您的位置: 首页 > 2023年6月 第38卷 第6期 > 文字全文
2023年7月 第38卷 第7期11
目录

糖尿病前期和糖尿病视网膜病变临床前期的视网膜改变

Retinal changes in pre-diabetes and pre-clinic diabetes retinopathy

来源期刊: 眼科学报 | 2023年6月 第38卷 第6期 454-460 发布时间: 收稿时间:2023/9/5 11:42:48 阅读量:4367
作者:
关键词:
糖尿病前期糖尿病视网膜病变临床前期视网膜神经变性视网膜微血管病变
pre-diabetes pre-clinical diabetic retinopathy retinal neurodegeneration retinal microangiopathy
DOI:
10.12419/2303110004
收稿时间:
 
修订日期:
 
接收日期:
 
糖尿病视网膜病变(diabetic retinopathy,DR)是世界范围内劳动年龄人口视力损伤的主要原因。糖尿病前期和DR临床前期患者作为罹患DR的高危人群,在该阶段可发现视网膜神经元形态功能及视网膜微小血管的改变。视网膜及神经纤维层厚度的变化可部分反映视网膜神经元结构改变;色觉、对比敏感度、视野及视觉电生理等变化可反映视网膜神经元功能改变。随着光学相关断层扫描血管成像技术的发展,临床可以检测出DR之前视网膜微血管的改变。此外,许多生物标志物也可以预测和评估DR。由于目前还没有方法可以阻止DR的发生与进展,临床可以通过观察以上视网膜的改变更为及时地发现DR,以降低其患病率,最大限度地减少DR带来的视力损伤。
Diabetes retinopathy (DR) is the main cause of visual impairment in the working population worldwide. Patients with pre-diabetes and pre-clinic diabetic retinopathy are regarded as in high risk group of DR. The changes in morphology and function of renal neurons and retinal micro-vessels can be found in these patients at this stage. The changes of retinal nerve structure can be partly reflected by changes in the thickness of retina and nerve fiber layer. The changes in function of retinal neurons can be reflected by changes in color vision, contrast sensitivity, visual field and visual electrophysiology.With the development of optical coherence tomography angiography, changes in retinal micro-vessels can be observed prior to clinical detection of DR. In addition, many biomarker can also predict and evaluate DR. Since there is no way to prevent the occurrence and progress of DR at present, more attention should be paid in DR by observing the changes inthe retina mentioned above timely, to reduce its incidence and minimize the visual damage caused by DR.
糖尿病(diabetes mellitus,DM)是一种全球流行病,目前仍处于增长趋势,预估到2045年,DM患病率将从2019年的9.3%增长至10.9%,人数从4.63亿增长到7亿[1]。糖尿病视网膜病变(diabetic retinopathy,DR)是DM常见并发症之一,近1/3 DM患者会发生DR,且近1/10 DR患者存在视力损害风险[2]。DR是世界范围内劳动年龄人口视力损害的主要原因。
在出现DR前,DM前期和DR临床前期(pre-clinic stage of diabetic retinopathy,PCDR)是值得关注的两个阶段。DM前期,血糖水平高于正常值但未达到DM阈值,其空腹血糖在5.6~6.9 mmol/L,和(或)餐后2 h血糖在7.8~11.0 mmol/L,和(或)糖化血红蛋白A1c(GHbA1c)在5.7%~6.4%[3]。PCDR是指DM患者虽未检测到临床可见的DR,但视网膜神经以及血管结构和功能发生了退行性改变,视网膜功能受损,PCDR患者的5年DR发病率可高达46.89%[4]。这两阶段的患者均为罹患DR的高危人群,此期间部分患者已经悄然发生了视网膜神经损伤和临床不可见的微血管改变。及时发现临床未能检测的DR可以及时识别DR进展风险较大的患者以便尽早采取预防措施。因此,本文将重点描述DM前期和PCDR阶段视网膜的改变。

1 DR的发病机制

高血糖在DR诱发过程中起核心作用,高血糖微环境导致多种代谢途径异常,如多元醇通路激活、氨基己糖通路激活、末端糖基化产物生成增加、蛋白激酶C(protein kinase C,PKC)的活化等[5-7]。此外,越来越多的证据表明炎症机制在DR发生、发展过程中也起着重要作用[8]。以上异常诱发氧化应激,产生大量氧自由基,导致视网膜神经异常和视网膜内部毛细血管床损伤,致使DR发生。经典病理学认为,DR为DM的微血管并发症。血-视网膜屏障(blood-retinal barrier,BRB)破坏、血管退化和微血管血流动力学改变(神经血管耦合受损)是早期微血管异常的主要特征。最近的研究还发现,神经退行性病变是视网膜病变的一个重要早期改变,神经元凋亡和神经胶质功能障碍是神经变性的特征,两者参与了BRB破坏、血管退化和神经血管耦合受损,其中谷氨酸的积累和神经保护因子的缺失触发血管内皮生长因子(vascular endothelial growth factor, VEGF)的激活,在BRB的破坏中起关键作用[9]。DM中血管内皮祖细胞减少和功能障碍导致重塑能力受损,从而引起微血管病变和神经变性[9]

2 视网膜神经元的改变

高血糖会引起各种代谢异常,末端糖基化产物和氧化产物的产生会造成神经损伤。动物实验中,神经视网膜细胞在高血糖诱导1个月后就出现凋亡,视网膜内层变薄[10-11]。早在1986年,就有研究者通过电生理实验,提出DR是一种神经感觉障碍,视功能也出现了相关损害[12]。这表明早期的功能缺陷与视网膜神经元的改变有关。

