您的位置: 首页 > 2021年6月 第36卷 第6期 > 文字全文
2023年7月 第38卷 第7期11
目录

青光眼视网膜血流密度与视野缺损程度的相关分析

Correlation between retinal vascular density and visual field loss in primary chronic angle-closure glaucoma

来源期刊: 眼科学报 | 2021年6月 第36卷 第6期 433-438 发布时间: 收稿时间:2023/5/23 15:52:02 阅读量:4494
作者:
关键词:
光学相干断层血管成像技术原发性慢性闭角型青光眼血流密度视野缺损
optical coherence tomography angiography chronic primary angle-closure glaucoma vessel density visual field loss
DOI:
10.3978/j.issn.1000-4432.2021.06.11
收稿时间:
 
修订日期:
 
接收日期:
 
目的:探讨原发性慢性闭角型青光眼(chronic primary angle-closure glaucoma,CPACG)患者的视网膜血流密度(vessel density,VD)与视野缺损程度的相关性。方法:光学相干断层血管成像技术(optical coherence tomography angiography,OCTA)测量89例(112眼)视野缺损的CPACG患者的黄斑区VD、视盘旁VD,分析VD与视野缺损程度的相关性。结果:视盘旁VD与视野缺损程度成负相关(r>–0.728,P<0.05)。黄斑浅层总VD的受试者工作曲线(receiver operating characteristic,ROC)及曲线下面积(area under the curve,AUC)为0.874。在控制年龄、眼压及视力的情况下,黄斑总浅层VD每降低1%,视野平均缺损(mean deviation,MD)值增加–0.639 dB。结论:CPACG患者VD与视野缺损呈线性负相关,OCTA可以方便无创地观察青光眼患者眼底血流情况,在视野缺损前发现视网膜VD降低,从而可以作为CPACG早期诊断的参考指标。
Objective: To investigate the correlation between the retinal vessel density (VD) and the degree of visual field loss in chronic primary angle-closure glaucoma (CPACG). Methods: Eighty-nine CPACG patients (112 eyes)with different degrees of visual field loss were measured with optical coherence tomography angiography (OCTA) for macular VD and para-optic microcirculation VD, and the correlation between them and the degree of visual field defect were analyzed. Results: There was a negative correlation between the VD of the microcirculation in each zone next to the optic disc and the degree of visual field loss (r>–0.728, P<0.05). The receiver operating characteristic (ROC) and area under the curve (AUC) of the total VD of the superficial macula is 0.874. Under the condition of controlling age, intraocular pressure and vision, for every 1% decrease in the total superficial macular VD, the average visual field defect mean deviation (MD) value increases –0.639 dB. Conclusion: The VD of CPACG patients is linearly negatively correlated with visual field defects. OCTA can conveniently and non-invasively observe the blood flow of the fundus in patients with glaucoma. It is found that the retinal VD is reduced before visual field defects, which can be used as a reference index for early diagnosis of CPACG.
青光眼是全球最主要的不可逆性致盲眼病。在我国青光眼患者中,原发性闭角型青光眼占很大比例。Pollack等[1-2]认为大多数原发性慢性闭角型青光眼(chronic primary angle-closure glaucoma,CPACG)患者早期无症状,常常至视功能损失严重时才就诊,错失了挽救视功能的最佳时机。因此CPACG患者的早期发现、早期干预和随访观察对控制病情进展具有重要意义。视野检测是青光眼诊断和评估的重要量化指标[3]。但视野计检查的主观性较强,受学习曲线影响,在临床应用中,受患者文化程度、固视能力、反应能力、视力、全身情况(是否能保持较长时间座位)等众多因素影响[4]。此外,青光眼患者在出现视野缺损前,已发生组织结构上的改变,部分患者在就诊时已出现明显的视神经损伤[5]。因此,如何更早地发现青光眼视神经损伤具有重要的临床意义。有学者提出,血流密度(vessel density,VD)的改变先于眼底视神经及视功能的改变[6]。光学相干断层血管成像技术(optical coherence tomography angiography,OCTA)能够有效分析和评估眼底血流情况,本文将探讨CPACG患者的视网膜VD与视野缺损程度的相关性,意在探究OCTA能否为CPACG患者的早期诊断及随访观察中提供重要的参考依据。

