1、Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and
disease[ J]. Nat Rev Nephrol, 2019, 15(6): 346-366. DOI: 10.1038/
s41581-019-0129-4.Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and
disease[ J]. Nat Rev Nephrol, 2019, 15(6): 346-366. DOI: 10.1038/
s41581-019-0129-4.
2、Maszczak-Seneczko D, Wiktor M, Skurska E, et al. Delivery of
nucleotide sugars to the mammalian Golgi: a very well (un)
explained story[ J]. Int J Mol Sci, 2022, 23(15): 8648. DOI: 10.3390/ijms23158648.
Maszczak-Seneczko D, Wiktor M, Skurska E, et al. Delivery of
nucleotide sugars to the mammalian Golgi: a very well (un)
explained story[ J]. Int J Mol Sci, 2022, 23(15): 8648. DOI: 10.3390/ijms23158648.
3、 Schjoldager KT, Narimatsu Y, Joshi HJ, et al. Global
view of human protein glycosylation pathways and functions[ J]. Nat
Rev Mol Cell Biol, 2020, 21(12): 729-749. DOI: 10.1038/s41580-020-
00294-x.Schjoldager KT, Narimatsu Y, Joshi HJ, et al. Global
view of human protein glycosylation pathways and functions[ J]. Nat
Rev Mol Cell Biol, 2020, 21(12): 729-749. DOI: 10.1038/s41580-020-
00294-x.
4、Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation:
diversity, synthesis and function[ J]. Nat Rev Mol Cell Biol, 2012,
13(7): 448-462. DOI: 10.1038/nrm3383.Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation:
diversity, synthesis and function[ J]. Nat Rev Mol Cell Biol, 2012,
13(7): 448-462. DOI: 10.1038/nrm3383.
5、Lee JM, Hammarén HM, Savitski MM, et al. Control of protein
stability by post-translational modifications[ J]. Nat Commun, 2023,
14(1): 201. DOI: 10.1038/s41467-023-35795-8.Lee JM, Hammarén HM, Savitski MM, et al. Control of protein
stability by post-translational modifications[ J]. Nat Commun, 2023,
14(1): 201. DOI: 10.1038/s41467-023-35795-8.
6、Eichler J, Koomey M. Sweet new roles for protein glycosylation in
prokaryotes[ J]. Trends Microbiol, 2017, 25(8): 662-672. DOI:
10.1016/j.tim.2017.03.001.Eichler J, Koomey M. Sweet new roles for protein glycosylation in
prokaryotes[ J]. Trends Microbiol, 2017, 25(8): 662-672. DOI:
10.1016/j.tim.2017.03.001.
7、C h a t h a m J C , Z h a n g J , We n d e A R . R o l e o f O - l i n k e d
N-acetylglucosamine protein modification in cellular (patho)
physiology[ J]. Physiol Rev, 2021, 101(2): 427-493. DOI: 10.1152/
physrev.00043.2019.C h a t h a m J C , Z h a n g J , We n d e A R . R o l e o f O - l i n k e d
N-acetylglucosamine protein modification in cellular (patho)
physiology[ J]. Physiol Rev, 2021, 101(2): 427-493. DOI: 10.1152/
physrev.00043.2019.
8、Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc
cycling regulate gene transcription: emerging roles in cancer[ J].
Cancers, 2021, 13(7): 1666. DOI: 10.3390/cancers13071666.Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc
cycling regulate gene transcription: emerging roles in cancer[ J].
Cancers, 2021, 13(7): 1666. DOI: 10.3390/cancers13071666.
9、Wang S, Tan P, Wang H, et al. Swainsonine inhibits autophagic
degradation and causes cytotoxicity by reducing CTSD
O-GlcNAcylation[ J]. Chem Biol Interact, 2023, 382: 110629. DOI:
10.1016/j.cbi.2023.110629.Wang S, Tan P, Wang H, et al. Swainsonine inhibits autophagic
degradation and causes cytotoxicity by reducing CTSD
O-GlcNAcylation[ J]. Chem Biol Interact, 2023, 382: 110629. DOI:
10.1016/j.cbi.2023.110629.
10、Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminylt
ransferase-associated phenotypes in mammals[ J]. Molecules, 2021,
26(18): 5504. DOI: 10.3390/molecules26185504.Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminylt
ransferase-associated phenotypes in mammals[ J]. Molecules, 2021,
26(18): 5504. DOI: 10.3390/molecules26185504.
11、Esmail S, Manolson MF. Advances in understanding N-glycosylation
structure, function, and regulation in health and disease[ J]. Eur J Cell
Biol, 2021, 100(7-8): 151186. DOI: 10.1016/j.ejcb.2021.151186.Esmail S, Manolson MF. Advances in understanding N-glycosylation
structure, function, and regulation in health and disease[ J]. Eur J Cell
Biol, 2021, 100(7-8): 151186. DOI: 10.1016/j.ejcb.2021.151186.
