1、Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and
projections of glaucoma burden through 2040: a systematic review and
meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090.Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and
projections of glaucoma burden through 2040: a systematic review and
meta-analysis[ J]. Ophthalmology, 2014, 121(11): 2081-2090.
2、Quigley HA, Broman AT. The number of people with glaucoma
worldwide in 2010 and 2020[ J]. Br J Ophthalmol, 2006, 90(3): 262-
267.Quigley HA, Broman AT. The number of people with glaucoma
worldwide in 2010 and 2020[ J]. Br J Ophthalmol, 2006, 90(3): 262-
267.
3、Alasil T, Wang K, Yu F, et al. Correlation of retinal nerve fiber layer
thickness and visual fields in glaucoma: a broken stick model[ J]. Am J
Ophthalmol, 2014, 157(5): 953-959.Alasil T, Wang K, Yu F, et al. Correlation of retinal nerve fiber layer
thickness and visual fields in glaucoma: a broken stick model[ J]. Am J
Ophthalmol, 2014, 157(5): 953-959.
4、Huang D,Swanson EA,Lin CP,et al.Optical coherence
tomography[ J]. Science, 1991, 254(5035): 1178-1181.Huang D,Swanson EA,Lin CP,et al.Optical coherence
tomography[ J]. Science, 1991, 254(5035): 1178-1181.
5、Adhi M, Duker JS. Optical coherence tomography: current and future
applications[ J]. Curr Opin Ophthalmol, 2013, 24(3): 213-221.Adhi M, Duker JS. Optical coherence tomography: current and future
applications[ J]. Curr Opin Ophthalmol, 2013, 24(3): 213-221.
6、Budenz DL, Michael A, Chang RT, et al. Sensitivity and specificity of
the StratusOCT for perimetric glaucoma[ J]. Ophthalmology, 2005,
112(1): 3-9.Budenz DL, Michael A, Chang RT, et al. Sensitivity and specificity of
the StratusOCT for perimetric glaucoma[ J]. Ophthalmology, 2005,
112(1): 3-9.
7、Reis AS, Sharpe GP, Yang H, et al. Optic disc margin anatomy in
patients with glaucoma and normal controls with spectral domain
optical coherence tomography[ J]. Ophthalmology, 2012, 119(4): 738-
747.Reis AS, Sharpe GP, Yang H, et al. Optic disc margin anatomy in
patients with glaucoma and normal controls with spectral domain
optical coherence tomography[ J]. Ophthalmology, 2012, 119(4): 738-
747.
8、Chauhan BC, O'Leary N, AlMobarak FA, et al. Enhanced detection of
open-angle glaucoma with an anatomically accurate optical coherence
tomography-derived neuroretinal rim parameter[ J]. Ophthalmology,
2013, 120(3): 535-543.Chauhan BC, O'Leary N, AlMobarak FA, et al. Enhanced detection of
open-angle glaucoma with an anatomically accurate optical coherence
tomography-derived neuroretinal rim parameter[ J]. Ophthalmology,
2013, 120(3): 535-543.
9、Reis AS, O'Leary N, Yang H, et al. Influence of clinically invisible, but
optical coherence tomography detected, optic disc margin anatomy
on neuroretinal rim evaluation[ J]. Invest Ophthalmol Vis Sci, 2012,
53(4): 1852-1860.Reis AS, O'Leary N, Yang H, et al. Influence of clinically invisible, but
optical coherence tomography detected, optic disc margin anatomy
on neuroretinal rim evaluation[ J]. Invest Ophthalmol Vis Sci, 2012,
53(4): 1852-1860.
10、Chen TC. Spectral domain optical coherence tomography in glaucoma:
qualitative and quantitative analysis of the optic nerve head and retinal
nerve fiber layer (an AOS thesis)[ J]. Trans Am Ophthalmol Soc, 2009,
107: 254-281.Chen TC. Spectral domain optical coherence tomography in glaucoma:
qualitative and quantitative analysis of the optic nerve head and retinal
nerve fiber layer (an AOS thesis)[ J]. Trans Am Ophthalmol Soc, 2009,
107: 254-281.
11、Young KS, Park Hae-Young L, Kee PC. The effects of peripapillary
atrophy on the diagnostic ability of Stratus and Cirrus OCT in the
analysis of optic nerve head parameters and disc size[ J]. Investig Ophthalmol Vis Sci, 2012, 53(8): 4475-84.Young KS, Park Hae-Young L, Kee PC. The effects of peripapillary
atrophy on the diagnostic ability of Stratus and Cirrus OCT in the
analysis of optic nerve head parameters and disc size[ J]. Investig Ophthalmol Vis Sci, 2012, 53(8): 4475-84.