2.1 视网膜神经元形态改变

2.1.1 视网膜厚度(retinal thickness,RT)
视网膜是一种由突触连接的几层神经元和视网膜色素上皮(retinal pigment epithelium, RPE)构成的组织。光学相关断层扫描(optical coherence tomography,OCT)可高精度测量人类RT,RT的改变可以反映神经组织细胞的丢失。一项队列研究发现,DM前期受试者即使没有明显血管或炎症变化,其黄斑部RT也已明显变薄,且在中心周边区域变化最大[12]。黄斑部RT变薄反映了DM早期神经退行性改变。同样,在无DR的1型和2型DM患者中,1型DM患者的黄斑部RT降低,这预示着视网膜受到影响,神经组织已经开始丢失;2型DM患者组RT变化不明显,这并不意味着RT没有变化,可能是被内核层和外核层的增厚所掩盖[13]。RT与DM病程相关,在DM最初几年里,由于神经组织损失,黄斑厚度减少,但随DM进展,视网膜血管通透性增加导致了视网膜内液渗漏,厚度反而会增加。
2.1.2 视网膜神经纤维层(retinal nerve fiber layer,RNFL)厚度
视网膜神经元凋亡,尤其是神经节细胞(retinal ganglion cells,RGC)的凋亡,是最早能检测到的与DR有关的重要生理改变[14]。由于RNFL主要是由RGC的轴突组成的,所以其厚度可反映RGC的存活状况。相较健康者而言,DM前期患者黄斑所有象限和鼻外象限的神经节细胞复合体厚度均明显降低[15]。另一项包括21例DM前期患者的研究也证实RNFL变薄[16]。同样在视网膜血管无变化或变化很小的DM患者中,RNFL和RGC层的厚度比健康者也明显减少[17-18],尤其是视盘上1/4象限和下1/4象限最为明显[19]。这些结果表明,视网膜神经性改变发生在DM早期阶段甚至DM前期,在血管损伤显现之前。对于DM前期以及PCDR患者,应密切关注RNFL厚度,上述结果提示早期使用神经保护剂可能对预防视网膜病变具有积极意义。

2.2 视网膜神经元功能改变

视网膜中对光敏感的神经元是感光细胞,其中视锥细胞提供白天视觉及颜色感知,而视杆细胞主要在昏暗环境下提供黑白视觉。视网膜其他神经元(神经节、双极、无长突细胞)处理来自视锥和视杆细胞的神经信号,输出以RGC的动作电位形式出现,其轴突形成视神经。当视网膜的供氧耗氧平衡被打破,就会使视网膜处于缺血性损伤的风险(这也是DR发生的重要原因)。尤其是RGC对急性、短暂性和轻度全身性低氧应激高度敏感,对DM发生的神经退行性过程也高度敏感。临床可以通过以下的辅助检查,发现视网膜神经元功能的改变。
2.2.1 色觉
色觉测试对DM引起的变化很敏感[20]。早期研究显示,有和没有DR的DM受试者均有色觉缺陷,色觉敏感度下降。低饱和度D-15测试证明DM前期就发生色觉改变,尤其是蓝色觉缺失,PCDR患者改变更为明显[21]。引起DM眼色觉丧失的原因有很多,其中包括神经视网膜代谢紊乱、缺氧和氧化应激,导致视锥细胞色觉功能受到影响。一项在供体视网膜中进行的研究也显示,视网膜内视锥细胞百分比明显降低[22]。色觉测试可将健康者与血糖异常的患者区分开来,有助于早期诊断DM眼病。
2.2.2 对比敏感度
临床未检测到DR前,对比敏感度也会受到影响。DM早期阶段高胰岛素血症和毒性炎症因子可能影响视网膜神经元的RGC层,导致对比敏感度功能降低,因此在DM前期及PCDR患者中均能发现对比敏感度的降低[20]。且对比敏感度损害并不一定与标准视力相关,因为它们可发生在视力正常的人群中。对比敏感度变化与DR的存在和严重程度呈正相关。
2.2.3 视野
视野缺损、敏感度降低是视觉功能受损的明显标志,可以在出现明显DR临床迹象之前就被检测到。使用微视野测量法测定DM患者视网膜敏感性发现,健康者、PCDR患者和非增殖性糖尿病视网膜病变(non-proliferative diabetic retinopathy,NPDR)患者视网膜敏感度依次降低,且与GHbA1c成反比。视野变化可用于检测DR的进展。其他研究也发现在未出现DR时即可有相应的视野缺损,且一般缺损部位先出现在20~30 °范围[23]。 Bradvica等[24]通过标准自动视野检查和倍频技术视野检查均发现DM患者出现明显的视野丧失。因此,视野测试可成为评估DR存在以及监测DR进展的有用工具。
2.2.4 闪光视网膜电图(flash electroretinogram,FERG)
FERG主要反映了RGC以前的视网膜细胞的状态,a波主要反映视网膜光感受器的变化,b波主要反映双极细胞和Müller细胞的电活动[25]。使用频率为30 Hz的设备记录的FERG表明,轻度或无DR的个体与健康者相比,FERG振幅和潜伏期有轻微的降低和延迟,FERG振幅平均降低约12%,潜伏期延迟约5%[26]。研究还发现,高频的FERG可提升识别早期DR的灵敏度。在38.5 Hz和50 Hz的频率下,无DR或仅有轻微NPDR的DM患者可看到明显的振幅下降[26]。高频振幅衰减表明视锥细胞受损,视锥细胞在DR的发生、发展中发挥重要作用。FERG可作为评估DM前期和DM患者视网膜功能的办法。
2.2.5 视网膜振荡电位(oscillatory potentials,OPs)
OPs是闪光视网膜电图的一部分,在b波的上升边缘上可以看到一系列被称为OPs的小波。OPs代表视网膜内部细胞主要是无分泌细胞的反馈相互作用,与缺血性视网膜疾病的关系更密切,其对视网膜循环障碍极其敏感。视网膜振荡电位的子波1、2主要反映视锥细胞系统功能,而视网膜振荡电位子波3、4主要反映视杆细胞系统功能[27]。以往研究中,DR患者OPs振幅明显降低,振幅的降低可能与视锥细胞受损有关[26]。在PCDR、BRB完整存在时,也可见OPs的振幅有较明显下降,特别是子波2,提示视锥细胞功能受损的可能性较大[28]。因此,DM可能影响了视锥细胞和其受体后功能,这也表明视网膜在出现血管病变之前就存在早期功能改变。
2.2.6 多焦视网膜电图(multifocal electroretinogram,mf-ERG)
mf-ERG是一种敏感、可靠的视网膜神经功能评价方法,其可观察到后极部视网膜不同区域的局部反应。在DM前期患者中即使 FAZ和RGC层没有发生改变,mf-ERG振幅就可发生降低[29]。欧洲糖尿病视网膜病变早期治疗联盟发现,近60%的PCDR患者mf-ERG振幅降低和(或)潜伏期延迟[30]。其他电生理研究也证实了这一观点,眼底没有或有很少微血管变化的DM患者mf-ERG也发生了类似改变[31-33]。潜伏期延迟和振幅的降低提示光感受器和一些视网膜内层的损伤,包括“开”的双极细胞和Müller细胞,这都表示视网膜功能障碍。mf-ERG潜伏时间延迟还与发生视网膜病变的风险增加有关,甚至可以预测相应视网膜位置未来发生视网膜病变的风险[34-35]。mf-ERG的改变表明神经功能障碍与DR血管异常之间存在直接联系,提示电生理的改变可以预测早期微血管异常的发展。