12、Ka%C5%82u%C5%BCa%20A%2C%20Szczykutowicz%20J%2C%20Ferens-Sieczkowska%20M.%20Glycosylation%3A%20%0Arising%20potential%20for%20prostate%20cancer%20evaluation%5B%20J%5D.%20Cancers%2C%202021%2C%20%0A13(15)%3A%203726.%20DOI%3A%2010.3390%2Fcancers13153726.Ka%C5%82u%C5%BCa%20A%2C%20Szczykutowicz%20J%2C%20Ferens-Sieczkowska%20M.%20Glycosylation%3A%20%0Arising%20potential%20for%20prostate%20cancer%20evaluation%5B%20J%5D.%20Cancers%2C%202021%2C%20%0A13(15)%3A%203726.%20DOI%3A%2010.3390%2Fcancers13153726.
13、Chandler KB, Costello CE, Rahimi N. Glycosylation in the tumor
microenvironment: implications for tumor angiogenesis and
metastasis[ J]. Cells, 2019, 8(6): 544. DOI: 10.3390/cells8060544.Chandler KB, Costello CE, Rahimi N. Glycosylation in the tumor
microenvironment: implications for tumor angiogenesis and
metastasis[ J]. Cells, 2019, 8(6): 544. DOI: 10.3390/cells8060544.
14、 Donovan K, Alekseev O, Qi X, et al. O-GlcNAc modification of
transcription factor Sp1 mediates hyperglycemia-induced VEGF-A
upregulation in retinal cells[ J]. Invest Ophthalmol Vis Sci, 2014,
55(12): 7862-7873. DOI: 10.1167/iovs.14-14048. Donovan K, Alekseev O, Qi X, et al. O-GlcNAc modification of
transcription factor Sp1 mediates hyperglycemia-induced VEGF-A
upregulation in retinal cells[ J]. Invest Ophthalmol Vis Sci, 2014,
55(12): 7862-7873. DOI: 10.1167/iovs.14-14048.
15、Zhang W, Hou C, Du L, et al. Protective action of pomegranate peel
polyphenols in type 2 diabetic rats via the translocation of Nrf2 and
FoxO1 regulated by the PI3K/Akt pathway[ J]. Food Funct, 2021, 12(22): 11408-11419. DOI: 10.1039/d1fo01213d.Zhang W, Hou C, Du L, et al. Protective action of pomegranate peel
polyphenols in type 2 diabetic rats via the translocation of Nrf2 and
FoxO1 regulated by the PI3K/Akt pathway[ J]. Food Funct, 2021, 12(22): 11408-11419. DOI: 10.1039/d1fo01213d.
16、Puddu A, Sanguineti R, Maggi D, et al. Advanced glycation endproducts and hyperglycemia increase angiopoietin-2 production by
impairing angiopoietin-1-tie-2 system[ J]. J Diabetes Res, 2019, 2019:
6198495. DOI: 10.1155/2019/6198495.Puddu A, Sanguineti R, Maggi D, et al. Advanced glycation endproducts and hyperglycemia increase angiopoietin-2 production by
impairing angiopoietin-1-tie-2 system[ J]. J Diabetes Res, 2019, 2019:
6198495. DOI: 10.1155/2019/6198495.
17、Kim YS, Kim M, Choi MY, et al. Metformin protects against retinal
cell death in diabetic mice[ J]. Biochem Biophys Res Commun, 2017,
492(3): 397-403. DOI: 10.1016/j.bbrc.2017.08.087.Kim YS, Kim M, Choi MY, et al. Metformin protects against retinal
cell death in diabetic mice[ J]. Biochem Biophys Res Commun, 2017,
492(3): 397-403. DOI: 10.1016/j.bbrc.2017.08.087.
18、Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer[ J].
Annu Rev Pathol, 2015, 10: 473-510. DOI: 10.1146/annurevpathol-012414-040438.Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer[ J].
Annu Rev Pathol, 2015, 10: 473-510. DOI: 10.1146/annurevpathol-012414-040438.
19、de Paiva CS, St Leger AJ, Caspi RR. Mucosal immunology of the
ocular surface[ J]. Mucosal Immunol, 2022, 15(6): 1143-1157. DOI:
10.1038/s41385-022-00551-6.de Paiva CS, St Leger AJ, Caspi RR. Mucosal immunology of the
ocular surface[ J]. Mucosal Immunol, 2022, 15(6): 1143-1157. DOI:
10.1038/s41385-022-00551-6.