12、van der Schoot J, Vermeer KA, de Boer JF, et al. The effect of glaucoma
on the optical attenuation coefficient of the retinal nerve fiber layer
in spectral domain optical coherence tomography images[ J]. Invest
Ophthalmol Vis Sci, 2012, 53(4): 2424-2430.van der Schoot J, Vermeer KA, de Boer JF, et al. The effect of glaucoma
on the optical attenuation coefficient of the retinal nerve fiber layer
in spectral domain optical coherence tomography images[ J]. Invest
Ophthalmol Vis Sci, 2012, 53(4): 2424-2430.
13、Fan KC, Tsikata E, Khoueir Z, et al. Enhanced diagnostic capability
for glaucoma of 3-dimensional versus 2-dimensional neuroretinal rim
parameters using spectral domain optical coherence tomography[ J]. J
Glaucoma, 2017, 26(5): 450-458.Fan KC, Tsikata E, Khoueir Z, et al. Enhanced diagnostic capability
for glaucoma of 3-dimensional versus 2-dimensional neuroretinal rim
parameters using spectral domain optical coherence tomography[ J]. J
Glaucoma, 2017, 26(5): 450-458.
14、Li R , Wang X , Wei Y, et al. Diagnostic capability of different
morphological parameters for primary open-angle glaucoma in the
Chinese population[ J]. BMC Ophthalmol, 2021, 21(1):151Li R , Wang X , Wei Y, et al. Diagnostic capability of different
morphological parameters for primary open-angle glaucoma in the
Chinese population[ J]. BMC Ophthalmol, 2021, 21(1):151
15、Gmeiner JM, Schrems WA, Mardin CY, et al. Comparison of bruch's
membrane opening minimum rim width and peripapillary retinal
nerve fiber layer thickness in early glaucoma assessment[ J]. Invest
Ophthalmol Vis Sci, 2016, 57(9): OCT575-OCT584.Gmeiner JM, Schrems WA, Mardin CY, et al. Comparison of bruch's
membrane opening minimum rim width and peripapillary retinal
nerve fiber layer thickness in early glaucoma assessment[ J]. Invest
Ophthalmol Vis Sci, 2016, 57(9): OCT575-OCT584.
16、Wu Z, Vianna JR, Reis ASC, et al. Qualitative evaluation of neuroretinal
rim and retinal nerve fibre layer on optical coherence tomography to
detect glaucomatous damage[ J]. Br J Ophthalmol, 2020, 104(7): 980-
984.Wu Z, Vianna JR, Reis ASC, et al. Qualitative evaluation of neuroretinal
rim and retinal nerve fibre layer on optical coherence tomography to
detect glaucomatous damage[ J]. Br J Ophthalmol, 2020, 104(7): 980-
984.
17、Bambo MP, Fuentemilla E, Cameo B, et al. Diagnostic capability
of a linear discriminant function applied to a novel Spectralis OCT
glaucoma-detection protocol[ J]. BMC Ophthalmol, 2020, 20(1): 35.Bambo MP, Fuentemilla E, Cameo B, et al. Diagnostic capability
of a linear discriminant function applied to a novel Spectralis OCT
glaucoma-detection protocol[ J]. BMC Ophthalmol, 2020, 20(1): 35.
18、Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of
ganglion cells in glaucoma eyes compared with threshold visual field
tests in the same persons[ J]. Invest Ophthalmol Vis Sci, 2000, 41(3):
741-748.Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of
ganglion cells in glaucoma eyes compared with threshold visual field
tests in the same persons[ J]. Invest Ophthalmol Vis Sci, 2000, 41(3):
741-748.
19、Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre
layer and visual function loss in glaucoma: the tipping point[ J]. Br J
Ophthalmol, 2012, 96(1): 47-52.Wollstein G, Kagemann L, Bilonick RA, et al. Retinal nerve fibre
layer and visual function loss in glaucoma: the tipping point[ J]. Br J
Ophthalmol, 2012, 96(1): 47-52.
20、Hirooka K, Manabe S, Tenkumo K, et al. Use of the structure-function
relationship in detecting glaucoma progression in early glaucoma[ J].
