1、Yanatori I, Kishi F. DMT1 and iron transport[J]. Free Radic Biol Med,
2019, 133: 55-63. DOI: 10.1016/j.freeradbiomed.2018.07.020.Yanatori I, Kishi F. DMT1 and iron transport[J]. Free Radic Biol Med,
2019, 133: 55-63. DOI: 10.1016/j.freeradbiomed.2018.07.020.
2、Billesb%C3%B8lle%20CB%2C%20Azumaya%20CM%2C%20Kretsch%20RC%2C%20et%20al.%20Structure%20of%20hepcidin-%0Abound%20ferroportin%20reveals%20iron%20homeostatic%20mechanisms%5BJ%5D.%20Nature%2C%202020%2C%0A586(7831)%3A%20807-811.%20DOI%3A%2010.1038%2Fs41586-020-2668-z.Billesb%C3%B8lle%20CB%2C%20Azumaya%20CM%2C%20Kretsch%20RC%2C%20et%20al.%20Structure%20of%20hepcidin-%0Abound%20ferroportin%20reveals%20iron%20homeostatic%20mechanisms%5BJ%5D.%20Nature%2C%202020%2C%0A586(7831)%3A%20807-811.%20DOI%3A%2010.1038%2Fs41586-020-2668-z.
3、Hudson DM, Curtis SB, Smith VC, et al. Human hephaestin expression
is not limited to enterocytes of the gastrointestinal tract but is also found
in the antrum, the enteric nervous system, and pancreatic{beta}-cells[J].
Am J Physiol Gastrointest Liver Physiol, 2010, 298(3): G425-G432. DOI:
10.1152/ajpgi.00453.2009.Hudson DM, Curtis SB, Smith VC, et al. Human hephaestin expression
is not limited to enterocytes of the gastrointestinal tract but is also found
in the antrum, the enteric nervous system, and pancreatic{beta}-cells[J].
Am J Physiol Gastrointest Liver Physiol, 2010, 298(3): G425-G432. DOI:
10.1152/ajpgi.00453.2009.
4、Gao G, Li J, Zhang Y, et al. Cellular iron metabolism and regulation[J]. Adv
Exp Med Biol, 2019, 1173: 21-32. DOI: 10.1007/978-981-13-9589-5_2.Gao G, Li J, Zhang Y, et al. Cellular iron metabolism and regulation[J]. Adv
Exp Med Biol, 2019, 1173: 21-32. DOI: 10.1007/978-981-13-9589-5_2.
5、Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic
Biol Med, 2019, 133: 46-54. DOI: 10.1016/j.freeradbiomed.2018.06.037.Kawabata H. Transferrin and transferrin receptors update[J]. Free Radic
Biol Med, 2019, 133: 46-54. DOI: 10.1016/j.freeradbiomed.2018.06.037.
6、Iwai K. Regulation of cellular iron metabolism: iron-dependent degradation
of IRP by SCFFBXL5 ubiquitin ligase[J]. Free Radic Biol Med, 2019, 133:
64-68. DOI: 10.1016/j.freeradbiomed.2018.09.011.Iwai K. Regulation of cellular iron metabolism: iron-dependent degradation
of IRP by SCFFBXL5 ubiquitin ligase[J]. Free Radic Biol Med, 2019, 133:
64-68. DOI: 10.1016/j.freeradbiomed.2018.09.011.
7、Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron
efflux by binding to ferroportin and inducing its internalization[J]. Science,
2004, 306(5704): 2090-2093. DOI: 10.1126/science.1104742.
8、Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular
degeneration[J]. Aging Dis, 2021, 12(2): 529-551. DOI: 10.14336/
AD.2020.0912.Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular
degeneration[J]. Aging Dis, 2021, 12(2): 529-551. DOI: 10.14336/
AD.2020.0912.
9、Boldt DH. New perspectives on iron: an introduction[J]. Am J Med Sci,
1999, 318(4): 207-212. DOI: 10.1097/00000441-199910000-00001.Boldt DH. New perspectives on iron: an introduction[J]. Am J Med Sci,
1999, 318(4): 207-212. DOI: 10.1097/00000441-199910000-00001.