20、G%C3%BCndo%C4%9Fdu%20H%2C%20Karada%C4%9F%20Sari%20E.%20Mucins%3A%20an%20overview%20of%20functions%20and%20%0Abiological%20activity%5B%20J%5D.%20Turk%20J%20Vet%20Res%2C%202023%2C%207(2)%3A%20123-132.%20DOI%3A%20%0A10.47748%2Ftjvr.1224456.G%C3%BCndo%C4%9Fdu%20H%2C%20Karada%C4%9F%20Sari%20E.%20Mucins%3A%20an%20overview%20of%20functions%20and%20%0Abiological%20activity%5B%20J%5D.%20Turk%20J%20Vet%20Res%2C%202023%2C%207(2)%3A%20123-132.%20DOI%3A%20%0A10.47748%2Ftjvr.1224456.
21、Taniguchi T, Woodward AM, Magnelli P, et al. N-Glycosylation affects
the stability and barrier function of the MUC16 mucin[ J]. J Biol Chem,
2017, 292(26): 11079-11090. DOI: 10.1074/jbc.M116.770123.Taniguchi T, Woodward AM, Magnelli P, et al. N-Glycosylation affects
the stability and barrier function of the MUC16 mucin[ J]. J Biol Chem,
2017, 292(26): 11079-11090. DOI: 10.1074/jbc.M116.770123.
22、Sumiyoshi M, Ricciuto J, Tisdale A, et al. Antiadhesive character of
mucin O-glycans at the apical surface of corneal epithelial cells[ J].
Invest Ophthalmol Vis Sci, 2008, 49(1): 197-203. DOI: 10.1167/
iovs.07-1038.Sumiyoshi M, Ricciuto J, Tisdale A, et al. Antiadhesive character of
mucin O-glycans at the apical surface of corneal epithelial cells[ J].
Invest Ophthalmol Vis Sci, 2008, 49(1): 197-203. DOI: 10.1167/
iovs.07-1038.
23、Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and
control of the cell surface[ J]. Nat Rev Cancer, 2004, 4(1): 45-60. DOI:
10.1038/nrc1251.Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and
control of the cell surface[ J]. Nat Rev Cancer, 2004, 4(1): 45-60. DOI:
10.1038/nrc1251.
24、Akimoto Y, Kawakami H, Yamamoto K, et al. Elevated expression of
O-GlcNAc-modified proteins and O-GlcNAc transferase in corneas
of diabetic Goto-Kakizaki rats[ J]. Invest Ophthalmol Vis Sci, 2003,
44(9): 3802-3809. DOI: 10.1167/iovs.03-0227.Akimoto Y, Kawakami H, Yamamoto K, et al. Elevated expression of
O-GlcNAc-modified proteins and O-GlcNAc transferase in corneas
of diabetic Goto-Kakizaki rats[ J]. Invest Ophthalmol Vis Sci, 2003,
44(9): 3802-3809. DOI: 10.1167/iovs.03-0227.
25、Martinez-Carrasco R, Argüeso P, Fini ME. Membrane-associated
mucins of the human ocular surface in health and disease[ J]. Ocul Surf,
2021, 21: 313-330. DOI: 10.1016/j.jtos.2021.03.003.Martinez-Carrasco R, Argüeso P, Fini ME. Membrane-associated
mucins of the human ocular surface in health and disease[ J]. Ocul Surf,
2021, 21: 313-330. DOI: 10.1016/j.jtos.2021.03.003.
26、Brockhausen I, Elimova E, Woodward AM, et al. Glycosylation
pathways of human corneal and conjunctival epithelial cell mucins[ J].
Carbohydr Res, 2018, 470: 50-56. DOI: 10.1016/j.carres.2018.10.004.Brockhausen I, Elimova E, Woodward AM, et al. Glycosylation
pathways of human corneal and conjunctival epithelial cell mucins[ J].
Carbohydr Res, 2018, 470: 50-56. DOI: 10.1016/j.carres.2018.10.004.
27、Hayashi Y, Kao WW, Kohno N, et al. Expression patterns of sialylated
epitope recognized by KL-6 monoclonal antibody in ocular surface
epithelium of normals and dry eye patients[ J]. Invest Ophthalmol Vis
Sci, 2004, 45(7): 2212-2217. DOI: 10.1167/iovs.03-0988.Hayashi Y, Kao WW, Kohno N, et al. Expression patterns of sialylated
epitope recognized by KL-6 monoclonal antibody in ocular surface
epithelium of normals and dry eye patients[ J]. Invest Ophthalmol Vis
Sci, 2004, 45(7): 2212-2217. DOI: 10.1167/iovs.03-0988.
28、Santodomingo-Rubido J, Carracedo G, Suzaki A, et al. Keratoconus:
an updated review[ J]. Cont Lens Anterior Eye, 2022, 45(3): 101559. DOI: 10.1016/j.clae.2021.101559.Santodomingo-Rubido J, Carracedo G, Suzaki A, et al. Keratoconus:
an updated review[ J]. Cont Lens Anterior Eye, 2022, 45(3): 101559. DOI: 10.1016/j.clae.2021.101559.