3 视网膜血管的改变

人的视网膜由双重血液供应,光感受器和外丛状层大部分间接从脉络膜获取氧气和营养物质,而视网膜内层则从视网膜中央动脉分支形成的浅部毛细血管丛(superficial capillary plexus,SCP)和深部毛细血管丛(deep capillary plexus,DCP)获取营养物质。双循环的存在使视网膜氧合具有独特性,视网膜供氧和耗氧间的微妙平衡使视网膜存在特别的缺血性损伤风险,而缺血是DR等许多视网膜疾病的主要原因。相比较而言,外层视网膜有由睫状后短动脉形成的丰富的脉络膜毛细血管供氧,而供应内层视网膜的SCP和DCP为视网膜中央动脉终末动脉,对低氧极其敏感,更易发生相应的早期改变[36]

3.1 视网膜微血管改变

3.1.1 SCP、DCP和黄斑中央凹无血管区(foveal avascular zone,FAZ)
光学相关断层扫描血管成像(optical coherence tomography angiography,OCTA)作为一种新型的无创血管造影技术,它可以轻松显示血管密度(vascular density,VD)、视网膜血流中的血管异常以及FAZ的形状,可用于比较未检测到临床视网膜病变患者的微血管变化[37]。近年研究表明,DR早期SCP和DCP微血管发生变化[38-40],脉络膜毛细血管也出现损伤[41]。在Arias JD等[40]的研究中,DM前期组较健康对照组SCP和DCP的平均灌注密度(perfusion density,PD)和VD明显降低。这些参数恶化可能是由于小分支血管中周细胞减少导致视网膜血管系统分支复杂性降低的结果。Park等[42]研究证明,PCDR组较健康对照组中央凹SCP和DCP层VD明显降低,旁中心凹区域仅DCP层的上部和下部的VD明显降低,SCP的VD没有明显变化。DCP是通过垂直吻合支排入浅静脉,而SCP是由横向毛细血管组织而成,横向毛细血管直接连接到具有较高灌注压力的视网膜小动脉,由于解剖学差异,DCP可能比SCP更容易发生缺血。DCP较早的改变可能反映视网膜小静脉增宽、毛细血管末端损伤和微动脉瘤。它还可能破坏BRB和影响DR的进展。
以往研究表明D M患者SCP层的FAZ面积扩大[43],且DR的严重程度与FAZ面积的扩大高度相关[44]。Park等[42]的研究也发现PCDR组SCP和DCP的FAZ面积比健康对照组明显扩大。然而在DM前期组中,FAZ面积和非圆度指数(acircularity index,AI)没有太大差异。DM前期患者保留FAZ形态与PD和VD降低表明视网膜脉管系统响应高血糖的初始变化可能发生在中心凹外区域[40]。FAZ的扩张是毛细血管无灌注的结果,是DM微血管变化的指标。因此,SCP和DCP的PD、VD以及FAZ的改变是识别早期DR的重要标志,是糖尿病视网膜血管系统损伤的早期迹象。