10、Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-
dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-
1072. DOI: 10.1016/j.cell.2012.03.042.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-
dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-
1072. DOI: 10.1016/j.cell.2012.03.042.
11、Yang TJ, Yu Y, Yang JY, et al. Involvement of transient receptor potential
channels in ocular diseases: a narrative review[J]. Ann Transl Med, 2022,
10(15): 839. DOI: 10.21037/atm-21-6145.
12、Bishop PN, Takanosu M, Le Goff M, et al. The role of the posterior ciliary
body in the biosynthesis of vitreous humour[J]. Eye, 2002, 16(4): 454-
460. DOI: 10.1038/sj.eye.6700199.
13、Ashok A, Chaudhary S, McDonald D, et al. Local synthesis of hepcidin
in the anterior segment of the eye: a novel observation with physiological
and pathological implications[J]. Exp Eye Res, 2020, 190: 107890. DOI:
10.1016/j.exer.2019.107890.
14、Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular
diseases[J]. Mol Cell Biochem, 2023, 478(9): 2081-2095. DOI: 10.1007/
s11010-022-04644-5.
15、Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus
and ectatic diseases[J]. Cornea, 2015, 34(4): 359-369. DOI: 10.1097/
ICO.0000000000000408.
16、Navel V, Malecaze J, Pereira B, et al. Oxidative and antioxidative stress
markers in keratoconus: a systematic review and meta-analysis[J]. Acta
Ophthalmol, 2021, 99(6): e777-e794. DOI: 10.1111/aos.14714.
17、Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal
protein profiles in keratoconus and normal human corneas[J]. Exp Eye
Res, 2011, 92(4): 282-298. DOI: 10.1016/j.exer.2011.01.008.
18、Chaerkady R, Shao H, Scott SG, et al. The keratoconus corneal proteome:
loss of epithelial integrity and stromal degeneration[J]. J Proteomics, 2013,
87: 122-131. DOI: 10.1016/j.jprot.2013.05.023.
19、Takaoka A, Babar N, Hogan J, et al. An evaluation of lysyl oxidase-
derived cross-linking in keratoconus by liquid chromatography/mass
spectrometry[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 126-136. DOI:
10.1167/iovs.15-18105.
20、Balasubramanian SA, Pye DC, Willcox MDP. Levels of lactoferrin, secretory
IgA and serum albumin in the tear film of people with keratoconus[J]. Exp
Eye Res, 2012, 96(1): 132-137. DOI: 10.1016/j.exer.2011.12.010.
21、Wójcik KA, Synowiec E, Jiménez-García MP, et al. Polymorphism of
the transferrin gene in eye diseases: keratoconus and Fuchs endothelial
corneal dystrophy[J]. Biomed Res Int, 2013, 2013: 247438. DOI:10.1155/2013/247438.
22、Avetisov SE, Mamikonyan VR, Novikov IA, et al. Abnormal distribution
of trace elements in keratoconic corneas[J]. Vestn Oftalmol, 2015, 131(6):
34-42. DOI: 10.17116/oftalma2015131634-42.
23、Avetisov SE, Mamikonian VR, Novikov IA. The role of tear acidity and
Cu-cofactor of lysyl oxidase activity in the pathogenesis of keratoconus[J].
Vestn Oftalmol, 2011, 127(2): 3-8.
24、Kubilus JK, Beazley KE, Talbot CJ, et al. Nuclear ferritin mediated
regulation of JNK signaling in corneal epithelial cells[J]. Exp Eye Res,
2016, 145: 337-340. DOI: 10.1016/j.exer.2016.02.002.Kubilus JK, Beazley KE, Talbot CJ, et al. Nuclear ferritin mediated
regulation of JNK signaling in corneal epithelial cells[J]. Exp Eye Res,
2016, 145: 337-340. DOI: 10.1016/j.exer.2016.02.002.
25、Nurminskaya MV, Talbot CJ, Nurminsky DI, et al. Nuclear ferritin: a
ferritoid-ferritin complex in corneal epithelial cells[J]. Invest Ophthalmol
Vis Sci, 2009, 50(8): 3655-3661. DOI: 10.1167/iovs.08-3170.Nurminskaya MV, Talbot CJ, Nurminsky DI, et al. Nuclear ferritin: a
ferritoid-ferritin complex in corneal epithelial cells[J]. Invest Ophthalmol
Vis Sci, 2009, 50(8): 3655-3661. DOI: 10.1167/iovs.08-3170.