BMC Ophthalmol, 2014, 14: 118.Hirooka K, Manabe S, Tenkumo K, et al. Use of the structure-function
relationship in detecting glaucoma progression in early glaucoma[ J].
BMC Ophthalmol, 2014, 14: 118.
21、Amini N, Daneshvar R , Sharifipour F, et al. Structure-function
relationships in perimetric glaucoma: comparison of minimum-rim
width and retinal nerve fiber layer parameters[ J]. Invest Ophthalmol
Vis Sci, 2017, 58(11): 4623-4631.Amini N, Daneshvar R , Sharifipour F, et al. Structure-function
relationships in perimetric glaucoma: comparison of minimum-rim
width and retinal nerve fiber layer parameters[ J]. Invest Ophthalmol
Vis Sci, 2017, 58(11): 4623-4631.
22、Reznicek L, Burzer S, Laubichler A , et al. Structure-function
relationship comparison between retinal nerve fibre layer and Bruch's
membrane opening-minimum rim width in glaucoma[ J]. Int J
Ophthalmol, 2017, 10(10): 1534-1538.Reznicek L, Burzer S, Laubichler A , et al. Structure-function
relationship comparison between retinal nerve fibre layer and Bruch's
membrane opening-minimum rim width in glaucoma[ J]. Int J
Ophthalmol, 2017, 10(10): 1534-1538.
23、Enders P, Schaub F, Adler W, et al. Bruch's membrane opening-based optical coherence tomography of the optic nerve head: a useful
diagnostic tool to detect glaucoma in macrodiscs[ J]. Eye (Lond), 2018,
32(2): 314-323.Enders P, Schaub F, Adler W, et al. Bruch's membrane opening-based optical coherence tomography of the optic nerve head: a useful
diagnostic tool to detect glaucoma in macrodiscs[ J]. Eye (Lond), 2018,
32(2): 314-323.
24、Enders P, Schaub F, Adler W, et al. The use of Bruch's membrane
opening-based optical coherence tomography of the optic nerve head
for glaucoma detection in microdiscs[ J]. Br J Ophthalmol, 2017,
101(4): 530-535.Enders P, Schaub F, Adler W, et al. The use of Bruch's membrane
opening-based optical coherence tomography of the optic nerve head
for glaucoma detection in microdiscs[ J]. Br J Ophthalmol, 2017,
101(4): 530-535.
25、Park KH, Lee JW, Kim JM, et al. Bruch's membrane opening-minimum
rim width and visual field loss in glaucoma: a broken stick analysis[ J].
Int J Ophthalmol, 2018, 11(5):828-834.Park KH, Lee JW, Kim JM, et al. Bruch's membrane opening-minimum
rim width and visual field loss in glaucoma: a broken stick analysis[ J].
Int J Ophthalmol, 2018, 11(5):828-834.
26、Li R, Wang X, Wei Y, et al. Structure-function relationship between
Bruch's membrane opening-minimum rim width and perimetry in
open-angle glaucoma subtypes[ J]. Albrecht Von Graefes Arch Fur
Klinische Und Exp Ophthalmol, 2020, 258(3): 595-605.Li R, Wang X, Wei Y, et al. Structure-function relationship between
Bruch's membrane opening-minimum rim width and perimetry in
open-angle glaucoma subtypes[ J]. Albrecht Von Graefes Arch Fur
Klinische Und Exp Ophthalmol, 2020, 258(3): 595-605.
27、Park D, Park SP, Na KI. Comparison of retinal nerve fiber layer
thickness and Bruch's membrane opening minimum rim width thinning
rate in open-angle glaucoma[ J]. Sci Rep, 2022, 12(1): 16069.Park D, Park SP, Na KI. Comparison of retinal nerve fiber layer
thickness and Bruch's membrane opening minimum rim width thinning
rate in open-angle glaucoma[ J]. Sci Rep, 2022, 12(1): 16069.
28、Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography
angiography of the peripapillary retina in glaucoma[ J]. JAMA
Ophthalmol, 2015, 133(9): 1045-1052.Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography
angiography of the peripapillary retina in glaucoma[ J]. JAMA
Ophthalmol, 2015, 133(9): 1045-1052.
