1、Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[ J]. Ophthalmology, 2016, 123(5): 1036-1042.Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[ J]. Ophthalmology, 2016, 123(5): 1036-1042.
2、Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians[ J]. Surv Ophthalmol, 2014, 59(4): 434-447.Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians[ J]. Surv Ophthalmol, 2014, 59(4): 434-447.
3、Marcus MW, de Vries MM, Junoy Montolio FG, et al. Myopia as a risk factor for open-angle glaucoma: a systematic review and metaanalysis[ J]. Ophthalmology, 2011, 118(10): 1989-1994.Marcus MW, de Vries MM, Junoy Montolio FG, et al. Myopia as a risk factor for open-angle glaucoma: a systematic review and metaanalysis[ J]. Ophthalmology, 2011, 118(10): 1989-1994.
4、Marcus MW, de Vries MM, Junoy Montolio FG, et al. Myopia as a risk factor for open-angle glaucoma: a systematic review and metaanalysis[ J]. Ophthalmology, 2011, 118(10): 1989-1994.Marcus MW, de Vries MM, Junoy Montolio FG, et al. Myopia as a risk factor for open-angle glaucoma: a systematic review and metaanalysis[ J]. Ophthalmology, 2011, 118(10): 1989-1994.
5、Bikbov MM, Gilmanshin TR, Kazakbaeva GM, et al. Prevalence of myopic maculopathy among adults in a Russian population[ J]. JAMA Netw Open, 2020, 3(3): e200567.Bikbov MM, Gilmanshin TR, Kazakbaeva GM, et al. Prevalence of myopic maculopathy among adults in a Russian population[ J]. JAMA Netw Open, 2020, 3(3): e200567.
6、Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol, 2015, 159(5): 877-883.Ohno-Matsui K, Kawasaki R, Jonas JB, et al. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol, 2015, 159(5): 877-883.
7、Jonas JB, Wang YX, Dong L, et al. High myopia and glaucoma-like optic neuropathy[ J]. Asia Pac J Ophthalmol (Phila), 2020, 9(3): 234-238.Jonas JB, Wang YX, Dong L, et al. High myopia and glaucoma-like optic neuropathy[ J]. Asia Pac J Ophthalmol (Phila), 2020, 9(3): 234-238.
8、Jonas JB, Weber P, Nagaoka N, et al. Glaucoma in high myopia and parapapillary delta zone[ J]. PLoS One, 2017, 12(4):e0175120.Jonas JB, Weber P, Nagaoka N, et al. Glaucoma in high myopia and parapapillary delta zone[ J]. PLoS One, 2017, 12(4):e0175120.
9、Nagaoka N, Jonas JB, Morohoshi K, et al. Glaucomatous-type optic discs in high myopia[ J]. PLoS One, 2015, 10(10):e0138825.Nagaoka N, Jonas JB, Morohoshi K, et al. Glaucomatous-type optic discs in high myopia[ J]. PLoS One, 2015, 10(10):e0138825.
10、Li Z, Guo X, Xiao O, et al. Optic disc features in highly myopic eyes: The ZOC-BHVI high myopia cohort study[ J]. Optom Vis Sci, 2018, 95(4): 318-322.Li Z, Guo X, Xiao O, et al. Optic disc features in highly myopic eyes: The ZOC-BHVI high myopia cohort study[ J]. Optom Vis Sci, 2018, 95(4): 318-322.
11、Chen LW, Lan YW, Hsieh JW. The optic nerve head in primary openangle glaucoma eyes with high myopia: Characteristics and association with visual field defects[ J]. J Glaucoma, 2016, 25(6): e569-e575.Chen LW, Lan YW, Hsieh JW. The optic nerve head in primary openangle glaucoma eyes with high myopia: Characteristics and association with visual field defects[ J]. J Glaucoma, 2016, 25(6): e569-e575.
12、Choi JA, Park HY, Shin HY, et al. Optic disc tilt direction determines the location of initial glaucomatous damage[ J]. Invest Ophthalmol Vis Sci, 2014, 55(8): 4991-4998.Choi JA, Park HY, Shin HY, et al. Optic disc tilt direction determines the location of initial glaucomatous damage[ J]. Invest Ophthalmol Vis Sci, 2014, 55(8): 4991-4998.