3.2 视网膜小血管改变

3.2.1 视网膜血管管径
澳大利亚糖尿病、肥胖和生活方式(AusDiab)研究的5年随访结果显示,在DM前期和PCDR组中,视网膜小动脉管径较宽的个体更容易发生视网膜病变[45]。这说明视网膜小动脉扩张在DM患者发生视网膜病变的发病机制中起重要作用。实验研究表明,血流量增加和相关小动脉扩张在DM患者视网膜中很常见,这反映了小动脉潜在的自动调节功能障碍,可能是由于高血糖介导的内皮素-1抵抗和平滑肌细胞中钙流入通道的抑制。这些过程损害视网膜小动脉收缩,也可通过视网膜毛细血管非灌注引起氧分压降低来增强视网膜小动脉扩张反应[46]。相反,视网膜小静脉扩张可能代表DR的后期迹象。有研究证明,DM患者DR的严重程度增加与视网膜小静脉管径的扩大有关[47-48]。视网膜小动脉扩张可能是早期DR的临床前标志物,管径随时间变化的趋势似乎是血管损伤更敏感的指标。
3.2.2 视网膜血管反应
血管自动调节功能在DR早期阶段就可能受损。马斯特里赫特的一项队列研究[49],通过闪烁光诱导视网膜小动脉扩张,评估了微血管功能。与健康对照组相比,DM前期和DM患者视网膜小动脉平均扩张百分比均较低,即使基线血管管径比较差异无统计学意义,但闪烁光刺激的血管舒张作用是消退的。正常生理情况下,神经血管耦合使视网膜能够根据神经活动或代谢需求调节血流,闪烁光刺激增强了神经活动,导致视网膜动脉和静脉扩张。闪烁光诱导的视网膜小动脉扩张依赖于神经细胞和内皮细胞释放的一氧化氮(NO)。NO抑制了神经胶质细胞合成血管舒张剂的合成,血管舒张作用减弱。闪光诱导的视网膜小动脉扩张损害反映了微血管内皮功能障碍,可能与神经元功能障碍有关[50-53]。此外,Sousa等[54]用OCTA检测到视网膜血管舒张反应和血管收缩反应。OCTA 是一种可在临床检测到DR之前观察到视网膜血管变化的方法。

4 视网膜炎症

慢性炎症对DR发展(特别是在早期阶段)至关重要。慢性炎症会诱导视网膜的结构和分子改变,导致组织损伤和细胞死亡[55]。高糖微环境导致炎症分子表达增加,在D R的发病机制中起重要作用。其中,胶质细胞和小胶质细胞的激活是DR炎症的最初迹象之一。Müller神经胶质细胞(müller glial cells,MGC)是视网膜的主要神经胶质细胞,对代谢改变高度敏感。DM相关的代谢改变,使MGC上调胶质纤维酸性蛋白(glial fibrillary acidic protein, GFAP),在动物模型以及无DR至轻度NPDR的DM患者组织中都可观察到[56]。有研究者报道,PCDR患者房水中GFAP水平升高[57]。由于MGC是包括炎症调节剂在内许多因素的重要来源,表明视网膜神经胶质细胞活化可能在导致疾病后期视网膜损伤的炎症过程的开始中发挥早期作用。同样无DR的患者血清中细胞间黏附分子-1(intercellular adhesion molecule-1,ICAM-1)和房水中单核细胞趋化因子-2(monocyte chemotactic protein-2,MCP-2)水平也有所升高,这些分子也由 MGC 产生并参与白细胞停滞,这也验证了上一说法。此外,视网膜中的小胶质细胞也被激活,分泌多种炎症因子,加剧神经胶质细胞和血管功能障碍。在无DR的DM患者房水中白介素-1α(interleukin-1α,IL-1α ),干扰素-γ(interferon-γ,IFN-γ)升高,玻璃体中白介素-3(interleukin-3, IL-3)升高[56]。抑制或清除促炎分子可阻止DR的发展,如非甾体抗炎药(NSAID)、抗VEGF药物和抗TNF-α药物可通过其抗炎特性减缓DR进展。因此,血清、房水、玻璃体中相关炎症因子的改变可作为临床检测到DR之前的观察指标。