29、Lee EJ, Kim S, Hwang S, et al. Microvascular compromise develops
following nerve fiber layer damage in normal-tension glaucoma without
choroidal vasculature involvement[ J]. J Glaucoma, 2017, 26(3): 216-
222.Lee EJ, Kim S, Hwang S, et al. Microvascular compromise develops
following nerve fiber layer damage in normal-tension glaucoma without
choroidal vasculature involvement[ J]. J Glaucoma, 2017, 26(3): 216-
222.
30、Enders P, Longo V, Adler W, et al. Analysis of peripapillary vessel
density and Bruch's membrane opening-based neuroretinal rim
parameters in glaucoma using OCT and OCT-angiography[ J]. Eye
(Lond), 2020, 34(6): 1086-1093.Enders P, Longo V, Adler W, et al. Analysis of peripapillary vessel
density and Bruch's membrane opening-based neuroretinal rim
parameters in glaucoma using OCT and OCT-angiography[ J]. Eye
(Lond), 2020, 34(6): 1086-1093.
31、Cho HK, Park JM, Kee C. Effect of optic disc size on correlation
between Bruch's membrane opening-minimum rim width and
peripapillary retinal nerve fibre layer thickness[ J]. Eye Lond Engl,
2019, 33(12): 1930-1938.Cho HK, Park JM, Kee C. Effect of optic disc size on correlation
between Bruch's membrane opening-minimum rim width and
peripapillary retinal nerve fibre layer thickness[ J]. Eye Lond Engl,
2019, 33(12): 1930-1938.
32、Enders P, Schaub F, Hermann MM, et al. Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal
scanning laser tomography and spectral domain optical coherence
tomography[ J]. Br J Ophthalmol, 2017, 101(2): 138-142.Enders P, Schaub F, Hermann MM, et al. Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal
scanning laser tomography and spectral domain optical coherence
tomography[ J]. Br J Ophthalmol, 2017, 101(2): 138-142.
33、Hoffmann EM, Zangwill LM, Crowston JG, et al. Optic disk size and
glaucoma[ J]. Surv Ophthalmol, 2007, 52(1): 32-49.Hoffmann EM, Zangwill LM, Crowston JG, et al. Optic disk size and
glaucoma[ J]. Surv Ophthalmol, 2007, 52(1): 32-49.
34、Grytz R, Yang H, Hua Y, et al. Connective tissue remodeling in myopia
and its potential role in increasing risk of glaucoma[ J]. Curr Opin
Biomed Eng, 2020, 15: 40-50.Grytz R, Yang H, Hua Y, et al. Connective tissue remodeling in myopia
and its potential role in increasing risk of glaucoma[ J]. Curr Opin
Biomed Eng, 2020, 15: 40-50.
35、Malik R, Belliveau AC, Sharpe GP, et al. Diagnostic accuracy of optical
coherence tomography and scanning laser tomography for identifying
glaucoma in myopic eyes[ J]. Ophthalmology, 2016, 123(6): 1181-
1189.Malik R, Belliveau AC, Sharpe GP, et al. Diagnostic accuracy of optical
coherence tomography and scanning laser tomography for identifying
glaucoma in myopic eyes[ J]. Ophthalmology, 2016, 123(6): 1181-
1189.
36、Park DH, Kook KY, Kang YS, et al. Clinical utility of bruch membrane
opening-minimum rim width for detecting early glaucoma in myopic
eyes[ J]. J Glaucoma, 2021, 30(11):971-980.Park DH, Kook KY, Kang YS, et al. Clinical utility of bruch membrane
opening-minimum rim width for detecting early glaucoma in myopic
eyes[ J]. J Glaucoma, 2021, 30(11):971-980.
37、Verkicharla P, Ohno-Matsui K , Saw S. Current and predicted
demographics of high myopia and an update of its associated
pathological changes[ J]. Ophthalmic Physiol Opt, 2015, 35: 465-475.Verkicharla P, Ohno-Matsui K , Saw S. Current and predicted
demographics of high myopia and an update of its associated
pathological changes[ J]. Ophthalmic Physiol Opt, 2015, 35: 465-475.
38、Uzair N, Shamim M, Mahmood SA, et al. Comparison of retinal nerve
fibre layer versus bruch membrane opening-minimum rim width
as an optical coherence tomography-based marker for glaucoma in
myopia[ J]. J Coll Physicians Surg Pak, 2021, 31(2): 162-165.Uzair N, Shamim M, Mahmood SA, et al. Comparison of retinal nerve
fibre layer versus bruch membrane opening-minimum rim width
as an optical coherence tomography-based marker for glaucoma in
myopia[ J]. J Coll Physicians Surg Pak, 2021, 31(2): 162-165.