26、Rouault TA. The role of iron regulatory proteins in mammalian iron
homeostasis and disease[J]. Nat Chem Biol, 2006, 2(8): 406-414. DOI:
10.1038/nchembio807.Rouault TA. The role of iron regulatory proteins in mammalian iron
homeostasis and disease[J]. Nat Chem Biol, 2006, 2(8): 406-414. DOI:
10.1038/nchembio807.
27、Ghio AJ, Soukup JM, Dailey LA, et al. Air pollutants disrupt iron
homeostasis to impact oxidant generation, biological effects, and tissue
injury[J]. Free Radic Biol Med, 2020, 151: 38-55. DOI: 10.1016/
j.freeradbiomed.2020.02.007.Ghio AJ, Soukup JM, Dailey LA, et al. Air pollutants disrupt iron
homeostasis to impact oxidant generation, biological effects, and tissue
injury[J]. Free Radic Biol Med, 2020, 151: 38-55. DOI: 10.1016/
j.freeradbiomed.2020.02.007.
28、Guo W, Zhang J, Li W, et al. Disruption of iron homeostasis and resultant
health effects upon exposure to various environmental pollutants: a
critical review[J]. J Environ Sci, 2015, 34: 155-164. DOI: 10.1016/
j.jes.2015.04.004.Guo W, Zhang J, Li W, et al. Disruption of iron homeostasis and resultant
health effects upon exposure to various environmental pollutants: a
critical review[J]. J Environ Sci, 2015, 34: 155-164. DOI: 10.1016/
j.jes.2015.04.004.
29、Salahudeen AA, Thompson JW, Ruiz JC, et al. An E3 ligase possessing an
iron-responsive hemerythrin domain is a regulator of iron homeostasis[J].
Science, 2009, 326(5953): 722-726. DOI: 10.1126/science.1176326.Salahudeen AA, Thompson JW, Ruiz JC, et al. An E3 ligase possessing an
iron-responsive hemerythrin domain is a regulator of iron homeostasis[J].
Science, 2009, 326(5953): 722-726. DOI: 10.1126/science.1176326.
30、Bonadonna M, Altamura S, Tybl E, et al. Iron regulatory protein (IRP)-
mediated iron homeostasis is critical for neutrophil development and
differentiation in the bone marrow[J]. Sci Adv, 2022, 8(40): eabq4469.
DOI: 10.1126/sciadv.abq4469.Bonadonna M, Altamura S, Tybl E, et al. Iron regulatory protein (IRP)-
mediated iron homeostasis is critical for neutrophil development and
differentiation in the bone marrow[J]. Sci Adv, 2022, 8(40): eabq4469.
DOI: 10.1126/sciadv.abq4469.
31、Frost JN, Wideman SK, Preston AE, et al. Plasma iron controls neutrophil
production and function[J]. Sci Adv, 2022, 8(40): eabq5384. DOI:
10.1126/sciadv.abq5384.Frost JN, Wideman SK, Preston AE, et al. Plasma iron controls neutrophil
production and function[J]. Sci Adv, 2022, 8(40): eabq5384. DOI:
10.1126/sciadv.abq5384.
32、Zeidan RS, Han SM, Leeuwenburgh C, et al. Iron homeostasis and
organismal aging[J]. Ageing Res Rev, 2021, 72: 101510. DOI: 10.1016/
j.arr.2021.101510.Zeidan RS, Han SM, Leeuwenburgh C, et al. Iron homeostasis and
organismal aging[J]. Ageing Res Rev, 2021, 72: 101510. DOI: 10.1016/
j.arr.2021.101510.
33、Verbon EH, Trapet PL, Stringlis IA, et al. Iron and immunity[J].
Annu Rev Phytopathol, 2017,55: 355-375. doi:10.1146/annurev-
phyto-080516-035537.Verbon EH, Trapet PL, Stringlis IA, et al. Iron and immunity[J].
Annu Rev Phytopathol, 2017,55: 355-375. doi:10.1146/annurev-
phyto-080516-035537.
