您的位置: 首页 > 2021年5月 第36卷 第5期 > 文字全文
2023年7月 第38卷 第7期11
目录

光学相干断层扫描血管成像扫描信号强度对视盘周围血管密度的影响

Effect of scanning signal intensity on peripapillary vessel density measured by optical coherence tomography angiography

来源期刊: 眼科学报 | 2021年5月 第36卷 第5期 337-342 发布时间: 收稿时间:2023/5/17 15:33:19 阅读量:4295
作者:
关键词:
视盘血流密度光学相干断层扫描血管成像扫描信号强度眼轴
optic disc vessel density optical coherence tomography angiography scanning signal intensity axial length
DOI:
10.3978/j.issn.1000-4432.2021.04.06
收稿时间:
 
修订日期:
 
接收日期:
 
目的:探讨光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)扫描信号强度对视盘周围血管密度的影响。方法:本研究为单中心横断面研究,所有受试者分别接受了身高、体重、血压、眼压、眼轴及视盘OCTA检查,利用广义估计方程分析OCTA扫描信号强度对视盘周围血管密度的影响。结果:共186人359眼纳入本研究,年龄为(47.86±17.86)岁,视盘周围血管密度为(17.75±1.99)mm?1 。单因素分析显示视盘周围血管密度与眼轴呈负相关(β=?0.5120,
P<0.001),与扫描信号强度呈正相关(β=1.0240,P<0.001)。在校正了年龄、性别、视盘面积及眼轴后的多因素分析中,OCTA扫描信号强度依然与视盘周围血管密度显著正相关(β=0.9721,P<0.001)。结论:视盘周围血管密度不仅与眼轴和视盘面积显著负相关,而且与OCTA扫描信号强度显著正相关,在临床应用或研究中,需要考虑其影响。
Objective: To explore the effect of scanning signal intensity on the peripapillary vessel density measured by optical coherence tomography angiography (OCTA). Methods: This study was a single-center cross-sectional study. All the participants received comprehensive examinations including height, weight, blood pressure,intraocular pressure, axial length, and OCTA scan of the optic disc. The effect of OCTA scanning signal intensity on the peripapillary vessel density was analyzed using the generalized estimation equation. Results: A total of 186 participants with 359 eyes were included in this study. The mean age of all the participants was (47.86±17.86)years old, and the average peripapillary vessel density was (17.75±1.99)mm?1. In a univariate analysis,peripapillary vessel density was associated with the axial length (β=?0.5120, P<0.001) and the scanning signal intensity (β=1.0240, P<0.001). After adjusting for age, gender, axial length, and optic disc area in the multivariate analysis, the OCTA scanning signal intensity was still significantly associated with the peripapillary vessel density (β=0.9721, P<0.001). Conclusion: The peripapillary vessel density is significantly negatively associated with the axial length and optic disc area, significantly positively associated with the scanning signal intensity. In clinical practice, the influence needs to be considered.
视盘是视神经的重要组成部分,其丰富的血流供应是维持正常功能的重要保障[1-2]。有研究[3-4]发现在视神经相关的疾病中视盘血流会发生改变,如在早期青光眼的患者中发现这类患者的视盘血流会出现显著的降低,因此视盘血流常常被认为是管理和检测视神经疾病的一个重要标志物[5]。既往在检查视盘血流时,常常使用超声多普勒或者眼底荧光血管造影等,但一直面临不能准确定量或有创性等不足[6-7]。最近在相干断层扫描成像(optical coherence tomography,OCT)基础上发展起来的光学相干断层扫描血管成像(optical coherence tomography angiography,OCTA)技术由于具有检查快速无创,且能进行血流定量,可以实现血流的可视化等优点,目前已经用于视网膜和视盘血流的检查[8-9]
在使用OCTA检查过程中,研究者[10-11]发现视网膜或视盘血流密度不仅与疾病的种类、年龄和眼轴等有关,也与OCTA扫描信号强度(scanning signal intensity,SSI)有关[12-14]。SSI是一个关于成像质量的重要参数,在血流密度的临床应用或研究中,为保证图片的质量,常常要求OCTA- SSI要至少达到一定的强度才能视为有效扫描(如蔡司OCTA的SSI为0~10,一般要求SSI至少为7)[14],但对于这些符合质量要求的OCTA图像,SSI是否仍然会对视网膜或视盘血流产生常影响以及可能产生什么样的影响,目前少有报道。