13、Sawada Y, Hangai M, Ishikawa M, et al. Association of myopic optic disc deformation with visual field defects in paired eyes with openangle glaucoma: A cross-sectional study[ J]. PLoS One, 2016, 11(8): e0161961.Sawada Y, Hangai M, Ishikawa M, et al. Association of myopic optic disc deformation with visual field defects in paired eyes with openangle glaucoma: A cross-sectional study[ J]. PLoS One, 2016, 11(8): e0161961.
14、Lee EJ, Han JC, Kee C. Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population[ J]. PLoS One, 2017, 12(10): e0186236.Lee EJ, Han JC, Kee C. Intereye comparison of ocular factors in normal tension glaucoma with asymmetric visual field loss in Korean population[ J]. PLoS One, 2017, 12(10): e0186236.
15、Hung CH, Lee SH, Lin SY, et al. The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma[ J]. PLoS One, 2018, 13(12): e0209755.Hung CH, Lee SH, Lin SY, et al. The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma[ J]. PLoS One, 2018, 13(12): e0209755.
16、Lee KS, Lee JR, Kook MS. Optic disc torsion presenting as unilateral glaucomatous-appearing visual field defect in young myopic Korean eyes[ J]. Ophthalmology, 2014, 121(5): 1013-1019.Lee KS, Lee JR, Kook MS. Optic disc torsion presenting as unilateral glaucomatous-appearing visual field defect in young myopic Korean eyes[ J]. Ophthalmology, 2014, 121(5): 1013-1019.
17、Sung MS, Heo H, Ji YS, et al. Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation[ J]. Eye (Lond), 2017, 31(7): 1051-1059.Sung MS, Heo H, Ji YS, et al. Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation[ J]. Eye (Lond), 2017, 31(7): 1051-1059.
18、Sung MS, Heo H, Ji YS, et al. Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation[ J]. Eye (Lond), 2017, 31(7): 1051-1059.Sung MS, Heo H, Ji YS, et al. Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation[ J]. Eye (Lond), 2017, 31(7): 1051-1059.
19、Park HY, Lee K, Park CK. Optic disc torsion direction predicts the location of glaucomatous damage in normal-tension glaucoma patients with myopia[ J]. Ophthalmology, 2012, 119(9): 1844-1851.Park HY, Lee K, Park CK. Optic disc torsion direction predicts the location of glaucomatous damage in normal-tension glaucoma patients with myopia[ J]. Ophthalmology, 2012, 119(9): 1844-1851.
20、Chen YH, Wei RH, Hui YN. Commentary review on peripapillary morphological characteristics in high myopia eyes with glaucoma: diagnostic challenges and strategies[ J]. Int J Ophthalmol, 2021, 14(4): 600-605.Chen YH, Wei RH, Hui YN. Commentary review on peripapillary morphological characteristics in high myopia eyes with glaucoma: diagnostic challenges and strategies[ J]. Int J Ophthalmol, 2021, 14(4): 600-605.
21、Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study[ J]. Ophthalmology, 2010, 117(2): 259-266.Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study[ J]. Ophthalmology, 2010, 117(2): 259-266.
22、Jonas JB, Jonas SB. Histomorphometry of the circular peripapillary arterial ring of Zinn-Haller in normal eyes and eyes with secondary angle-closure glaucoma[ J]. Acta Ophthalmol, 2010, 88(8): e317-e322.Jonas JB, Jonas SB. Histomorphometry of the circular peripapillary arterial ring of Zinn-Haller in normal eyes and eyes with secondary angle-closure glaucoma[ J]. Acta Ophthalmol, 2010, 88(8): e317-e322.
23、Yoshikawa M, Akagi T, Hangai M, et al. Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 477-484.Yoshikawa M, Akagi T, Hangai M, et al. Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 477-484.
24、Faridi OS, Park SC, Kabadi R, et al. Effect of focal lamina cribrosa defect on glaucomatous visual field progression[ J]. Ophthalmology, 2014, 121(8): 1524-1530.Faridi OS, Park SC, Kabadi R, et al. Effect of focal lamina cribrosa defect on glaucomatous visual field progression[ J]. Ophthalmology, 2014, 121(8): 1524-1530.