34、Wessling-Resnick M. Iron homeostasis and the inflammatory
response[J]. Annu Rev Nutr, 2010, 30: 105-122. DOI: 10.1146/annurev.
nutr.012809.104804.Wessling-Resnick M. Iron homeostasis and the inflammatory
response[J]. Annu Rev Nutr, 2010, 30: 105-122. DOI: 10.1146/annurev.
nutr.012809.104804.
35、Bamdad S, Owji N, Bolkheir A. Association between advanced
keratoconus and serum levels of zinc, calcium, magnesium, iron, copper,
and selenium[J]. Cornea, 2018, 37(10): 1306-1310. DOI: 10.1097/
ICO.0000000000001661.Bamdad S, Owji N, Bolkheir A. Association between advanced
keratoconus and serum levels of zinc, calcium, magnesium, iron, copper,
and selenium[J]. Cornea, 2018, 37(10): 1306-1310. DOI: 10.1097/
ICO.0000000000001661.
36、Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and
systemic iron homeostasis[J]. Nat Rev Mol Cell Biol, 2024, 25(2): 133-
155. DOI: 10.1038/s41580-023-00648-1.Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and
systemic iron homeostasis[J]. Nat Rev Mol Cell Biol, 2024, 25(2): 133-
155. DOI: 10.1038/s41580-023-00648-1.
37、Tang LJ, Zhou YJ, Xiong XM, et al. Ubiquitin-specific protease 7 promotes
ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after
ischemia/reperfusion[J]. Free Radic Biol Med, 2021, 162: 339-352. DOI:
10.1016/j.freeradbiomed.2020.10.307.Tang LJ, Zhou YJ, Xiong XM, et al. Ubiquitin-specific protease 7 promotes
ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after
ischemia/reperfusion[J]. Free Radic Biol Med, 2021, 162: 339-352. DOI:
10.1016/j.freeradbiomed.2020.10.307.
38、Turcu AL, Versini A, Khene N, et al. DMT1 inhibitors kill cancer stem cells
by blocking lysosomal iron translocation[J]. Chemistry, 2020, 26(33):
7369-7373. DOI: 10.1002/chem.202000159.Turcu AL, Versini A, Khene N, et al. DMT1 inhibitors kill cancer stem cells
by blocking lysosomal iron translocation[J]. Chemistry, 2020, 26(33):
7369-7373. DOI: 10.1002/chem.202000159.
39、Du J, Wang T, Li Y, et al. DHA inhibits proliferation and induces
ferroptosis of leukemia cells through autophagy dependent degradation
of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. DOI: 10.1016/
j.freeradbiomed.2018.12.011.Du J, Wang T, Li Y, et al. DHA inhibits proliferation and induces
ferroptosis of leukemia cells through autophagy dependent degradation
of ferritin[J]. Free Radic Biol Med, 2019, 131: 356-369. DOI: 10.1016/
j.freeradbiomed.2018.12.011.
40、Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent
cell death[J]. Semin Cancer Biol, 2020, 66: 89-100. DOI: 10.1016/
j.semcancer.2019.03.002.Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent
cell death[J]. Semin Cancer Biol, 2020, 66: 89-100. DOI: 10.1016/
j.semcancer.2019.03.002.
41、Scindia PhD Y, Leeds Md J, Swaminathan Md S. Iron homeostasis in
healthy kidney and its role in acute kidney injury[J]. Semin Nephrol, 2019,
39(1): 76-84. DOI: 10.1016/j.semnephrol.2018.10.006.Scindia PhD Y, Leeds Md J, Swaminathan Md S. Iron homeostasis in
healthy kidney and its role in acute kidney injury[J]. Semin Nephrol, 2019,
39(1): 76-84. DOI: 10.1016/j.semnephrol.2018.10.006.
42、Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and
role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI:
10.1038/s41580-020-00324-8.Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and
role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI:
10.1038/s41580-020-00324-8.
43、Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is
required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018,
172(3): 409-422.e21. DOI: 10.1016/j.cell.2017.11.048.Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is
required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018,
172(3): 409-422.e21. DOI: 10.1016/j.cell.2017.11.048.
44、Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis
to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. DOI:
10.1038/s41556-018-0178-0.Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis
to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. DOI:
10.1038/s41556-018-0178-0.