1 对象与方法

1.1 对象

本研究为2019年5月至2020年4月在佛山市第二人民医院进行的单中心横断面研究。研究方案已获得佛山市第二人民医院医学伦理委员会的批准(KJ20190012),并在中国临床研究网进行了注册(ChiCTR1900024921),本研究遵循赫尔辛基宣言,受试者在接受检查前均签署知情同意书。
参与研究的受试者来源于眼科门诊,体验中心及社区筛查的健康者。入组标准:最佳矫正视力≥0.8,眼压<21 mmHg(1 mmHg=0.133 kPa),裂隙灯及眼底检查均正常。排除标准:既往眼部手术史或外伤史;明显的屈光介质浑浊而影响成像;高度近视(球镜大于?6.00 D或者眼轴大于26 mm);患有高血压、糖尿病或其他全身疾病。

1.2 方法

受试者均接受了视力、眼压、裂隙灯、眼轴和OCTA检查。最佳矫正视力使用国际标准视力表检查,眼压采用自动眼压计连续测量3次取其平均值。使用眼球生物测量仪Lenstar测量眼轴。用蔡司OCT(Cirrus 5000 HD-OCT)的200×200扫描获取视盘面积,同时记录受试者的身高、体重和血压指标,并计算BMI(body mass index,BMI)。
OCTA检查:使用蔡司OCTA对所有受试者进行视盘扫描检查。蔡司OCTA使用波长为840 nm光源,每秒可进行68 000次A扫描。在水平和垂直方向上每个B扫描含有350个A扫描,并使用机器所自带软件利用光学微血管造影(optical micro angiography complex,OMAG)算法自动获取相应区域和层次的血管密度[15-16],其中血管密度定义为单位面积的血管长度(一定区域血管长度的总和/一定区域的面积)。为获得视盘的血管密度,将以视盘为中心的6 mm×6 mm扫描模式与实时眼动追踪系统配合使用,测量厚度为从内界膜到内丛状层的距离。蔡司OCTA仪器自带的早期糖尿病视网膜病变治疗研究(early treatment diabetic retinopathy study,ETDRS)图表将视盘血管密度自动分为中心环、内环、外环和整圆(图1A)。我们通过计算(整圆的血管长度?中心圆的血管长度)/(整圆的面积?中心圆的面积)得到视盘周围血管密度(图1B)。根据既往研究的结果[12],为保证图片质量,我们将OCTA-SSI≥7的OCTA图像纳入研究。
20230517151808_8403.png

图1 视盘6 mm×6 mm OCTA 扫描成像
Figure 1 Optical coherence tomography angiography 6 mm×6 mm scan image on the optic disc
(A)OCTA行6 mm×6 mm模式扫描视盘后获得的ETDRS各区域的血管密度。(B)中心黑色的圆代表着图1A中ETDRS最中心的圆(直径1 mm),白色的圆环区域代表视盘周围的区域(整圆的血管长度–中心圆的血管长度)/(整圆的面积–中心圆的面积)。
(A) Vessel density of ETDRS chart in optic disc using the 6 mm×6 mm scanning model of OCTA. (B)The black circle represents the central circle of ETDRS in Figure 1A (diameter: 1mm), and the white annulus area represents the area around the optic disc (length of the full circle – length of the central circle)/(area of the full circle – area of the central circle).

1.3 统计学处理

对于各变量的描述性分析,连续性变量使用均数±标准差( x±s )及范围(最小值~最大值)表示,分类变量使用例(%)来表示。本研究中,满足条件的双眼数据均纳入分析,为矫正双眼数据之间的相关性,我们利用广义估计方程模型进行校正。首先,利用广义估计方程模型进行单因素分析,探讨OCTA- SSI与视盘周围血管密度的关系,随后将年龄、性别、视盘面积以及在单因素分析中P <0.2的变量纳入多因素回归模型,分析在矫正上述因素的效应后,OCTA- SSI与视盘周围血管密度的关系。使用SAS 9.4统计学软件进行数据分析,P<0.05为差异有统计学意义。

2 结果

2.1 人群一般资料

本研究最终纳入符合条件的186名受试者共359眼,其中男85例(45.70%),女101例(54.30%),年龄18~84(47.86 ± 17.86)岁,359眼的平均图像SSI为7~10(9.07±1.0),视盘周围血管密度为5.36~19.88 (17.75±1.99) mm?1。不同变量的临床特征总结见表1。