29、Dahl BJ, Spotts E, Truong JQ. Corneal collagen cross-linking: an
introduction and literature review[ J]. Optometry, 2012, 83(1): 33-42.
DOI: 10.1016/j.optm.2011.09.011.Dahl BJ, Spotts E, Truong JQ. Corneal collagen cross-linking: an
introduction and literature review[ J]. Optometry, 2012, 83(1): 33-42.
DOI: 10.1016/j.optm.2011.09.011.
30、Zhu X, Cheng D, Ruan K, et al. Causal relationships between type 2
diabetes, glycemic traits and keratoconus[ J]. Front Med (Lausanne),
2023, 10: 1264061. DOI: 10.3389/fmed.2023.1264061.Zhu X, Cheng D, Ruan K, et al. Causal relationships between type 2
diabetes, glycemic traits and keratoconus[ J]. Front Med (Lausanne),
2023, 10: 1264061. DOI: 10.3389/fmed.2023.1264061.
31、 Deshmukh R, Ong ZZ, Rampat R, et al. Management of keratoconus:
an updated review[ J]. Front Med (Lausanne), 2023, 10: 1212314.
DOI: 10.3389/fmed.2023.1212314. Deshmukh R, Ong ZZ, Rampat R, et al. Management of keratoconus:
an updated review[ J]. Front Med (Lausanne), 2023, 10: 1212314.
DOI: 10.3389/fmed.2023.1212314.
32、Mencucci R, Marini M, Gheri G, et al. Lectin binding in normal,
keratoconus and cross-linked human corneas[ J]. Acta Histochem,
2011, 113(3): 308-316. DOI: 10.1016/j.acthis.2009.12.003.Mencucci R, Marini M, Gheri G, et al. Lectin binding in normal,
keratoconus and cross-linked human corneas[ J]. Acta Histochem,
2011, 113(3): 308-316. DOI: 10.1016/j.acthis.2009.12.003.
33、Sherwin T, Brookes NH. Morphological changes in keratoconus:
pathology or pathogenesis[ J]. Clin Exp Ophthalmol, 2004, 32(2): 211-
217. DOI: 10.1111/j.1442-9071.2004.00805.x.Sherwin T, Brookes NH. Morphological changes in keratoconus:
pathology or pathogenesis[ J]. Clin Exp Ophthalmol, 2004, 32(2): 211-
217. DOI: 10.1111/j.1442-9071.2004.00805.x.
34、Coulon SJ, Schuman JS, Du Y, et al. A novel glaucoma approach: stem
cell regeneration of the trabecular meshwork[ J]. Prog Retin Eye Res,
2022, 90: 101063. DOI: 10.1016/j.preteyeres.2022.101063.Coulon SJ, Schuman JS, Du Y, et al. A novel glaucoma approach: stem
cell regeneration of the trabecular meshwork[ J]. Prog Retin Eye Res,
2022, 90: 101063. DOI: 10.1016/j.preteyeres.2022.101063.
35、Karimi A, Halabian M, Razaghi R, et al. Modeling the endothelial
glycocalyx layer in the human conventional aqueous outflow
pathway[ J]. Cells, 2022, 11(23): 3925. DOI: 10.3390/cells11233925.Karimi A, Halabian M, Razaghi R, et al. Modeling the endothelial
glycocalyx layer in the human conventional aqueous outflow
pathway[ J]. Cells, 2022, 11(23): 3925. DOI: 10.3390/cells11233925.
36、Du R, Li D, Zhu M, et al. Cell senescence alters responses of porcine
trabecular meshwork cells to shear stress[ J]. Front Cell Dev Biol, 2022,
10: 1083130. DOI: 10.3389/fcell.2022.1083130.Du R, Li D, Zhu M, et al. Cell senescence alters responses of porcine
trabecular meshwork cells to shear stress[ J]. Front Cell Dev Biol, 2022,
10: 1083130. DOI: 10.3389/fcell.2022.1083130.
37、 Sienkiewicz AE, Rosenberg BN, Edwards G, et al. Aberrant glycosylation
in the human trabecular meshwork[ J]. Proteomics Clin Appl, 2014,
8(3-4): 130-142. DOI: 10.1002/prca.201300031. Sienkiewicz AE, Rosenberg BN, Edwards G, et al. Aberrant glycosylation
in the human trabecular meshwork[ J]. Proteomics Clin Appl, 2014,
8(3-4): 130-142. DOI: 10.1002/prca.201300031.
38、Vranka JA, Bradley JM, Yang YF, et al. Mapping molecular differences
and extracellular matrix gene expression in segmental outflow pathways
of the human ocular trabecular meshwork[ J]. PLoS One, 2015, 10(3):
e0122483. DOI: 10.1371/journal.pone.0122483.Vranka JA, Bradley JM, Yang YF, et al. Mapping molecular differences
and extracellular matrix gene expression in segmental outflow pathways
of the human ocular trabecular meshwork[ J]. PLoS One, 2015, 10(3):
e0122483. DOI: 10.1371/journal.pone.0122483.