45、Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during
tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/
nature14344.Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during
tumour suppression[J]. Nature, 2015, 520(7545): 57-62. DOI: 10.1038/
nature14344.
46、Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals
roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem
Biol, 2015, 10(7): 1604-1609. DOI: 10.1021/acschembio.5b00245.Dixon SJ, Winter GE, Musavi LS, et al. Human haploid cell genetics reveals
roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem
Biol, 2015, 10(7): 1604-1609. DOI: 10.1021/acschembio.5b00245.
47、Avetisov SE, Mamikonian VR, Novikov IA. The role of tear acidity and
Cu-cofactor of lysyl oxidase activity in the pathogenesis of keratoconus[J].
Vestn Oftalmol, 2011, 127(2): 3-8.Avetisov SE, Mamikonian VR, Novikov IA. The role of tear acidity and
Cu-cofactor of lysyl oxidase activity in the pathogenesis of keratoconus[J].
Vestn Oftalmol, 2011, 127(2): 3-8.
48、Avetisov SE, Mamikonyan VR, Novikov IA, et al. Abnormal distribution
of trace elements in keratoconic corneas[J]. Vestn Oftalmol, 2015, 131(6):
34-42. DOI: 10.17116/oftalma2015131634-42.Avetisov SE, Mamikonyan VR, Novikov IA, et al. Abnormal distribution
of trace elements in keratoconic corneas[J]. Vestn Oftalmol, 2015, 131(6):
34-42. DOI: 10.17116/oftalma2015131634-42.
49、Wójcik KA, Synowiec E, Jiménez-García MP, et al. Polymorphism of
the transferrin gene in eye diseases: keratoconus and Fuchs endothelial
corneal dystrophy[ J]. Biomed Res Int, 2013, 2013: 247438. DOI:
10.1155/2013/247438.Wójcik KA, Synowiec E, Jiménez-García MP, et al. Polymorphism of
the transferrin gene in eye diseases: keratoconus and Fuchs endothelial
corneal dystrophy[ J]. Biomed Res Int, 2013, 2013: 247438. DOI:
10.1155/2013/247438.
50、Balasubramanian SA, Pye DC, Willcox MDP. Levels of lactoferrin, secretory
IgA and serum albumin in the tear film of people with keratoconus[J]. Exp
Eye Res, 2012, 96(1): 132-137. DOI: 10.1016/j.exer.2011.12.010.Balasubramanian SA, Pye DC, Willcox MDP. Levels of lactoferrin, secretory
IgA and serum albumin in the tear film of people with keratoconus[J]. Exp
Eye Res, 2012, 96(1): 132-137. DOI: 10.1016/j.exer.2011.12.010.
51、Takaoka A, Babar N, Hogan J, et al. An evaluation of lysyl oxidasederived cross-linking in keratoconus by liquid chromatography/mass
spectrometry[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 126-136. DOI:
10.1167/iovs.15-18105.Takaoka A, Babar N, Hogan J, et al. An evaluation of lysyl oxidasederived cross-linking in keratoconus by liquid chromatography/mass
spectrometry[J]. Invest Ophthalmol Vis Sci, 2016, 57(1): 126-136. DOI:
10.1167/iovs.15-18105.
52、Chaerkady R, Shao H, Scott SG, et al. The keratoconus corneal proteome:
loss of epithelial integrity and stromal degeneration[J]. J Proteomics, 2013,
87: 122-131. DOI: 10.1016/j.jprot.2013.05.023.Chaerkady R, Shao H, Scott SG, et al. The keratoconus corneal proteome:
loss of epithelial integrity and stromal degeneration[J]. J Proteomics, 2013,
87: 122-131. DOI: 10.1016/j.jprot.2013.05.023.
53、Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal
protein profiles in keratoconus and normal human corneas[ J]. Exp Eye
Res, 2011, 92(4): 282-298. DOI: 10.1016/j.exer.2011.01.008.Joseph R, Srivastava OP, Pfister RR. Differential epithelial and stromal
protein profiles in keratoconus and normal human corneas[ J]. Exp Eye
Res, 2011, 92(4): 282-298. DOI: 10.1016/j.exer.2011.01.008.