表1 入组人群的一般人口学特征
Table 1 Demographic and clinical characteristics of study participants

20230517152034_0150.png

2.2 单因素分析结果

为研究不同因素对视盘周围血管密度的影响,首先利用广义估计方程进行单因素分析,结果显示:视盘周围血管密度与SSI呈显著正相关,SSI每提升1个信号强度,视盘周围血管密度会相应增加1.0240 mm?1(P<0.001);与眼轴呈负相关,眼轴为增加1 mm,视盘周围血管密度会降低0.5120 mm?1(P <0.001)。视盘周围血管密度与年龄、性别、身高、体重、BMI及血压无显著相关性(P>0.1,表2)。

表2 视盘周围血管相关因素的单因素分析
Table 2 Univariate analysis of the associated factors of peripapillary vessel density

20230517152122_2181.png

2.3 多因素分析结果

将性别、年龄、视盘面积及在单因素分析中P >0.2的变量一起纳入广义估计方程进行多因素分析,结果显示:在校正年龄和性别后,视盘周围血管密度依然与SSI呈显著正相关(β=0.9721,P <0.001),与眼轴( β=?0.4157,P <0.001)和视盘面积( β=?0.3239,P <0.001)均呈显著负相关(表3)。

表3 视盘周围血管相关因素的多因素分析
Table 2 Multivariate analysis of the associated factors of peripapillary vessel density