5 展望

目前研究表明,即使没有明显的视网膜病变临床症状,视网膜病变的早期体征也会进展。疾病的早期诊断是预防和延缓视力丧失和降低相关成本的最佳手段。在DM前期和PCDR阶段,OCT观察到RT和RNFL厚度不同程度变薄,视功能检查中色觉、对比敏感度降低、视野出现缺损,视觉电生理发现FERG、OPs、mf-ERG振幅降低和(或)潜伏期延迟,OCTA观察到SCP和DCP的PD、VD降低、FAZ面积扩大、视网膜小动脉扩张以及闪烁光刺激的血管舒张作用减退。此外,炎症因子GFAP、ICAM-1、MCP-2、IL-1α、IFN-γ及IL-3水平的升高也可以预测和评估DR。尽管早期检测DR的方法很多,但缺乏金标准,研究尚不成熟。因此,我们需要更多的基础研究以了解神经血管损伤的发病机制,以及更多的纵向实验验证,为更早期的DR提供新的和更有效的检测方法和预防策略。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/
1、Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition[ J]. Diabetes Res Clin Pract, 2019, 157: 107843.Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition[ J]. Diabetes Res Clin Pract, 2019, 157: 107843.
2、Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[ J]. Lancet Diabetes Endocrinol, 2020, 8(4): 337-347. Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[ J]. Lancet Diabetes Endocrinol, 2020, 8(4): 337-347.
3、American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021[ J]. Diabetes Care, 2021, 44(Suppl 1): S15-S33.American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021[ J]. Diabetes Care, 2021, 44(Suppl 1): S15-S33.
4、金佩瑶, 彭金娟, 邹海东, 等. 上海市新泾社区2型糖尿病居民5 年随访的前瞻性调查研究1.糖尿病视网膜病变和糖尿病黄斑 水肿的发病率及危险因素[ J]. 中华实验眼科杂志, 2016, 34(4): 363-367.
JIN Peiyao, PENG Jinjuan, ZOU Haidong, et al. Prospective study on 5-year follow-up of residents with type 2 diabetes in Xinjing Community, Shanghai 1. incidence rate and risk factors of diabetes retinopathy and diabetes macular edema [ J]. Chin J Exp Ophthalmol, 2016, 34 (4): 363-367.
金佩瑶, 彭金娟, 邹海东, 等. 上海市新泾社区2型糖尿病居民5 年随访的前瞻性调查研究1.糖尿病视网膜病变和糖尿病黄斑 水肿的发病率及危险因素[ J]. 中华实验眼科杂志, 2016, 34(4): 363-367.
JIN Peiyao, PENG Jinjuan, ZOU Haidong, et al. Prospective study on 5-year follow-up of residents with type 2 diabetes in Xinjing Community, Shanghai 1. incidence rate and risk factors of diabetes retinopathy and diabetes macular edema [ J]. Chin J Exp Ophthalmol, 2016, 34 (4): 363-367.
5、Brownlee M. Biochemistry and molecular cell biology of diabetic complications[ J]. Nature, 2001, 414(6865): 813-820.Brownlee M. Biochemistry and molecular cell biology of diabetic complications[ J]. Nature, 2001, 414(6865): 813-820.
6、Tarr JM, Kaul K , Chopra M, et al. Pathophysiology of diabetic retinopathy[ J]. ISRN Ophthalmol, 2013, 2013: 343560.Tarr JM, Kaul K , Chopra M, et al. Pathophysiology of diabetic retinopathy[ J]. ISRN Ophthalmol, 2013, 2013: 343560.
7、Ola MS, Nawaz MI, Siddiquei MM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[ J]. J Diabetes Complications, 2012, 26(1): 56-64.Ola MS, Nawaz MI, Siddiquei MM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[ J]. J Diabetes Complications, 2012, 26(1): 56-64.
8、Kastelan S, Oreskovic I, Biscan F, et al. Inflammatory and angiogenic biomarkers in diabetic retinopathy[ J]. Biochem Med (Zagreb), 2020, 30(3): 030502.Kastelan S, Oreskovic I, Biscan F, et al. Inflammatory and angiogenic biomarkers in diabetic retinopathy[ J]. Biochem Med (Zagreb), 2020, 30(3): 030502.
9、Simo R, Hernandez C, European Consortium for the Early Treatment of Diabetic R. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives[ J]. Trends Endocrinol Metab, 2014, 25(1): 23-33.Simo R, Hernandez C, European Consortium for the Early Treatment of Diabetic R. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives[ J]. Trends Endocrinol Metab, 2014, 25(1): 23-33.
10、Martin PM, Roon P, Van Ells TK, et al. Death of retinal neurons in streptozotocin-induced diabetic mice[ J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3330-3336.Martin PM, Roon P, Van Ells TK, et al. Death of retinal neurons in streptozotocin-induced diabetic mice[ J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3330-3336.
11、Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes[ J]. Invest Ophthalmol Vis Sci, 2005, 46(6): 2210-2218.Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes[ J]. Invest Ophthalmol Vis Sci, 2005, 46(6): 2210-2218.
12、Huru J, Leiviska I, Saarela V, et al. Prediabetes influences the structure of the macula: thinning of the macula in the Northern Finland Birth Cohort[ J]. Br J Ophthalmol, 2021 105(12): 1731-1737. Huru J, Leiviska I, Saarela V, et al. Prediabetes influences the structure of the macula: thinning of the macula in the Northern Finland Birth Cohort[ J]. Br J Ophthalmol, 2021 105(12): 1731-1737.
13、Chen Y, Li J, Yan Y, et al. Diabetic macular morphology changes may occur in the early stage of diabetes[ J]. BMC Ophthalmol, 2016, 16: 12.Chen Y, Li J, Yan Y, et al. Diabetic macular morphology changes may occur in the early stage of diabetes[ J]. BMC Ophthalmol, 2016, 16: 12.
14、Lecleire-Collet A, Tessier LH, Massin P, et al. Advanced glycation end products can induce glial reaction and neuronal degeneration in retinal explants[ J]. Br J Ophthalmol, 2005, 89(12): 1631-1633.Lecleire-Collet A, Tessier LH, Massin P, et al. Advanced glycation end products can induce glial reaction and neuronal degeneration in retinal explants[ J]. Br J Ophthalmol, 2005, 89(12): 1631-1633.