39、Cho HK, Kee C. Population-based glaucoma prevalence studies in
Asians[ J]. Surv Ophthalmol, 2014, 59(4): 434-447.Cho HK, Kee C. Population-based glaucoma prevalence studies in
Asians[ J]. Surv Ophthalmol, 2014, 59(4): 434-447.
40、Cho HK, Kee C. Rate of change in bruch's membrane opening-minimum rim width and peripapillary RNFL in early normal tension
glaucoma[ J]. J Clin Med, 2020, 9(8): 2321.Cho HK, Kee C. Rate of change in bruch's membrane opening-minimum rim width and peripapillary RNFL in early normal tension
glaucoma[ J]. J Clin Med, 2020, 9(8): 2321.
41、See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and
peripapillary atrophy area change: a comparative study of glaucoma
patients and normal controls[ J]. Ophthalmology, 2009, 116(5): 840-
847.See JL, Nicolela MT, Chauhan BC. Rates of neuroretinal rim and
peripapillary atrophy area change: a comparative study of glaucoma
patients and normal controls[ J]. Ophthalmology, 2009, 116(5): 840-
847.
42、Vianna JR, Danthurebandara VM, Sharpe GP, et al. Importance of
normal aging in estimating the rate of glaucomatous neuroretinal rim
and retinal nerve fiber layer loss[ J]. Ophthalmology, 2015, 122(12):
2392-2398.Vianna JR, Danthurebandara VM, Sharpe GP, et al. Importance of
normal aging in estimating the rate of glaucomatous neuroretinal rim
and retinal nerve fiber layer loss[ J]. Ophthalmology, 2015, 122(12):
2392-2398.
43、Bowd C, Zangwill LM, Weinreb RN, et al. Racial differences in rate of
change of spectral-domain optical coherence tomography-measured
minimum rim width and retinal nerve fiber layer thickness[ J]. Am J
Ophthalmol, 2018, 196: 154-164.Bowd C, Zangwill LM, Weinreb RN, et al. Racial differences in rate of
change of spectral-domain optical coherence tomography-measured
minimum rim width and retinal nerve fiber layer thickness[ J]. Am J
Ophthalmol, 2018, 196: 154-164.
44、Gietzelt C, Lüke JN, Adler W, et al. Short-term changes in Bruch's
membrane opening-based morphometrics during the first week after
trabeculectomy[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp
Ophthalmol, 2022, 260(10): 3321-3329.Gietzelt C, Lüke JN, Adler W, et al. Short-term changes in Bruch's
membrane opening-based morphometrics during the first week after
trabeculectomy[ J]. Albrecht Von Graefes Arch Fur Klinische Und Exp
Ophthalmol, 2022, 260(10): 3321-3329.
45、Koenig SF, Hirneiss CW. Changes of neuroretinal rim and retinal nerve
fiber layer thickness assessed by optical coherence tomography after
filtration surgery in glaucomatous eyes[ J]. Clin Ophthalmol, 2021, 15:
2335-2344.Koenig SF, Hirneiss CW. Changes of neuroretinal rim and retinal nerve
fiber layer thickness assessed by optical coherence tomography after
filtration surgery in glaucomatous eyes[ J]. Clin Ophthalmol, 2021, 15:
2335-2344.
46、Park D, Cha S. Factors associated with increased neuroretinal rim
thickness measured based on bruch's membrane opening-minimum rim
width after trabeculectomy[ J]. J Clin Med, 2021, 10(16): 3646.Park D, Cha S. Factors associated with increased neuroretinal rim
thickness measured based on bruch's membrane opening-minimum rim
width after trabeculectomy[ J]. J Clin Med, 2021, 10(16): 3646.
47、Gietzelt C, von Goscinski C, Lemke J, et al. Dynamics of structural
reversal in Bruch's membrane opening-based morphometrics after
glaucoma drainage device surgery[ J]. Albrecht Von Graefes Arch Fur
Klinische Und Exp Ophthalmol, 2020, 258(6): 1227-1236.Gietzelt C, von Goscinski C, Lemke J, et al. Dynamics of structural
reversal in Bruch's membrane opening-based morphometrics after
glaucoma drainage device surgery[ J]. Albrecht Von Graefes Arch Fur
Klinische Und Exp Ophthalmol, 2020, 258(6): 1227-1236.