1 对象与方法

1.1 对象

本研究为符合赫尔辛基宣言原则的横断面临床病例对照研究。收集2017年6月至2019年2月就诊于福建医科大学附属第一医院眼科的确诊CPACG且行青光眼小梁切除术后眼压控制于正常范围内的患者8 9例112眼为试验组,参照The Hodapp Classfication标准[7-8],依据视野缺损特征和平均缺损(mean deviation,MD)值将视野结果可信的患者分为轻度视野缺损组(MD<–6 dB)32例42眼、中度视野缺损组(–6 dB≤MD≤–12 dB)27例31眼、重度视野缺损组(MD>–12 dB)30例39眼,与之相匹配的健康志愿者52例88眼为正常对照组。此次研究中CPACG确诊标准:由3位青光眼组专家在静态房角镜下检查发现180°或更大范围虹膜小梁网接触,并伴有眼压升高和青光眼性视神经改变。

1.2 方法

1.2.1 一般检查
所有受检者询问病史、行全面的眼科检查,包括视力检查、裂隙灯活组织显微镜检查、眼底照相检查等。排除屈光间质明显浑浊、矫正视力<0.5、高度近视、高度远视或散光、有其他眼底病变的病例。
1.2.2 视野
HUMPHREY视野计(德国Carl Zeis公司)检查视野。采用30-2标准程序,III号光标。全部试验组对象视野结果满足以下条件:1)青光眼Hemifield测试在正常范围外;2)固定损失率<20%、假阳性率<15%;3)至少2次连续可靠测试证实的模式标准偏差(pattern standard deviation,PSD)与青光眼乳头神经纤维层丢失一致。
1.2.3 视乳头及视网膜神经纤维层(retinal nerve fiber layer,RNFL)
Cirrus HD-OCT5000型(德国Carl Zeis公司)检查视乳头及其周围RNFL形态及测量RNFL厚度。
1.2.4 OCTA检查
1 )设备:Optovue公司的Avanti RT Vue XR OCT进行眼底黄斑区和视盘的定量检测。2 )扫描模式:在OCTA检查模式中,选择黄斑区血管高清成像6 mm × 6 mm模式(纳入范围:以中心凹为中心,边长为6 mm × 6 mm的正方形)及视乳头4.5 mm×4.5 mm模式[9](纳入范围:以视乳头为中心,边长为4.5 mm × 4.5 mm的正方形),自动追踪扫描模式完成横向及纵向扫描(OCTA信号强度≤6予以排除)。

1.3 统计学处理

所有数据使用SPSS24.0统计学软件分析。样、本资料经正态性检验,推断总体不服从正态分布(P <0.05),以中位数(1/4位数,3/4位数)表示,用KrusKal-WallissH进行多个独立样本比较、用Friedman M检验进行多个相关样本比较、用q检验进行相关样本间两两比较,采用卡方检验进行性别的统计分析。受试者工作曲线(receiver operating characteristic,ROC)及曲线下面积(area under the curve,AUC)用以反映OCTA的各项参数鉴别CPACG的能力,相关性采用Spearman等级相关系数、多元线性回归分析。以P <0.05为差异具有统计学意义。

2 结果

2.1 一般资料的比较

正常组与轻度组、中度组、重度组间,年龄、性别、眼压、眼轴、信号强度差异均无统计学意义(P>0.05,表1)。

表1 不同组基本参数信息比较
Table 1 Comparison of basic parameter information of difffferent groups

20230523153711_5226.png

2.2 视盘旁及黄斑参数

与正常组相比,轻度组的黄斑浅层及视盘旁的VD、视盘旁神经纤维层厚度下降,随视野缺损程度加重,黄斑浅层及视盘旁的VD、视盘旁神经纤维层厚度逐渐下降(不同组间两两对比,均P<0.05)。部分数据检测结果见表2,可见不同视野缺损组间黄斑浅层及视盘旁VD差异具有统计学意义(P<0.05)。黄斑深层VD在不同组间差异无统计学意义(P>0.05)。

表2 不同视野缺损组间黄斑及视乳头参数比较
Table 2 Comparison of macular and optic papilla parameters between difffferent visual field defect groups