39、Vranka JA, Kelley MJ, Acott TS, et al. Extracellular matrix in the
trabecular meshwork: intraocular pressure regulation and dysregulation
in glaucoma[ J]. Exp Eye Res, 2015, 133: 112-125. DOI: 10.1016/
j.exer.2014.07.014.Vranka JA, Kelley MJ, Acott TS, et al. Extracellular matrix in the
trabecular meshwork: intraocular pressure regulation and dysregulation
in glaucoma[ J]. Exp Eye Res, 2015, 133: 112-125. DOI: 10.1016/
j.exer.2014.07.014.
40、Keller KE, Sun YY, Vranka JA, et al. Inhibition of hyaluronan synthesis
reduces versican and fibronectin levels in trabecular meshwork
cells[ J]. PLoS One, 2012, 7(11): e48523. DOI: 10.1371/journal.
pone.0048523.Keller KE, Sun YY, Vranka JA, et al. Inhibition of hyaluronan synthesis
reduces versican and fibronectin levels in trabecular meshwork
cells[ J]. PLoS One, 2012, 7(11): e48523. DOI: 10.1371/journal.
pone.0048523.
41、Carreon T, van der Merwe E, Fellman RL, et al. Aqueous outflow - A
continuum from trabecular meshwork to episcleral veins[ J]. Prog Retin
Eye Res, 2017, 57: 108-133. DOI: 10.1016/j.preteyeres.2016.12.004.Carreon T, van der Merwe E, Fellman RL, et al. Aqueous outflow - A
continuum from trabecular meshwork to episcleral veins[ J]. Prog Retin
Eye Res, 2017, 57: 108-133. DOI: 10.1016/j.preteyeres.2016.12.004.
42、Lauwen S, Baerenfaenger M, Ruigrok S, et al. Loss of the AMDassociated B3GLCT gene affects glycosylation of TSP1 without
impairing secretion in retinal pigment epithelial cells[ J]. Exp Eye Res,
2021, 213: 108798. DOI: 10.1016/j.exer.2021.108798.Lauwen S, Baerenfaenger M, Ruigrok S, et al. Loss of the AMDassociated B3GLCT gene affects glycosylation of TSP1 without
impairing secretion in retinal pigment epithelial cells[ J]. Exp Eye Res,
2021, 213: 108798. DOI: 10.1016/j.exer.2021.108798.
43、Lent-Schochet D, Yiu G. Drusen in dense deposit disease: not just agerelated macular degeneration[ J]. Lancet, 2020, 395(10238): 1726.
DOI: 10.1016/S0140-6736(20)30976-4.Lent-Schochet D, Yiu G. Drusen in dense deposit disease: not just agerelated macular degeneration[ J]. Lancet, 2020, 395(10238): 1726.
DOI: 10.1016/S0140-6736(20)30976-4.
44、Cingle KA, Kalski RS, Bruner WE, et al. Age-related changes of
glycosidases in human retinal pigment epithelium[ J]. Curr Eye Res,
1996, 15(4): 433-438. DOI: 10.3109/02713689608995834.Cingle KA, Kalski RS, Bruner WE, et al. Age-related changes of
glycosidases in human retinal pigment epithelium[ J]. Curr Eye Res,
1996, 15(4): 433-438. DOI: 10.3109/02713689608995834.
45、Fujita S, Endo T, Ju J, et al. Structural studies of the N-linked sugar
chains of human rhodopsin[ J]. Glycobiology, 1994, 4(5): 633-640.
DOI: 10.1093/glycob/4.5.633.Fujita S, Endo T, Ju J, et al. Structural studies of the N-linked sugar
chains of human rhodopsin[ J]. Glycobiology, 1994, 4(5): 633-640.
DOI: 10.1093/glycob/4.5.633.
46、Lentrichia BB, Bruner WE, Kean EL. Glycosidases of the retinal
pigment epithelium[ J]. Invest Ophthalmol Vis Sci, 1978, 17(9): 884-
895.Lentrichia BB, Bruner WE, Kean EL. Glycosidases of the retinal
pigment epithelium[ J]. Invest Ophthalmol Vis Sci, 1978, 17(9): 884-
895.
47、Bu%C4%87an%20I%2C%20%C5%A0kunca%20Herman%20J%2C%20Jeron%C4%8Di%C4%87%20Tomi%C4%87%20I%2C%20et%20al.%20N-glycosylation%20%0Apatterns%20across%20the%20age-related%20macular%20degeneration%20spectrum%5B%20J%5D.%20%0AMolecules%2C%202022%2C%2027(6)%3A%201774.%20DOI%3A%2010.3390%2Fmolecules27061774.Bu%C4%87an%20I%2C%20%C5%A0kunca%20Herman%20J%2C%20Jeron%C4%8Di%C4%87%20Tomi%C4%87%20I%2C%20et%20al.%20N-glycosylation%20%0Apatterns%20across%20the%20age-related%20macular%20degeneration%20spectrum%5B%20J%5D.%20%0AMolecules%2C%202022%2C%2027(6)%3A%201774.%20DOI%3A%2010.3390%2Fmolecules27061774.