25、Suh MH, Zangwill LM, Manalastas PI, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects[ J]. Ophthalmology, 2016, 123(11): 2309-2317.Suh MH, Zangwill LM, Manalastas PI, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects[ J]. Ophthalmology, 2016, 123(11): 2309-2317.
26、Miki A, Ikuno Y, Asai T, et al. Defects of the lamina cribrosa in high myopia and glaucoma[ J]. PLoS One, 2015, 10(9): e0137909.Miki A, Ikuno Y, Asai T, et al. Defects of the lamina cribrosa in high myopia and glaucoma[ J]. PLoS One, 2015, 10(9): e0137909.
27、Ohno-Matsui K, Akiba M, Moriyama M, et al. Acquired optic nerve and peripapillary pits in pathologic myopia[ J].Ophthalmology, 2012, 119(8): 1685-1692.Ohno-Matsui K, Akiba M, Moriyama M, et al. Acquired optic nerve and peripapillary pits in pathologic myopia[ J].Ophthalmology, 2012, 119(8): 1685-1692.
28、Tatham AJ, Miki A, Weinreb RN, et al. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss[ J]. Ophthalmology, 2014, 121(1): 110-118.Tatham AJ, Miki A, Weinreb RN, et al. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss[ J]. Ophthalmology, 2014, 121(1): 110-118.
29、Kimura Y, Akagi T, Hangai M, et al. Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia[ J]. PLoS One, 2014, 9(12): e115313.Kimura Y, Akagi T, Hangai M, et al. Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia[ J]. PLoS One, 2014, 9(12): e115313.
30、Wang YX, Panda-Jonas S, Jonas JB. Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features[ J]. Prog Retin Eye Res, 2021, 83: 100933.Wang YX, Panda-Jonas S, Jonas JB. Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features[ J]. Prog Retin Eye Res, 2021, 83: 100933.
31、Sung MS, Heo H, Piao H, et al. Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia[ J]. Sci Rep, 2020, 10(1): 4607.Sung MS, Heo H, Piao H, et al. Parapapillary atrophy and changes in the optic nerve head and posterior pole in high myopia[ J]. Sci Rep, 2020, 10(1): 4607.
32、Teng CC, De Moraes CG, Prata TS, et al. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression[ J]. Ophthalmology, 2011, 118(12): 2409-2413.Teng CC, De Moraes CG, Prata TS, et al. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression[ J]. Ophthalmology, 2011, 118(12): 2409-2413.
33、Asai T, Ikuno Y, Akiba M, et al. Analysis of peripapillary geometric characters in high myopia using swept-source optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 137-144.Asai T, Ikuno Y, Akiba M, et al. Analysis of peripapillary geometric characters in high myopia using swept-source optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 137-144.
34、Miki A, Ikuno Y, Weinreb RN, et al. En face optical coherence tomography imaging of beta and gamma parapapillary atrophy in high myopia[ J]. Ophthalmol Glaucoma, 2019, 2(1): 55-62.Miki A, Ikuno Y, Weinreb RN, et al. En face optical coherence tomography imaging of beta and gamma parapapillary atrophy in high myopia[ J]. Ophthalmol Glaucoma, 2019, 2(1): 55-62.
35、Kim EK, Park HL, Park CK. Posterior scleral deformations around optic disc are associated with visual field damage in open-angle glaucoma patients with myopia[ J]. PLoS One, 2019, 14(3): e0213714.Kim EK, Park HL, Park CK. Posterior scleral deformations around optic disc are associated with visual field damage in open-angle glaucoma patients with myopia[ J]. PLoS One, 2019, 14(3): e0213714.
36、Dai Y, Jonas JB, Huang H, et al. Microstructure of parapapillary atrophy: beta zone and gamma zone[ J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2013-2018.Dai Y, Jonas JB, Huang H, et al. Microstructure of parapapillary atrophy: beta zone and gamma zone[ J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2013-2018.
37、Jonas JB, Jonas SB, Jonas RA, et al. Parapapillary atrophy: histological gamma zone and delta zone[ J]. PLoS One, 2012, 7(10): e47237.Jonas JB, Jonas SB, Jonas RA, et al. Parapapillary atrophy: histological gamma zone and delta zone[ J]. PLoS One, 2012, 7(10): e47237.