20230523153834_1171.png

2.3 黄斑浅层血流及视盘旁VD与CPACG患者视野损害的相关性

黄斑浅层VD与MD值呈线性负相关(r=–0.735,P<0.05),视盘旁VD与MD值呈线性负相关(r=–0.728,P<0.05),RNFL厚度与MD值呈线性负相关(r=–0.653,P<0.05)。

2.4 黄斑及视盘旁VD对CPACG的诊断效能

将视野M D值、黄斑浅层V D 、深层V D 、视盘旁V D 、 RNFL厚度绘制成对CPACG诊断效能的ROC曲线(图1 ) 。对比诊断效能可知,黄斑总浅层V D的诊断效能(AUC为0.874)仅次于青光眼诊断M D值(AUC为0.982) ,视盘旁V D的诊断效能紧随黄斑总浅层V D之后(AUC为0.813)。
20230523153925_7416.png

图1 各参数的ROC曲线
Figure 1 ROC curve of each parameter

2.5 黄斑浅层总血流与MD值的线性关系

选取对CPACG诊断效能最高、与M D值相关性强的黄斑浅层总V D值(即实验组112眼),综合考虑年龄、眼轴、视力等因素使用多元线性回归分析获得方程:Y=0.639X1+0.009X2+16.896X3+0.293X4–56.938(Y为MD值、X1为黄斑浅层总血流、X2为年龄、X3为视力值、X4眼轴长度;图2)。由此可见,在控制年龄、视力、眼轴长度等变量情况下,黄斑区浅层总血流每下降1 %,MD值将增加–0.639 dB。
20230523154150_5855.png

图2 黄斑浅层总血流与MD值总拟合线
Figure 2 The total fitting line of the total superficial macular blood flow and MD value