15、Sahin M, Sahin A, Kilinc F, et al. Early detection of macular and peripapillary changes with spectralis optical coherence tomography in patients with prediabetes[ J]. Arch Physiol Biochem, 2018, 124(1): 75- 79.Sahin M, Sahin A, Kilinc F, et al. Early detection of macular and peripapillary changes with spectralis optical coherence tomography in patients with prediabetes[ J]. Arch Physiol Biochem, 2018, 124(1): 75- 79.
16、De Clerck EEB, Schouten J, Berendschot T, et al. Macular thinning in prediabetes or type 2 diabetes without diabetic retinopathy: the Maastricht Study[ J]. Acta Ophthalmol, 2018, 96(2): 174-182.De Clerck EEB, Schouten J, Berendschot T, et al. Macular thinning in prediabetes or type 2 diabetes without diabetic retinopathy: the Maastricht Study[ J]. Acta Ophthalmol, 2018, 96(2): 174-182.
17、Gundogan FC, Akay F, Uzun S, et al. Early Neurodegeneration of the Inner Retinal Layers in Type 1 Diabetes Mellitus[ J]. Ophthalmologica, 2016, 235(3): 125-132.Gundogan FC, Akay F, Uzun S, et al. Early Neurodegeneration of the Inner Retinal Layers in Type 1 Diabetes Mellitus[ J]. Ophthalmologica, 2016, 235(3): 125-132.
18、Carpineto P, Toto L, Aloia R, et al. Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus[ J]. Eye (Lond), 2016, 30(5): 673-679.Carpineto P, Toto L, Aloia R, et al. Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus[ J]. Eye (Lond), 2016, 30(5): 673-679.
19、冀向宁, 刘玉青, 韩风梅, 等. OCT与FFA在糖尿病视网膜病变临 床前期的应用比较[ J]. 眼科新进展, 2014, 34(7): 662-664.
JI Xiangning, LIU Yuqing, HAN Fengmei, et al. Comparison of OCT and FFA in preclinical application of diabetes retinopathy[ J]. New Adv Ophthalmol, 2014, 34 (7): 662-664.
冀向宁, 刘玉青, 韩风梅, 等. OCT与FFA在糖尿病视网膜病变临 床前期的应用比较[ J]. 眼科新进展, 2014, 34(7): 662-664.
JI Xiangning, LIU Yuqing, HAN Fengmei, et al. Comparison of OCT and FFA in preclinical application of diabetes retinopathy[ J]. New Adv Ophthalmol, 2014, 34 (7): 662-664.
20、Neriyanuri S, Pardhan S, Gella L, et al. Retinal sensitivity changes associated with diabetic neuropathy in the absence of diabetic retinopathy[ J]. Br J Ophthalmol, 2017, 101(9): 1174-1178.Neriyanuri S, Pardhan S, Gella L, et al. Retinal sensitivity changes associated with diabetic neuropathy in the absence of diabetic retinopathy[ J]. Br J Ophthalmol, 2017, 101(9): 1174-1178.
21、Karson N, Smith J, Jones M, et al. Functional retinal outcomes in patients with prediabetes and type 2 diabetes[ J]. Ophthalmic Physiol Opt, 2020, 40(6): 770-777.Karson N, Smith J, Jones M, et al. Functional retinal outcomes in patients with prediabetes and type 2 diabetes[ J]. Ophthalmic Physiol Opt, 2020, 40(6): 770-777.
22、Cho NC, Poulsen GL, Ver Hoeve JN, et al. Selective loss of S-cones in diabetic retinopathy[ J]. Arch Ophthalmol, 2000, 118(10): 1393-1400Cho NC, Poulsen GL, Ver Hoeve JN, et al. Selective loss of S-cones in diabetic retinopathy[ J]. Arch Ophthalmol, 2000, 118(10): 1393-1400
23、杨芸芸. 糖尿病视网膜病变早期视功能检测研究进展[ J]. 中国中医眼科杂志, 2016, 26(1): 55-57.
YANG Yunyun. Research progress on early detection of visual function in diabetes retinopathy[ J]. Chin J Trad Chin Med Ophthalmol, 2016, 26(1): 55-57.
杨芸芸. 糖尿病视网膜病变早期视功能检测研究进展[ J]. 中国中医眼科杂志, 2016, 26(1): 55-57.
YANG Yunyun. Research progress on early detection of visual function in diabetes retinopathy[ J]. Chin J Trad Chin Med Ophthalmol, 2016, 26(1): 55-57.
24、Bradvica M, Biuk D, Stenc Bradvica I, et al. The Role of Frequency Doubling Technology Perimetry in Early Detection of Diabetic Retinopathy[ J]. Acta Clin Croat, 2020, 59(1): 10-8.Bradvica M, Biuk D, Stenc Bradvica I, et al. The Role of Frequency Doubling Technology Perimetry in Early Detection of Diabetic Retinopathy[ J]. Acta Clin Croat, 2020, 59(1): 10-8.
25、Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy[ J]. Surv Ophthalmol, 1999, 44(1): 53-60.Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy[ J]. Surv Ophthalmol, 1999, 44(1): 53-60.
26、McAnany JJ, Persidina OS, Park JC. Clinical electroretinography in diabetic retinopathy: a review[ J]. Surv Ophthalmol, 2022, 67(3): 712- 722.McAnany JJ, Persidina OS, Park JC. Clinical electroretinography in diabetic retinopathy: a review[ J]. Surv Ophthalmol, 2022, 67(3): 712- 722.
27、Hancock HA, Kraft TW. Oscillatory potential analysis and ERGs of normal and diabetic rats[ J]. Invest Ophthalmol Vis Sci, 2004, 45(3): 1002-1008.Hancock HA, Kraft TW. Oscillatory potential analysis and ERGs of normal and diabetic rats[ J]. Invest Ophthalmol Vis Sci, 2004, 45(3): 1002-1008.
28、李坤, 龚向宁, 郎卫华. 糖尿病视网膜病变临床前期的视功能变化分析[ J]. 国际眼科杂志, 2015, 15(6): 1094-1096.
LI Kun, GONG Xiangning, L ANG Weihua. Analysis of visual function changes in preclinical stage of diabetes retinopathy [ J]. Int J Ophthalmol, 2015, 15 (6): 1094-1096.
李坤, 龚向宁, 郎卫华. 糖尿病视网膜病变临床前期的视功能变化分析[ J]. 国际眼科杂志, 2015, 15(6): 1094-1096.
LI Kun, GONG Xiangning, L ANG Weihua. Analysis of visual function changes in preclinical stage of diabetes retinopathy [ J]. Int J Ophthalmol, 2015, 15 (6): 1094-1096.