38、Lee KM, Choung HK, Kim M, et al. Change of β-zone parapapillary atrophy during axial elongation: Boramae myopia cohort study report 3[ J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4020-4030.Lee KM, Choung HK, Kim M, et al. Change of β-zone parapapillary atrophy during axial elongation: Boramae myopia cohort study report 3[ J]. Invest Ophthalmol Vis Sci, 2018, 59(10): 4020-4030.
39、Yamada H, Akagi T, Nakanishi H, et al. Microstructure of peripapillary atrophy and subsequent visual field progression in treated primary open-angle glaucoma[ J]. Ophthalmology, 2016, 123(3): 542-551.Yamada H, Akagi T, Nakanishi H, et al. Microstructure of peripapillary atrophy and subsequent visual field progression in treated primary open-angle glaucoma[ J]. Ophthalmology, 2016, 123(3): 542-551.
40、Park HY, Shin DY, Jeon SJ, et al. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma[ J]. JAMA Ophthalmol, 2019, 137(6): 681-688.Park HY, Shin DY, Jeon SJ, et al. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma[ J]. JAMA Ophthalmol, 2019, 137(6): 681-688.
41、Wang WW, Wang HZ, Liu JR, et al. Diagnostic ability of ganglion cell complex thickness to detect glaucoma in high myopia eyes by Fourier domain optical coherence tomography[ J]. Int J Ophthalmol, 2018, 11(5): 791-796.Wang WW, Wang HZ, Liu JR, et al. Diagnostic ability of ganglion cell complex thickness to detect glaucoma in high myopia eyes by Fourier domain optical coherence tomography[ J]. Int J Ophthalmol, 2018, 11(5): 791-796.
42、Kang SH, Hong SW, Im SK, et al. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 4075-4083.Kang SH, Hong SW, Im SK, et al. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 4075-4083.
43、Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes[ J]. Invest Ophthalmol Vis Sci, 2012, 53(11): 7194-7200.Leung CK, Yu M, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes[ J]. Invest Ophthalmol Vis Sci, 2012, 53(11): 7194-7200.
44、Xiao H, Zhong Y, Ling Y, et al. Longitudinal changes in peripapillary retinal nerve fiber layer and macular ganglion cell inner plexiform layer in progressive myopia and glaucoma among adolescents[ J]. Front Med (Lausanne), 2022, 9: 828991.Xiao H, Zhong Y, Ling Y, et al. Longitudinal changes in peripapillary retinal nerve fiber layer and macular ganglion cell inner plexiform layer in progressive myopia and glaucoma among adolescents[ J]. Front Med (Lausanne), 2022, 9: 828991.
45、Sezgin Akcay BI, Gunay BO, Kardes E, et al. Evaluation of the ganglion cell complex and retinal nerve fiber layer in low, moderate, and high myopia: A study by RTVue spectral domain optical coherence tomography[ J]. Semin Ophthalmol, 2017, 32(6): 682-688.Sezgin Akcay BI, Gunay BO, Kardes E, et al. Evaluation of the ganglion cell complex and retinal nerve fiber layer in low, moderate, and high myopia: A study by RTVue spectral domain optical coherence tomography[ J]. Semin Ophthalmol, 2017, 32(6): 682-688.
46、Hwang YH, Yoo C, Kim Y Y. Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness
measured by spectral-domain optical coherence tomography[ J]. J Glaucoma, 2012, 21(4): 260-265.Hwang YH, Yoo C, Kim Y Y. Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness
measured by spectral-domain optical coherence tomography[ J]. J Glaucoma, 2012, 21(4): 260-265.
47、Mataki N, Tomidokoro A, Araie M, et al. Beta-peripapillary atrophy of the optic disc and its determinants in Japanese eyes: a population-based study[ J]. Acta Ophthalmol, 2018, 96(6): e701-e706.Mataki N, Tomidokoro A, Araie M, et al. Beta-peripapillary atrophy of the optic disc and its determinants in Japanese eyes: a population-based study[ J]. Acta Ophthalmol, 2018, 96(6): e701-e706.