48、周维, 梁丽娜. 小胶质细胞活化在视网膜色素变性中的调
控机制研究进展[ J]. 眼科新进展, 2024, 44(2): 159-163. DOI:
10.13389/j.cnki.rao.2024.0031.
Zhou W, Liang LN. Research progress of microglia activation
in the regulatory mechanism of retinitis pigmentosa[ J]. Recent
Adv Ophthalmol, 2024, 44(2): 159-163. DOI: 10.13389/j.cnki.
rao.2024.0031.Zhou W, Liang LN. Research progress of microglia activation
in the regulatory mechanism of retinitis pigmentosa[ J]. Recent
Adv Ophthalmol, 2024, 44(2): 159-163. DOI: 10.13389/j.cnki.
rao.2024.0031.
49、Hargrave PA. The amino-terminal tryptic peptide of bovine rhodopsin.
A glycopeptide containing two sites of oligosaccharide attachment[ J].
Biochim Biophys Acta, 1977, 492(1): 83-94. DOI: 10.1016/0005-
2795(77)90216-1.Hargrave PA. The amino-terminal tryptic peptide of bovine rhodopsin.
A glycopeptide containing two sites of oligosaccharide attachment[ J].
Biochim Biophys Acta, 1977, 492(1): 83-94. DOI: 10.1016/0005-
2795(77)90216-1.
50、Salom D, Jin H, Gerken TA, et al. Human red and green cone opsins
are O-glycosylated at an N-terminal Ser/Thr-rich domain conserved
in vertebrates[ J]. J Biol Chem, 2019, 294(20): 8123-8133. DOI:
10.1074/jbc.RA118.006835.Salom D, Jin H, Gerken TA, et al. Human red and green cone opsins
are O-glycosylated at an N-terminal Ser/Thr-rich domain conserved
in vertebrates[ J]. J Biol Chem, 2019, 294(20): 8123-8133. DOI:
10.1074/jbc.RA118.006835.
51、DeR amus ML, Dav is SJ, R ao SR , et al. Selective ablation of
dehydrodolichyl diphosphate synthase in murine retinal pigment
epithelium (RPE) causes RPE atrophy and retinal degeneration[ J].
Cells, 2020, 9(3): 771. DOI: 10.3390/cells9030771.DeR amus ML, Dav is SJ, R ao SR , et al. Selective ablation of
dehydrodolichyl diphosphate synthase in murine retinal pigment
epithelium (RPE) causes RPE atrophy and retinal degeneration[ J].
Cells, 2020, 9(3): 771. DOI: 10.3390/cells9030771.
52、Murray AR, Vuong L, Brobst D, et al. Glycosylation of rhodopsin is
necessary for its stability and incorporation into photoreceptor outer
segment discs[ J]. Hum Mol Genet, 2015, 24(10): 2709-2723. DOI:
10.1093/hmg/ddv031.Murray AR, Vuong L, Brobst D, et al. Glycosylation of rhodopsin is
necessary for its stability and incorporation into photoreceptor outer
segment discs[ J]. Hum Mol Genet, 2015, 24(10): 2709-2723. DOI:
10.1093/hmg/ddv031.
53、Tachibana N, Hosono K, Nomura S, et al. Maternal uniparental
isodisomy of chromosome 4 and 8 in patients with retinal dystrophy:
SRD5A3-congenital disorders of glycosylation and RP1-related
retinitis pigmentosa[ J]. Genes, 2022, 13(2): 359. DOI: 10.3390/
genes13020359.Tachibana N, Hosono K, Nomura S, et al. Maternal uniparental
isodisomy of chromosome 4 and 8 in patients with retinal dystrophy:
SRD5A3-congenital disorders of glycosylation and RP1-related
retinitis pigmentosa[ J]. Genes, 2022, 13(2): 359. DOI: 10.3390/
genes13020359.
54、 Liu Y, Yu M, Shang X, et al. Eyes shut homolog (EYS) interacts with
matriglycan of O-mannosyl glycans whose deficiency results in EYS
mislocalization and degeneration of photoreceptors[ J]. Sci Rep, 2020,
10(1): 7795. DOI: 10.1038/s41598-020-64752-4. Liu Y, Yu M, Shang X, et al. Eyes shut homolog (EYS) interacts with
matriglycan of O-mannosyl glycans whose deficiency results in EYS
mislocalization and degeneration of photoreceptors[ J]. Sci Rep, 2020,
10(1): 7795. DOI: 10.1038/s41598-020-64752-4.