54、Navel V, Malecaze J, Pereira B, et al. Oxidative and antioxidative stress
markers in keratoconus: a systematic review and meta-analysis[ J]. Acta
Ophthalmol, 2021, 99(6): e777-e794. DOI: 10.1111/aos.14714.Navel V, Malecaze J, Pereira B, et al. Oxidative and antioxidative stress
markers in keratoconus: a systematic review and meta-analysis[ J]. Acta
Ophthalmol, 2021, 99(6): e777-e794. DOI: 10.1111/aos.14714.
55、Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus
and ectatic diseases[ J]. Cornea, 2015, 34(4): 359-369. DOI: 10.1097/
ICO.0000000000000408Gomes JAP, Tan D, Rapuano CJ, et al. Global consensus on keratoconus
and ectatic diseases[ J]. Cornea, 2015, 34(4): 359-369. DOI: 10.1097/
ICO.0000000000000408
56、Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular
diseases[J]. Mol Cell Biochem, 2023, 478(9): 2081-2095. DOI: 10.1007/
s11010-022-04644-5.Liu K, Li H, Wang F, et al. Ferroptosis: mechanisms and advances in ocular
diseases[J]. Mol Cell Biochem, 2023, 478(9): 2081-2095. DOI: 10.1007/
s11010-022-04644-5.
57、Ashok A, Chaudhary S, McDonald D, et al. Local synthesis of hepcidin
in the anterior segment of the eye: a novel observation with physiological
and pathological implications[J]. Exp Eye Res, 2020, 190: 107890. DOI:
10.1016/j.exer.2019.107890.Ashok A, Chaudhary S, McDonald D, et al. Local synthesis of hepcidin
in the anterior segment of the eye: a novel observation with physiological
and pathological implications[J]. Exp Eye Res, 2020, 190: 107890. DOI:
10.1016/j.exer.2019.107890.
58、Bishop PN, Takanosu M, Le Goff M, et al. The role of the posterior ciliary
body in the biosynthesis of vitreous humour[ J]. Eye, 2002, 16(4): 454-
460. DOI: 10.1038/sj.eye.6700199.Bishop PN, Takanosu M, Le Goff M, et al. The role of the posterior ciliary
body in the biosynthesis of vitreous humour[ J]. Eye, 2002, 16(4): 454-
460. DOI: 10.1038/sj.eye.6700199.
59、Yang TJ, Yu Y, Yang JY, et al. Involvement of transient receptor potential channels in ocular diseases: a narrative review[J]. Ann Transl Med, 2022, 10(15): 839. DOI: 10.21037/atm-21-6145.Yang TJ, Yu Y, Yang JY, et al. Involvement of transient receptor potential channels in ocular diseases: a narrative review[J]. Ann Transl Med, 2022, 10(15): 839. DOI: 10.21037/atm-21-6145.
60、Aaseth%20JO%2C%20Nurchi%20VM.%20Chelation%20combination-a%20strategy%20to%20mitigate%20the%0Aneurotoxicity%20of%20manganese%2C%20iron%2C%20and%20copper%3F%5BJ%5D.%20Biomolecules%2C%202022%2C%0A12(11)%3A%201713.%20DOI%3A%2010.3390%2Fbiom12111713.Aaseth%20JO%2C%20Nurchi%20VM.%20Chelation%20combination-a%20strategy%20to%20mitigate%20the%0Aneurotoxicity%20of%20manganese%2C%20iron%2C%20and%20copper%3F%5BJ%5D.%20Biomolecules%2C%202022%2C%0A12(11)%3A%201713.%20DOI%3A%2010.3390%2Fbiom12111713.
61、Antoshin%20AA%2C%20Shpichka%20AI%2C%20Huang%20G%2C%20et%20al.%20Lactoferrin%20as%20a%20regenerative%0Aagent%3A%20the%20old-new%20panacea%3F%5BJ%5D.%20Pharmacol%20Res%2C%202021%2C%20167%3A%20105564.%20DOI%3A%0A10.1016%2Fj.phrs.2021.105564.Antoshin%20AA%2C%20Shpichka%20AI%2C%20Huang%20G%2C%20et%20al.%20Lactoferrin%20as%20a%20regenerative%0Aagent%3A%20the%20old-new%20panacea%3F%5BJ%5D.%20Pharmacol%20Res%2C%202021%2C%20167%3A%20105564.%20DOI%3A%0A10.1016%2Fj.phrs.2021.105564.