29、Ratra D, Nagarajan R, Dalan D, et al. Early structural and functional neurovascular changes in the retina in the prediabetic stage[ J]. Eye (Lond), 2021, 35(3): 858-867.Ratra D, Nagarajan R, Dalan D, et al. Early structural and functional neurovascular changes in the retina in the prediabetic stage[ J]. Eye (Lond), 2021, 35(3): 858-867.
30、Santos AR, Ribeiro L, Bandello F, et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: Cross-sectional analyses of baseline data of the EUROCONDOR project[ J]. Diabetes, 2017, 66(9): 2503-2510.Santos AR, Ribeiro L, Bandello F, et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: Cross-sectional analyses of baseline data of the EUROCONDOR project[ J]. Diabetes, 2017, 66(9): 2503-2510.
31、Fal sini B, Porc iatt i V, Scalia G, et al . Steady- state patter n electroretinogram in insulin-dependent diabetics with no or minimal retinopathy[ J]. Doc Ophthalmol, 1989, 73(2): 193-200.Fal sini B, Porc iatt i V, Scalia G, et al . Steady- state patter n electroretinogram in insulin-dependent diabetics with no or minimal retinopathy[ J]. Doc Ophthalmol, 1989, 73(2): 193-200.
32、Srinivasan S, Sivaprasad S, Rajalakshmi R, et al. Assessment of optical coherence tomography angiography and multifocal electroretinography in eyes with and without nonproliferative diabetic retinopathy[ J]. Indian J Ophthalmol, 2021, 69(11): 3235-3240.Srinivasan S, Sivaprasad S, Rajalakshmi R, et al. Assessment of optical coherence tomography angiography and multifocal electroretinography in eyes with and without nonproliferative diabetic retinopathy[ J]. Indian J Ophthalmol, 2021, 69(11): 3235-3240.
33、Huang J, Li Y, Chen Y, et al. Multifocal electroretinogram can detect the abnormal retinal change in early stage of type2 DM patients without apparent diabetic retinopathy[ J]. J Diabetes Res, 2021, 2021: 6644691.Huang J, Li Y, Chen Y, et al. Multifocal electroretinogram can detect the abnormal retinal change in early stage of type2 DM patients without apparent diabetic retinopathy[ J]. J Diabetes Res, 2021, 2021: 6644691.
34、Harrison WW,Bearse MA,Jr.,Ng JS,et al.Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes[ J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 772- 777.Harrison WW,Bearse MA,Jr.,Ng JS,et al.Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes[ J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 772- 777.
35、Ng JS, Bearse MA, Jr., Schneck ME, et al. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years[ J]. Invest Ophthalmol Vis Sci, 2008, 49(4): 1622-1628.Ng JS, Bearse MA, Jr., Schneck ME, et al. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years[ J]. Invest Ophthalmol Vis Sci, 2008, 49(4): 1622-1628.
36、Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy[ J]. Vision Res, 2017, 139: 7-14.Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy[ J]. Vision Res, 2017, 139: 7-14.
37、Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[ J]. Prog Retin Eye Res, 2017, 60: 66-100.Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[ J]. Prog Retin Eye Res, 2017, 60: 66-100.
38、Sousa DC, Leal I, Moreira S, et al. Optical coherence tomography angiography study of the retinal vascular plexuses in type 1 diabetes without retinopathy[ J]. Eye (Lond), 2020, 34(2): 307-311.Sousa DC, Leal I, Moreira S, et al. Optical coherence tomography angiography study of the retinal vascular plexuses in type 1 diabetes without retinopathy[ J]. Eye (Lond), 2020, 34(2): 307-311.
39、Yasin Alibhai A , Moult EM, Shahzad R , et al. Quantif y ing Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy[ J]. Ophthalmol Retina, 2018, 2(5): 418-427.Yasin Alibhai A , Moult EM, Shahzad R , et al. Quantif y ing Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy[ J]. Ophthalmol Retina, 2018, 2(5): 418-427.
40、Arias JD, Arango FJ, Parra MM, et al. Early microvascular changes in patients w ith prediabetes evaluated by optical coherence tomography angiography[ J]. Ther Adv Ophthalmol, 2021, 13: 25158414211047020.Arias JD, Arango FJ, Parra MM, et al. Early microvascular changes in patients w ith prediabetes evaluated by optical coherence tomography angiography[ J]. Ther Adv Ophthalmol, 2021, 13: 25158414211047020.
41、Cao D, Yang D, Huang Z, et al. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy[ J]. Acta Diabetol, 2018, 55(5): 469-477.Cao D, Yang D, Huang Z, et al. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy[ J]. Acta Diabetol, 2018, 55(5): 469-477.
42、Park YG, Kim M, Roh YJ. Evaluation of foveal and parafoveal microvascular changes using optical coherence tomography angiography in type 2 diabetes patients without clinical diabetic retinopathy in South Korea[ J]. J Diabetes Res, 2020, 2020: 6210865.Park YG, Kim M, Roh YJ. Evaluation of foveal and parafoveal microvascular changes using optical coherence tomography angiography in type 2 diabetes patients without clinical diabetic retinopathy in South Korea[ J]. J Diabetes Res, 2020, 2020: 6210865.