3 讨论

OCTA是一种全新的成像方式,可以快速、无创、高分辨率地对视网膜和脉络膜的微血管进行三维成像和定量分析。OCTA在血流的检测上采用分光谱振幅去相关成像技术,运用量化变异值的数学函数,大幅减少了运动带来的伪影影响,同时比频域OCT具有更好的穿透性,在微血管的层面上提供了更为客观的数据。
中心视野反映的是黄斑区的组织结构和功能[10-11],在轻度视野损伤组中,已发现了黄斑区VD的降低,这一结果可作为CPACG患者的早期诊断的辅助参数。随视野损伤程度加重,黄斑区VD降低,可作为CPACG患者随访的评估参数。本研究发现黄斑区浅层总VD对CPACG的诊断效能较其他参数高。虽然此发现与Richter等[12]认为的视盘旁毛细血管灌注参数优于黄斑灌注参数不同,但与Shin等[13]的观点比较一致。我们发现黄斑深层VD与视野缺损程度无明显相关性,此结果与Akil等[14]的研究结果比较接近。Takusagaw等[15]亦认为在青光眼患者中浅表的视网膜血管可以观察到局灶性毛细血管脱落,但中间毛细血管丛和深层毛细血管丛无此现象。因此认为OCTA的黄斑区浅层总VD可以有效评估CPACG患者眼底血流改变,在一定程度上可以反映其病变的程度。
既往研究[16-19]表明:青光眼患者的视盘旁毛细血管区血管损失,并且视盘旁VD与视野缺损程度成负相关,例如PACG和POAG患者的视盘旁VD显着降低。OCTA的视盘旁VD对于PACG患者的诊断能力较强,尤其是颞侧扇区的VD[20]。本研究发现OCTA的视盘旁VD与MD值相关性最强,并且视盘旁颞侧及下方VD较鼻侧及上方灵敏。轻度视野缺损的患者中,可检测到颞侧及下方血流降低,而鼻侧及上方的视盘旁VD降低在视野中度缺损患者中才检测到。我们认为视盘旁VD对CPACG的诊断效能较高,其中在OCTA的4个视盘血流分区中,颞侧区的VD对CPACG的诊断效能最高[20]
黄斑VD和视盘旁VD在青光眼患者的诊断和评估随访中,何者更优?目前暂无定论。有学者认为在晚期青光眼中,特别是MD<–14 dB时,黄斑VD对于监测进展更有用[21]。有些学者则提出在早期开角型青光眼中,黄斑全象VD的诊断效能与视盘旁VD相当[22]。对CPACG诊断,本次研究认为黄斑浅层总血流的诊断效能较视盘旁VD高。
本研究也存在一定的局限性:1)通过使用MD值定义青光眼视野缺损程度,其对于视野缺损的评估准确性不如PSD。但由于PSD对于视野缺损的程度的分期尚未有统一的国际标准,故本研究未使用PSD作为参考指标。并且本研究对于视野缺损程度的分组未排除轻度屈光等因素对视野缺损评估的影响。2 )由于本研究的横断面设计,只能识别可检测的微血管衰减,并且无法通过RNFL、黄斑视网膜厚度和黄斑VD之间建立有效的因果关系,缺乏对CPACG患者远期的评估。
综上所述,本研究发现黄斑区浅层总VD和视盘旁V D可作为CPACG患者的早期诊断、定量评估、科学随访的辅助参数。在控制年龄、眼压及视力情况下,可利用以上两个指标有效评估视功能损失程度。
1、Pollack IP. Chronic angle-closure glaucoma; diagnosis and treatment in patients with angles that appear open[ J]. Arch Ophthalmol, 1971, 85(6): 676-689.Pollack IP. Chronic angle-closure glaucoma; diagnosis and treatment in patients with angles that appear open[ J]. Arch Ophthalmol, 1971, 85(6): 676-689.
2、Kim DY, Fingler J, Zawadzki R J, et al. Optical imaging of the chorioretinal vasculature in the living human eye[ J]. Proc Natl Acad Sci U S A, 2013, 110(35): 14354-14359.Kim DY, Fingler J, Zawadzki R J, et al. Optical imaging of the chorioretinal vasculature in the living human eye[ J]. Proc Natl Acad Sci U S A, 2013, 110(35): 14354-14359.
3、Uzun S, Pehlivan E. Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography[ J]. Am J Ophthalmol, 2016, 169: 290.Uzun S, Pehlivan E. Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography[ J]. Am J Ophthalmol, 2016, 169: 290.
4、Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care[ J]. Curr Eye Res, 2018, 43(9):1067-1082.Chansangpetch S, Lin SC. Optical coherence tomography angiography in glaucoma care[ J]. Curr Eye Res, 2018, 43(9):1067-1082.
5、Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications[ J]. Prog Retin Eye Res, 2017, 60: 66-100.Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications[ J]. Prog Retin Eye Res, 2017, 60: 66-100.
6、Faridi A, Jia Y, Gao SS, et al. Sensitivity and specificity of OCT angiography to detect choroidal neovascularization[ J]. Ophthalmol Retina, 2017, 1(4): 294-303.Faridi A, Jia Y, Gao SS, et al. Sensitivity and specificity of OCT angiography to detect choroidal neovascularization[ J]. Ophthalmol Retina, 2017, 1(4): 294-303.
7、Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma[ J]. Ophthalmology, 2016, 123(12): 2509-2518.Suh MH, Zangwill LM, Manalastas PI, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma[ J]. Ophthalmology, 2016, 123(12): 2509-2518.
8、Lee EJ, Lee SH, Kim JA, et al. Parapapillary deep-layer microvasculature dropout in glaucoma: topographic association with glaucomatous damage[ J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3004-3010.Lee EJ, Lee SH, Kim JA, et al. Parapapillary deep-layer microvasculature dropout in glaucoma: topographic association with glaucomatous damage[ J]. Invest Ophthalmol Vis Sci, 2017, 58(7): 3004-3010.
9、Miguel AIM, Silva AB, Azevedo LF. Diagnostic performance of optical coherence tomography angiography in glaucoma: a systematic review and meta-analysis[ J]. Br J Ophthalmol, 2019, 103(11): 1677-1684.Miguel AIM, Silva AB, Azevedo LF. Diagnostic performance of optical coherence tomography angiography in glaucoma: a systematic review and meta-analysis[ J]. Br J Ophthalmol, 2019, 103(11): 1677-1684.
10、Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula[ J]. Prog Retin Eye Res, 2013, 32: 1-21.Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula[ J]. Prog Retin Eye Res, 2013, 32: 1-21.