55、Taylor RL, Arno G, Poulter JA , et al. A ssociation of steroid
5α-reductase type 3 congenital disorder of glycosylation with earlyonset retinal dystrophy[ J]. JAMA Ophthalmol, 2017, 135(4): 339-347.
DOI: 10.1001/jamaophthalmol.2017.0046.Taylor RL, Arno G, Poulter JA , et al. A ssociation of steroid
5α-reductase type 3 congenital disorder of glycosylation with earlyonset retinal dystrophy[ J]. JAMA Ophthalmol, 2017, 135(4): 339-347.
DOI: 10.1001/jamaophthalmol.2017.0046.
56、Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic
retinopathy and projection of burden through 2045: systematic review
and meta-analysis[ J]. Ophthalmology, 2021, 128(11): 1580-1591.
DOI: 10.1016/j.ophtha.2021.04.027.Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic
retinopathy and projection of burden through 2045: systematic review
and meta-analysis[ J]. Ophthalmology, 2021, 128(11): 1580-1591.
DOI: 10.1016/j.ophtha.2021.04.027.
57、Xing X, Wang H, Niu T, et al. RUNX1 can mediate the glucose and
O-GlcNAc-driven proliferation and migration of human retinal
microvascular endothelial cells[ J]. BMJ Open Diabetes Res Care, 2021,
9(1): e001898. DOI: 10.1136/bmjdrc-2020-001898.Xing X, Wang H, Niu T, et al. RUNX1 can mediate the glucose and
O-GlcNAc-driven proliferation and migration of human retinal
microvascular endothelial cells[ J]. BMJ Open Diabetes Res Care, 2021,
9(1): e001898. DOI: 10.1136/bmjdrc-2020-001898.
58、Xing X, Wang H, Zhang Y, et al. O- glycosylation can regulate the
proliferation and migration of human retinal microvascular endothelial
cells through ZFR in high glucose condition[ J]. Biochem Biophys Res
Commun, 2019, 512(3): 552-557. DOI: 10.1016/j.bbrc.2019.03.135.Xing X, Wang H, Zhang Y, et al. O- glycosylation can regulate the
proliferation and migration of human retinal microvascular endothelial
cells through ZFR in high glucose condition[ J]. Biochem Biophys Res
Commun, 2019, 512(3): 552-557. DOI: 10.1016/j.bbrc.2019.03.135.
59、Liu G, Feng L, Liu X, et al. O-GlcNAcylation inhibition upregulates
Connexin43 expression in the endothelium to protect the tight
junction barrier in diabetic retinopathy[ J]. Invest Ophthalmol Vis Sci,
2023, 64(14): 30. DOI: 10.1167/iovs.64.14.30.Liu G, Feng L, Liu X, et al. O-GlcNAcylation inhibition upregulates
Connexin43 expression in the endothelium to protect the tight
junction barrier in diabetic retinopathy[ J]. Invest Ophthalmol Vis Sci,
2023, 64(14): 30. DOI: 10.1167/iovs.64.14.30.
60、 Peters S, Cree IA, Alexander R, et al. Angiopoietin modulation of
vascular endothelial growth factor: effects on retinal endothelial cell
permeability[ J]. Cytokine, 2007, 40(2): 144-150. DOI: 10.1016/
j.cyto.2007.09.001. Peters S, Cree IA, Alexander R, et al. Angiopoietin modulation of
vascular endothelial growth factor: effects on retinal endothelial cell
permeability[ J]. Cytokine, 2007, 40(2): 144-150. DOI: 10.1016/
j.cyto.2007.09.001.
61、Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth
factors and blood vessel formation[ J]. Nature, 2000, 407(6801): 242-
248. DOI: 10.1038/35025215.Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth
factors and blood vessel formation[ J]. Nature, 2000, 407(6801): 242-
248. DOI: 10.1038/35025215.
62、Tsai T, Alwees M, Asaad MA, et al. Increased Angiopoietin-1 and-
2 levels in human vitreous are associated with proliferative diabetic
retinopathy[ J]. PLoS One, 2023, 18(1): e0280488. DOI: 10.1371/
journal.pone.0280488.Tsai T, Alwees M, Asaad MA, et al. Increased Angiopoietin-1 and-
2 levels in human vitreous are associated with proliferative diabetic
retinopathy[ J]. PLoS One, 2023, 18(1): e0280488. DOI: 10.1371/
journal.pone.0280488.
63、Lenin R, Nagy PG, Jha KA, et al. GRP78 translocation to the cell surface
and O-GlcNAcylation of VE-Cadherin contribute to ER stressmediated endothelial permeability[ J]. Sci Rep, 2019, 9(1): 10783.
DOI: 10.1038/s41598-019-47246-w.Lenin R, Nagy PG, Jha KA, et al. GRP78 translocation to the cell surface
and O-GlcNAcylation of VE-Cadherin contribute to ER stressmediated endothelial permeability[ J]. Sci Rep, 2019, 9(1): 10783.
