB, Olson EN. Immune modulation of stem cells and regeneration[ J]. Cell Stem Cell, 2014, 15(1): 14-25.Aurora AB, Olson EN. Immune modulation of stem cells and regeneration[ J]. Cell Stem Cell, 2014, 15(1): 14-25.
61、Zhou R, Caspi RR. Ocular immune privilege[ J]. F1000 Biol Rep, 2010, 2: 3.Zhou R, Caspi RR. Ocular immune privilege[ J]. F1000 Biol Rep, 2010, 2: 3.
62、Spierer A, Desatnik H, Blumenthal M. Refractive status in children after long-term follow up of cataract surgery with intraocular lens implantation[ J]. J Pediatr Ophthalmol Strabismus, 1999, 36(1): 25-29.Spierer A, Desatnik H, Blumenthal M. Refractive status in children after long-term follow up of cataract surgery with intraocular lens implantation[ J]. J Pediatr Ophthalmol Strabismus, 1999, 36(1): 25-29.
63、Ursell PG, Dhariwal M, O'Boyle D, et al. 5-year incidence of YAG capsulotomy and PCO after cataract surgery with single-piece monofocal intraocular lenses: a real-world evidence study of 20,763 eyes[ J]. Eye (Lond), 2020, 34(5): 960-968.Ursell PG, Dhariwal M, O'Boyle D, et al. 5-year incidence of YAG capsulotomy and PCO after cataract surgery with single-piece monofocal intraocular lenses: a real-world evidence study of 20,763 eyes[ J]. Eye (Lond), 2020, 34(5): 960-968.
64、Logan CM, Bowen CJ, Menko AS. Induction of immune surveillance of the dysmorphogenic lens[ J]. Sci Rep, 2017, 7(1): 16235.Logan CM, Bowen CJ, Menko AS. Induction of immune surveillance of the dysmorphogenic lens[ J]. Sci Rep, 2017, 7(1): 16235.
65、Malloch EL, Perry KJ, Fukui L, et al. Gene expression profiles of lens regeneration and development in Xenopus laevis[ J]. Dev Dyn, 2009, 238(9): 2340-2356.Malloch EL, Perry KJ, Fukui L, et al. Gene expression profiles of lens regeneration and development in Xenopus laevis[ J]. Dev Dyn, 2009, 238(9): 2340-2356.
66、Brockes JP, Kumar A. Comparative aspects of animal regeneration[ J]. Annu Rev Cell Dev Biol, 2008, 24: 525-549.Brockes JP, Kumar A. Comparative aspects of animal regeneration[ J]. Annu Rev Cell Dev Biol, 2008, 24: 525-549.
67、Qin C, Liu S, Wen S, et al. Enhanced PCO prevention of drug eluting IOLs via endocytosis and autophagy effects of a PAMAM dendrimer[ J]. J Mater Chem B, 2021, 9(3): 793-800.Qin C, Liu S, Wen S, et al. Enhanced PCO prevention of drug eluting IOLs via endocytosis and autophagy effects of a PAMAM dendrimer[ J]. J Mater Chem B, 2021, 9(3): 793-800.
68、Huang H, Zhu S, Liu D, et al. Antiproliferative drug-loaded multi- functionalized intraocular lens for reducing posterior capsular opacification[ J]. J Biomater Sci Polym Ed, 2021, 32(6): 735-748. Huang H, Zhu S, Liu D, et al. Antiproliferative drug-loaded multi- functionalized intraocular lens for reducing posterior capsular opacification[ J]. J Biomater Sci Polym Ed, 2021, 32(6): 735-748.
69、Tang J, Liu S, Han Y, et al. Surface modification of intraocular lenses via photodynamic coating for safe and effective PCO prevention[ J]. J Mater Chem B, 2021, 9(6): 1546-1556.Tang J, Liu S, Han Y, et al. Surface modification of intraocular lenses via photodynamic coating for safe and effective PCO prevention[ J]. J Mater Chem B, 2021, 9(6): 1546-1556.
70、Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages[ J]. Annu Rev Physiol, 2017, 79: 593-617.Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages[ J]. Annu Rev Physiol, 2017, 79: 593-617.
71、Marote A, Teixeira FG, Mendes-Pinheiro B, et al. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential[ J]. Front Pharmacol, 2016, 7: 231.Marote A, Teixeira FG, Mendes-Pinheiro B, et al. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential[ J]. Front Pharmacol, 2016, 7: 231.
72、Ueki Y, Wilken MS, Cox KE, et al. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice[ J]. Proc Natl Acad Sci U S A, 2015, 112(44): 13717-13722.Ueki Y, Wilken MS, Cox KE, et al. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice[ J]. Proc Natl Acad Sci U S A, 2015, 112(44): 13717-13722.