11、Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients[ J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5713-5722.Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients[ J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5713-5722.
12、Richter GM, Chang R, Situ B, et al. Diagnostic performance of macular versus peripapillary vessel parameters by optical coherence tomography angiography for glaucoma[ J]. Transl Vis Sci Technol, 2018, 7(6): 21Richter GM, Chang R, Situ B, et al. Diagnostic performance of macular versus peripapillary vessel parameters by optical coherence tomography angiography for glaucoma[ J]. Transl Vis Sci Technol, 2018, 7(6): 21
13、Shin JW, Lee J, Kwon J, et al. Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages[ J]. Br J Ophthalmol, 2019, 103(12): 1827-1833.Shin JW, Lee J, Kwon J, et al. Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages[ J]. Br J Ophthalmol, 2019, 103(12): 1827-1833.
14、Akil H, Chopra V, Al-Sheikh M, et al. Swept-source OCT angiography imaging of the macular capillary network in glaucoma[ J]. Br J Ophthalmol, 2018, 102(4): 515-519.Akil H, Chopra V, Al-Sheikh M, et al. Swept-source OCT angiography imaging of the macular capillary network in glaucoma[ J]. Br J Ophthalmol, 2018, 102(4): 515-519.
15、Takusagawa HL, Liu L, Ma KN, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma[ J]. Ophthalmology, 2017, 124(11): 1589-1599.Takusagawa HL, Liu L, Ma KN, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma[ J]. Ophthalmology, 2017, 124(11): 1589-1599.
16、Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT451-OCT459.Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT451-OCT459.
17、Jo YH, Sung KR, Yun SC. The relationship between peripapillary vascular density and visual field sensitivity in primary open-angle and angle-closure glaucoma[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5862-5867.Jo YH, Sung KR, Yun SC. The relationship between peripapillary vascular density and visual field sensitivity in primary open-angle and angle-closure glaucoma[ J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5862-5867.
18、Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[ J]. Ophthalmology, 2014, 121(7): 1322-1332.Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[ J]. Ophthalmology, 2014, 121(7): 1322-1332.
19、Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads[ J]. Int J Ophthalmol, 2018, 11(5): 835-843.Lommatzsch C, Rothaus K, Koch JM, et al. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads[ J]. Int J Ophthalmol, 2018, 11(5): 835-843.
20、Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma[ J]. Br J Ophthalmol, 2017, 101(8): 1066-1070.Rao HL, Kadambi SV, Weinreb RN, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma[ J]. Br J Ophthalmol, 2017, 101(8): 1066-1070.
21、Moghimi S, Bowd C, Zangwill LM, et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma[ J]. Ophthalmology, 2019, 126(7): 980-988.Moghimi S, Bowd C, Zangwill LM, et al. Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma[ J]. Ophthalmology, 2019, 126(7): 980-988.
22、Lu P, Xiao H, Liang C, et al. Quantitative analysis of microvasculature in macular and peripapillary regions in early primary open-angle glaucoma[ J]. Curr Eye Res, 2020, 45(5): 629-635.Lu P, Xiao H, Liang C, et al. Quantitative analysis of microvasculature in macular and peripapillary regions in early primary open-angle glaucoma[ J]. Curr Eye Res, 2020, 45(5): 629-635.
1、李群,舒相汶,及勇静.分级眼压管理在原发性闭角型青光眼术后眼压管理中的效果[J].国际医药卫生导报,2022,28(18):2647-2651.Li Q, Shu XW, Ji YJ. Efficacy of graded intraocular pressure management on intraocular pressure management after surgery for primary angle closure glaucoma[J]. Int Med Health Guid Issues, 2022, 28(18): 2647-2651.
2、杨雪梅,叶亲颖.OCTA技术在原发性闭角型青光眼中的诊断价值[J].智慧健康,2023,9(18):33-37.Yang XM, Ye QY. Diagnostic value of OCTA technology for primary angle closure glaucoma[J]. Smart Healthc, 2023, 9(18): 33-37.
1、国家自然科学基金 (81970789)。
This work was supported by the National Natural Science Foundation of China (81970789).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录