20230517152156_6558.png

3 讨论

本研究结果显示:OCTA- SSI与视盘周围血管密度呈显著正相关,在校正年龄、性别、眼轴及视盘面积后,每增加1个信号强度,可以使视盘周围血管密度增加0.9721 mm?1。提示即使纳入了符合条件的OCTA图像(蔡司OCTA通常要求SSI>7),SSI依然会显著影响视盘周围的血管密度,因此在评估视盘周围血管密度时,应该考虑SSI的影响。
视盘周围血管密度不仅与疾病相关,而且也有OCTA图片质量密切相关[17-18]。OCTA扫描的图片质量与患者的合作程度、眼底健康情况及屈光状态等多种因素相关,为保证OCTA的图片质量,常常要求达到一定信号强度[14]。如蔡司OCTA要求SSI>6 (0~10),海德堡OCTA要求SSI>15(0~40),而RT Vue OCTA要求SSI>35 (0~100)[19]。Lim等[13]利用蔡司OCTA检测了259名患者的259眼视盘血管情况,通过6 mm×6 mm扫描得到了扫描信号≥7的图像,根据OCTA扫描信号强度的大小分为SSI-7、SSI-8、SSI-9和SSI-10四组,比较了不同SSI组的视盘血管密度,结果显示:SSI是影响视盘周围血管的显著因素,尽管SSI-9与SSI-10没有明显差异。虽然没有将SSI分组,但是本研究通过单因素和多因素分析均证实SSI与视盘周围血管密度显著相关,这个结果与Lim等[13]的结论一致。另外,本研究也显示眼轴长度与视盘周围血管密度显著负相关,这可能与视盘周围的神经纤维层的厚度有关。眼轴越长,视盘周围纤维层的厚度就越薄,所需的供养就越少[10,20]
理论上,随着年龄的增加,黄斑区的血管可能为部分萎缩退化,黄斑中心凹无血管区会扩大,因此黄斑区的血管密度应该会降低,视盘的血管密度也可能存在类似的变化。但目前关于年龄与视盘区血管的关系实际上有不同的报道。Jo等[11]的研究显示:随着年龄的增加,视盘区的血管密度会降低。但也有研究[21]认为视盘血管密度与年龄无关,本研究也得出了类似的结论。造成这种结果的差异,可能与研究设计、入组人群及检测仪器的算法不同有关。
本研究也存在一些不足之处:尽管排除了高度近视的受试者,但纳入了部分患有近视的参与者。有研究[22]显示:近视可能会对眼底采集的图片产生放大效应,因此需要校正,本研究并没有校正这种放大作用,对于近视人群,本研究可能会低估视盘周围血管密度。这种放大效应需要在以后的研究中进一步进行评估。另外,因为视盘有较为粗大的血管出入,会产生投影[23],本研究也没有去掉大血管进行再评估,这可能对研究结果产生相应的影响。最后,本研究仅纳入了成人受试者,而对于儿童是否也有类似的结果,需要在以后的工作中对儿童人群进一步探讨。
综上,本研究在校正了双眼数据的相关性及年龄和性别的影响之后,除了眼轴会显著影响视盘周围的血管密度外,即使纳入OCTA-SSI大于7的图像,SSI依然与视盘周围血管呈显著正相关,因此在以后的临床和科研工作中,除了考虑眼轴对视盘周围的血管密度产生的影响外,还需要考虑OCTA-SSI的影响。
1、Hayreh SS. The blood supply of the optic nerve head and the evaluation of it - myth and reality[ J]. Prog Retin Eye Res, 2001, 20(5): 563-593.Hayreh SS. The blood supply of the optic nerve head and the evaluation of it - myth and reality[ J]. Prog Retin Eye Res, 2001, 20(5): 563-593.
2、Hayreh SS. Blood supply of the optic nerve head[ J]. Ophthalmologica, 1996, 210(5): 285-295.Hayreh SS. Blood supply of the optic nerve head[ J]. Ophthalmologica, 1996, 210(5): 285-295.
3、Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[ J]. JAMA Ophthalmol, 2015, 133(9): 1045-1052.Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[ J]. JAMA Ophthalmol, 2015, 133(9): 1045-1052.
4、Zhang S, Wu C, Liu L, et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma[ J]. Am J Ophthalmol, 2017, 182: 194-200.Zhang S, Wu C, Liu L, et al. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma[ J]. Am J Ophthalmol, 2017, 182: 194-200.
5、Balducci N, Cascavilla ML, Ciardella A, et al. Peripapillary vessel density changes in Leber’s hereditary optic neuropathy: a new biomarker[ J]. Clin Exp Ophthalmol, 2018, 46(9): 1055-1062.Balducci N, Cascavilla ML, Ciardella A, et al. Peripapillary vessel density changes in Leber’s hereditary optic neuropathy: a new biomarker[ J]. Clin Exp Ophthalmol, 2018, 46(9): 1055-1062.
6、Kay MD. Color Doppler imaging in disorders of the orbit, retina, and optic nerve[ J]. Semin Ophthalmol, 1995, 10(3): 242-250.Kay MD. Color Doppler imaging in disorders of the orbit, retina, and optic nerve[ J]. Semin Ophthalmol, 1995, 10(3): 242-250.
7、Rao HL, Pradhan ZS, Suh MH, et al. Optical coherence tomography angiography in glaucoma[ J]. J Glaucoma, 2020, 29(4): 312-321.Rao HL, Pradhan ZS, Suh MH, et al. Optical coherence tomography angiography in glaucoma[ J]. J Glaucoma, 2020, 29(4): 312-321.
8、Zhang Y, Zhang B, Fan M, et al. The vascular densities of the macula and optic disc in normal eyes from children by optical coherence tomography angiography[ J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(2): 437-444.Zhang Y, Zhang B, Fan M, et al. The vascular densities of the macula and optic disc in normal eyes from children by optical coherence tomography angiography[ J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(2): 437-444.
9、Wylegala A . Principles of OCTA and applications in clinical neurology[ J]. Curr Neurol Neurosci Rep, 2018, 18(12): 96.Wylegala A . Principles of OCTA and applications in clinical neurology[ J]. Curr Neurol Neurosci Rep, 2018, 18(12): 96.
10、Sampson DM, Gong P, An D, et al. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography[ J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3065-3072.Sampson DM, Gong P, An D, et al. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography[ J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3065-3072.
11、Jo YH, Sung KR, Shin JW. Effects of age on peripapillary and macular vessel density determined using optical coherence tomography angiography in healthy eyes[ J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3492-3498.Jo YH, Sung KR, Shin JW. Effects of age on peripapillary and macular vessel density determined using optical coherence tomography angiography in healthy eyes[ J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3492-3498.
12、Lim HB, Kim YW, Nam KY, et al. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography[ J]. Sci Rep, 2019, 9(1): 16299.Lim HB, Kim YW, Nam KY, et al. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography[ J]. Sci Rep, 2019, 9(1): 16299.