62、Pastori V, Tavazzi S, Lecchi M. Lactoferrin-loaded contact lenses counteract
cytotoxicity caused in vitro by keratoconic tears[J]. Cont Lens Anterior
Eye, 2019, 42(3): 253-257. DOI: 10.1016/j.clae.2018.12.004.Pastori V, Tavazzi S, Lecchi M. Lactoferrin-loaded contact lenses counteract
cytotoxicity caused in vitro by keratoconic tears[J]. Cont Lens Anterior
Eye, 2019, 42(3): 253-257. DOI: 10.1016/j.clae.2018.12.004.
63、Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306(5704): 2090-2093. DOI: 10.1126/science.1104742.Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306(5704): 2090-2093. DOI: 10.1126/science.1104742.
64、Chen K, Zhang J, Beeraka NM, et al. Novel perspectives on
nanotechnological and biomedical implications of monotherapy or
combination regimen of lactoferrin[J]. Curr Pharm Des, 2023, 29(20):
1579-1591. DOI: 10.2174/1381612829666230622140926.Chen K, Zhang J, Beeraka NM, et al. Novel perspectives on
nanotechnological and biomedical implications of monotherapy or
combination regimen of lactoferrin[J]. Curr Pharm Des, 2023, 29(20):
1579-1591. DOI: 10.2174/1381612829666230622140926.
65、Higuchi A, Inoue H, Kaneko Y, et al. Selenium-binding lactoferrin is taken
into corneal epithelial cells by a receptor and prevents corneal damage
in dry eye model animals[J]. Sci Rep, 2016, 6: 36903. DOI: 10.1038/
srep36903.Higuchi A, Inoue H, Kaneko Y, et al. Selenium-binding lactoferrin is taken
into corneal epithelial cells by a receptor and prevents corneal damage
in dry eye model animals[J]. Sci Rep, 2016, 6: 36903. DOI: 10.1038/
srep36903.
66、Singh J, Sharma M, Jain N, et al. Lactoferrin and its nano-formulations in
rare eye diseases[J]. Indian J Ophthalmol, 2022, 70(7): 2328-2334. DOI:
10.4103/ijo.IJO_303_22.Singh J, Sharma M, Jain N, et al. Lactoferrin and its nano-formulations in
rare eye diseases[J]. Indian J Ophthalmol, 2022, 70(7): 2328-2334. DOI:
10.4103/ijo.IJO_303_22.
67、Sakai O, Uchida T, Imai H, et al. Glutathione peroxidase 4 plays an
important role in oxidative homeostasis and wound repair in corneal
epithelial cells[J]. FEBS Open Bio, 2016, 6(12): 1238-1247. DOI:
10.1002/2211-5463.12141.Sakai O, Uchida T, Imai H, et al. Glutathione peroxidase 4 plays an
important role in oxidative homeostasis and wound repair in corneal
epithelial cells[J]. FEBS Open Bio, 2016, 6(12): 1238-1247. DOI:
10.1002/2211-5463.12141.
68、Miotto G, Rossetto M, di Paolo ML, et al. Insight into the mechanism of
ferroptosis inhibition by ferrostatin-1[J]. Redox Biol, 2020, 28: 101328.
DOI: 10.1016/j.redox.2019.101328.Miotto G, Rossetto M, di Paolo ML, et al. Insight into the mechanism of
ferroptosis inhibition by ferrostatin-1[J]. Redox Biol, 2020, 28: 101328.
DOI: 10.1016/j.redox.2019.101328.
69、Wang K, Jiang L, Zhong Y, et al. Ferrostatin-1-loaded liposome for
treatment of corneal alkali burn via targeting ferroptosis[J]. Bioeng Transl
Med, 2022, 7(2): e10276. DOI: 10.1002/btm2.10276.Wang K, Jiang L, Zhong Y, et al. Ferrostatin-1-loaded liposome for
treatment of corneal alkali burn via targeting ferroptosis[J]. Bioeng Transl
Med, 2022, 7(2): e10276. DOI: 10.1002/btm2.10276.