73、Yao K, Qiu S, Wang YV, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas[ J]. Nature, 2018, 560(7719): 484-488.Yao K, Qiu S, Wang YV, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas[ J]. Nature, 2018, 560(7719): 484-488.
74、Amano S, Yamagami S, Mimura T, et al. Corneal stromal and endothelial cell precursors[ J]. Cornea, 2006, 25(10 Suppl 1): S73-S77.Amano S, Yamagami S, Mimura T, et al. Corneal stromal and endothelial cell precursors[ J]. Cornea, 2006, 25(10 Suppl 1): S73-S77.
75、Koizumi N, Okumura N, Ueno M, et al. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops[ J]. Cornea, 2014, 33 Suppl 11: S25-S31.Koizumi N, Okumura N, Ueno M, et al. New therapeutic modality for corneal endothelial disease using Rho-associated kinase inhibitor eye drops[ J]. Cornea, 2014, 33 Suppl 11: S25-S31.
76、Wang EX, Jiang X. Stem cells from trabecular meshwork cells can secrete extracellular matrix[ J]. Biochem Biophys Res Commun, 2020, 523(2): 522-526.Wang EX, Jiang X. Stem cells from trabecular meshwork cells can secrete extracellular matrix[ J]. Biochem Biophys Res Commun, 2020, 523(2): 522-526.
77、Donati G, Watt FM. Stem cell heterogeneity and plasticity in epithelia[ J]. Cell Stem Cell, 2015, 16(5): 465-476.Donati G, Watt FM. Stem cell heterogeneity and plasticity in epithelia[ J]. Cell Stem Cell, 2015, 16(5): 465-476.
78、van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium[ J]. Annu Rev Physiol, 2009, 71: 241-260.van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium[ J]. Annu Rev Physiol, 2009, 71: 241-260.
79、Servick K. Stem cell approach for cataracts challenged[ J]. Science, 2017, 356(6345): 1318-1319.Servick K. Stem cell approach for cataracts challenged[ J]. Science, 2017, 356(6345): 1318-1319.
80、Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain[ J]. Science, 2017, 356(6342): 1031-1034.Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain[ J]. Science, 2017, 356(6342): 1031-1034.
81、Kinoshita S, Koizumi N, Ueno M, et al. Injection of cultured cells with a rock inhibitor for bullous keratopathy[ J]. N Engl J Med, 2018, 378(11): 995-1003.Kinoshita S, Koizumi N, Ueno M, et al. Injection of cultured cells with a rock inhibitor for bullous keratopathy[ J]. N Engl J Med, 2018, 378(11): 995-1003.
82、Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration[ J]. Nature, 2016, 529(7586): 307-315.Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration[ J]. Nature, 2016, 529(7586): 307-315.
83、Leeman DS, Hebestreit K, Ruetz T, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging[ J]. Science, 2018, 359(6381): 1277-1283.Leeman DS, Hebestreit K, Ruetz T, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging[ J]. Science, 2018, 359(6381): 1277-1283.
84、Perico L, Morigi M, Rota C, et al. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function[ J]. Nat Commun, 2017, 8(1): 983.Perico L, Morigi M, Rota C, et al. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function[ J]. Nat Commun, 2017, 8(1): 983.
85、Otsuki L, Brand AH. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence[ J]. Science, 2018, 360(6384): 99-102.Otsuki L, Brand AH. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence[ J]. Science, 2018, 360(6384): 99-102.
86、Bassat E, Mutlak YE, Genzelinakh A, et al. The extracellular matrix protein agrin promotes heart regeneration in mice[ J]. Nature, 2017, 547(7662): 179-184.Bassat E, Mutlak YE, Genzelinakh A, et al. The extracellular matrix protein agrin promotes heart regeneration in mice[ J]. Nature, 2017, 547(7662): 179-184.
87、Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs[ J]. Nature, 2017, 548(7665): 52-57.Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs[ J]. Nature, 2017, 548(7665): 52-57.
88、Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice[ J]. Nature, 2017, 548(7665): 103-107.Jorstad NL, Wilken MS, Grimes WN, et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice[ J]. Nature, 2017, 548(7665): 103-107.
89、Tzahor E, Poss KD. Cardiac regeneration strategies: staying young at heart[ J]. Science, 2017, 356(6342): 1035-1039.Tzahor E, Poss KD. Cardiac regeneration strategies: staying young at heart[ J]. Science, 2017, 356(6342): 1035-1039.
1、胡乐怡,刘臻臻,刘奕志.眼类器官的体内移植及组织工程支架的应用[J].器官移植,2023,14(05):649-655.HU Leyi, LIU Zhenzhen, LIU Yizhi. In vivo transplantation of eye organoids and application of tissue engineering scaffolds[J]. Organ Transplant, 2023, 14(5): 649-655.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录