13、Lim HB, Kim YW, Kim JM, et al. The importance of signal strength in quantitative assessment of retinal vessel density using optical coherence tomography angiography[ J]. Sci Rep, 2018, 8(1): 12897.Lim HB, Kim YW, Kim JM, et al. The importance of signal strength in quantitative assessment of retinal vessel density using optical coherence tomography angiography[ J]. Sci Rep, 2018, 8(1): 12897.
14、Chen CL, Ishikawa H, Wollstein G, et al. Histogram matching extends acceptable signal strength range on optical coherence tomography images[ J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3810-3819.Chen CL, Ishikawa H, Wollstein G, et al. Histogram matching extends acceptable signal strength range on optical coherence tomography images[ J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3810-3819.
15、Lee TH, Lim HB, Nam KY, et al. Factors affecting repeatability of assessment of the retinal microvasculature using optical coherence tomography angiography in healthy subjects[J]. Sci Rep, 2019, 9(1): 16291.Lee TH, Lim HB, Nam KY, et al. Factors affecting repeatability of assessment of the retinal microvasculature using optical coherence tomography angiography in healthy subjects[J]. Sci Rep, 2019, 9(1): 16291.
16、Rosenfeld PJ, Durbin MK, Roisman L, et al. ZEISS angioplex spectral domain optical coherence tomography angiography: technical aspects[ J]. Dev Ophthalmol, 2016, 56: 18-29.Rosenfeld PJ, Durbin MK, Roisman L, et al. ZEISS angioplex spectral domain optical coherence tomography angiography: technical aspects[ J]. Dev Ophthalmol, 2016, 56: 18-29.
17、You QS, Chan JCH, Ng ALK, et al. Macular vessel density measured with optical coherence tomography angiography and its associations in a large population-based study[ J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4830-4837.You QS, Chan JCH, Ng ALK, et al. Macular vessel density measured with optical coherence tomography angiography and its associations in a large population-based study[ J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4830-4837.
18、Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180.Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180.
19、Zhang X, Iverson SM, Tan O, et al. Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in Fourier-domain optical coherence tomography[ J]. Transl Vis Sci Technol, 2015, 4(5): 7.Zhang X, Iverson SM, Tan O, et al. Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in Fourier-domain optical coherence tomography[ J]. Transl Vis Sci Technol, 2015, 4(5): 7.
20、She X, Guo J, Liu X, et al. Reliability of vessel density measurements in the peripapillary retina and correlation with retinal nerve fiber layer thickness in healthy subjects using optical coherence tomography angiography[ J]. Ophthalmologica, 2018, 240(4): 183-190.She X, Guo J, Liu X, et al. Reliability of vessel density measurements in the peripapillary retina and correlation with retinal nerve fiber layer thickness in healthy subjects using optical coherence tomography angiography[ J]. Ophthalmologica, 2018, 240(4): 183-190.
21、Rao HL, Pradhan ZS, Weinreb RN, et al. Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes[ J]. J Glaucoma, 2017, 26(5): 491-497.Rao HL, Pradhan ZS, Weinreb RN, et al. Determinants of peripapillary and macular vessel densities measured by optical coherence tomography angiography in normal eyes[ J]. J Glaucoma, 2017, 26(5): 491-497.
22、Llanas S, Linderman RE, Chen FK , et al. Assessing the use of incorrectly scaled optical coherence tomography angiography images in peer-reviewed studies: a systematic review[ J]. JAMA Ophthalmol, 2019, Epub ahead of print.Llanas S, Linderman RE, Chen FK , et al. Assessing the use of incorrectly scaled optical coherence tomography angiography images in peer-reviewed studies: a systematic review[ J]. JAMA Ophthalmol, 2019, Epub ahead of print.
23、Zhang Q, Zhang A, Lee CS, et al. Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography[ J]. Ophthalmol Retina, 2017, 1(2): 124-136.Zhang Q, Zhang A, Lee CS, et al. Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography[ J]. Ophthalmol Retina, 2017, 1(2): 124-136.
1、卢佳琳. 光学相干断层扫描血管成像对高眼压症视盘及黄斑血管密度变化的初步研究[D].中国医科大学,2023.
2、王萍,汪晓瑜,王小莉等.血浆胰岛素水平与视盘周围血管密度和视网膜神经纤维层厚度的关系[J].安徽医药,2023,27(10):1990-1994.Wang P, Wang XY, Wang XL, et al. Relationship between plasma insulin level and circumpapillary vascular density and thickness of retinal nerve fiber layer[J]. Anhui Med Pharm J, 2023, 27(10): 1990-1994.
1、广东省基础与应用基础研究基金 (2019B1515120011);佛山市科技局项目 (1920001000811)。
This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2019B1515120011) and the Science and Technology Planning Project of Foshan City (1920001000811), China.()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录