43、de Carlo TE, Chin AT, Bonini Filho MA , et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[ J]. Retina, 2015, 35(11): 2364-2370.de Carlo TE, Chin AT, Bonini Filho MA , et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[ J]. Retina, 2015, 35(11): 2364-2370.
44、Tang FY, Ng DS, Lam A, et al. Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes[ J]. Sci Rep, 2017, 7(1): 2575.Tang FY, Ng DS, Lam A, et al. Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes[ J]. Sci Rep, 2017, 7(1): 2575.
45、Rogers SL, Tikellis G, Cheung N, et al. Retinal arteriolar caliber predicts incident retinopathy: the Australian Diabetes, Obesity and Lifestyle (AusDiab) study[ J]. Diabetes Care, 2008, 31(4): 761-763.Rogers SL, Tikellis G, Cheung N, et al. Retinal arteriolar caliber predicts incident retinopathy: the Australian Diabetes, Obesity and Lifestyle (AusDiab) study[ J]. Diabetes Care, 2008, 31(4): 761-763.
46、Gardiner TA, Archer DB, Curtis TM, et al. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis[ J]. Microcirculation, 2007, 14(1): 25-38.Gardiner TA, Archer DB, Curtis TM, et al. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis[ J]. Microcirculation, 2007, 14(1): 25-38.
47、Tsai AS, Wong TY, Lavanya R, et al. Differential association of retinal arteriolar and venular caliber with diabetes and retinopathy[ J]. Diabetes Res Clin Pract, 2011, 94(2): 291-298.Tsai AS, Wong TY, Lavanya R, et al. Differential association of retinal arteriolar and venular caliber with diabetes and retinopathy[ J]. Diabetes Res Clin Pract, 2011, 94(2): 291-298.
48、Islam FM, Nguyen TT, Wang JJ, et al. Quantitative retinal vascular calibre changes in diabetes and retinopathy: the Singapore Malay eye study[ J]. Eye (Lond), 2009, 23(8): 1719-1724.Islam FM, Nguyen TT, Wang JJ, et al. Quantitative retinal vascular calibre changes in diabetes and retinopathy: the Singapore Malay eye study[ J]. Eye (Lond), 2009, 23(8): 1719-1724.
49、Sorensen BM, Houben AJ, Berendschot TT, et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction: the maastricht study[ J]. Circulation, 2016, 134(18): 1339-1352.Sorensen BM, Houben AJ, Berendschot TT, et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction: the maastricht study[ J]. Circulation, 2016, 134(18): 1339-1352.
50、Nagel E, Vilser W. Flicker obser vation light induces diameter response in retinal arterioles: a clinical methodological study[ J]. Br J Ophthalmol, 2004, 88(1): 54-56.Nagel E, Vilser W. Flicker obser vation light induces diameter response in retinal arterioles: a clinical methodological study[ J]. Br J Ophthalmol, 2004, 88(1): 54-56.
51、Lim M, Sasongko MB, Ikram MK, et al. Systemic associations of dynamic retinal vessel analysis: a review of current literature[ J]. Microcirculation, 2013, 20(3): 257-268.Lim M, Sasongko MB, Ikram MK, et al. Systemic associations of dynamic retinal vessel analysis: a review of current literature[ J]. Microcirculation, 2013, 20(3): 257-268.
52、Dorner GT, Garhofer G, Kiss B, et al. Nitric oxide regulates retinal vascular tone in humans[ J]. Am J Physiol Heart Circ Physiol, 2003, 285(2): H631-H636.Dorner GT, Garhofer G, Kiss B, et al. Nitric oxide regulates retinal vascular tone in humans[ J]. Am J Physiol Heart Circ Physiol, 2003, 285(2): H631-H636.
53、Warner RL, de Castro A, Sawides L, et al. Full-field flicker evoked changes in parafoveal retinal blood flow[ J]. Sci Rep, 2020, 10(1): 16051.Warner RL, de Castro A, Sawides L, et al. Full-field flicker evoked changes in parafoveal retinal blood flow[ J]. Sci Rep, 2020, 10(1): 16051.
54、Sousa DC, Leal I, Moreira S, et al. A protocol to evaluate retinal vascular response using optical coherence tomography angiography[ J]. Front Neurosci, 2019, 13: 566.Sousa DC, Leal I, Moreira S, et al. A protocol to evaluate retinal vascular response using optical coherence tomography angiography[ J]. Front Neurosci, 2019, 13: 566.
55、Shafabakhsh R, Aghadavod E, Mobini M, et al. Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy[ J]. J Cell Physiol, 2019, 234(6): 7781- 7787.Shafabakhsh R, Aghadavod E, Mobini M, et al. Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy[ J]. J Cell Physiol, 2019, 234(6): 7781- 7787.
56、Rubsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[ J]. Int J Mol Sci, 2018;19(4):942.Rubsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[ J]. Int J Mol Sci, 2018;19(4):942.
57、Vujosevic S, Micera A, Bini S, et al. Aqueous humor biomarkers of Müller cell activation in diabetic eyess[ J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3913-3918.Vujosevic S, Micera A, Bini S, et al. Aqueous humor biomarkers of Müller cell activation in diabetic eyess[ J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3913-3918.
1、罗瑾,黄文勇,黎宇婷等.威胁视力的2型糖尿病视网膜病变风险预测模型的建立与验证[J].中山大学学报(医学科学版),2023,44(6):999-1007.
1、江苏省卫生健康委员会医学科研项目(M2021084)。
This work was supported by the Jiangsu Provinical Health Commission Project(M2021084)()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录