DOI: 10.1038/s41598-019-47246-w.
64、Gurel Z, Zaro BW, Pratt MR , et al. Identification of O-GlcNAc
modification targets in mouse retinal pericytes: implication of p53
in pathogenesis of diabetic retinopathy[ J]. PLoS One, 2014, 9(5):
e95561. DOI: 10.1371/journal.pone.0095561.Gurel Z, Zaro BW, Pratt MR , et al. Identification of O-GlcNAc
modification targets in mouse retinal pericytes: implication of p53
in pathogenesis of diabetic retinopathy[ J]. PLoS One, 2014, 9(5):
e95561. DOI: 10.1371/journal.pone.0095561.
65、张艺馨, 蔡善君, 李智立, 等. IgG N-糖基化修饰在糖尿病视网膜
病变中作用的研究进展[ J]. 基础医学与临床, 2023, 43(3): 509-
513. DOI: 10.16352/j.issn.1001-6325.2023.03.509.
Zhang YX, Cai SJ, Li ZL, et al. Research progress on the role of
IgG N-glycosylation modification in diabetic retinopathy[ J].
Basic Clin Med, 2023, 43(3): 509-513. DOI: 10.16352/
j.issn.1001-6325.2023.03.509.Zhang YX, Cai SJ, Li ZL, et al. Research progress on the role of
IgG N-glycosylation modification in diabetic retinopathy[ J].
Basic Clin Med, 2023, 43(3): 509-513. DOI: 10.16352/
j.issn.1001-6325.2023.03.509.
66、Liu GD, Xu C, Feng L, et al. The augmentation of O-GlcNAcylation
reduces glyoxal-induced cell injury by attenuating oxidative stress in
human retinal microvascular endothelial cells[ J]. Int J Mol Med, 2015,
36(4): 1019-1027. DOI: 10.3892/ijmm.2015.2319.Liu GD, Xu C, Feng L, et al. The augmentation of O-GlcNAcylation
reduces glyoxal-induced cell injury by attenuating oxidative stress in
human retinal microvascular endothelial cells[ J]. Int J Mol Med, 2015,
36(4): 1019-1027. DOI: 10.3892/ijmm.2015.2319.
67、 Zhang Y, Lai Z, Yuan Z, et al. Serum disease-specific IgG Fc
glycosylation as potential biomarkers for nonproliferative diabetic
retinopathy using mass spectrometry[ J]. Exp Eye Res, 2023, 233:
109555. DOI: 10.1016/j.exer.2023.109555. Zhang Y, Lai Z, Yuan Z, et al. Serum disease-specific IgG Fc
glycosylation as potential biomarkers for nonproliferative diabetic
retinopathy using mass spectrometry[ J]. Exp Eye Res, 2023, 233:
109555. DOI: 10.1016/j.exer.2023.109555.
68、Wu Z, Pan H, Liu D, et al. Variation of IgG N-linked glycosylation
profile in diabetic retinopathy[ J]. J Diabetes, 2021, 13(8): 672-680.
DOI: 10.1111/1753-0407.13160.Wu Z, Pan H, Liu D, et al. Variation of IgG N-linked glycosylation
profile in diabetic retinopathy[ J]. J Diabetes, 2021, 13(8): 672-680.
DOI: 10.1111/1753-0407.13160.
69、郝昕蕾, 金玮, 王文俊, 等. 眼内液检测在眼部感染性疾病诊
断与评估中的应用[ J]. 眼科新进展, 2022, 42(7): 573-576. DOI:
10.13389/j.cnki.rao.2022.0117.
Hao XL, Jin W, Wang WJ, et al. Clinical application of intraocular fluid
detection in diagnosis and evaluation of ocular infectious diseases[ J].
Recent Adv Ophthalmol, 2022, 42(7): 573-576. DOI: 10.13389/j.cnki.
rao.2022.0117.Hao XL, Jin W, Wang WJ, et al. Clinical application of intraocular fluid
detection in diagnosis and evaluation of ocular infectious diseases[ J].
Recent Adv Ophthalmol, 2022, 42(7): 573-576. DOI: 10.13389/j.cnki.
rao.2022.0117.
70、Balaratnasingam C, Dhrami-Gavazi E, McCann JT, et al. Aflibercept: a
review of its use in the treatment of choroidal neovascularization due to
age-related macular degeneration[ J]. Clin Ophthalmol, 2015, 9: 2355-
2371. DOI: 10.2147/OPTH.S80040.Balaratnasingam C, Dhrami-Gavazi E, McCann JT, et al. Aflibercept: a
review of its use in the treatment of choroidal neovascularization due to
age-related macular degeneration[ J]. Clin Ophthalmol, 2015, 9: 2355-
2371. DOI: 10.2147/OPTH.S80040.