您的位置: 首页 > 2024年4月 第39卷 第4期 > 文字全文
2023年7月 第38卷 第7期11
目录

碳点的特性及其在眼科疾病诊治中的研究进展

Research progress in the application of carbon dots in the diagnosis and treatment of ocular diseases

来源期刊: 眼科学报 | 2024年4月 第39卷 第4期 210-219 发布时间: 收稿时间:2024/7/19 11:53:10 阅读量:372
作者:
关键词:
碳点荧光眼科学 眼部给药眼部成像
carbon dots fluorescence ophthalmology ocular drug delivery ocular imaging
DOI:
10.12419/24051002.
收稿时间:
2024-03-15 
修订日期:
2024-03-29 
接收日期:
2024-04-10 
碳点是一种新型荧光碳纳米材料,直径一般小于10 nm,具有自发荧光、高生物组织相容性、易于修饰、成本低廉等优点,在生物医学领域拥有广阔的应用前景。眼球因其独特的屏障结构,常规药物停留时间短、穿透性差,通过局部滴眼到达病灶的药物浓度有限,需要增加给药频次以保持药效。另外,糖尿病性黄斑水肿(diabetic macular edema,DME)、脉络膜新生血管(diabetic macular edema,CNV)等疾病的治疗给药则需依赖于玻璃体腔注射,该方法属于有创操作,有引起潜在并发症的可能,且需多次注射,给患者造成了沉重的心理和经济负担。优化眼部给药方法一直是眼科学领域的研究热点。基于碳点的优异特性,碳点在眼部药物递送、眼部成像、眼疾病诊疗中已展现出优秀的应用潜力。本综述将综合介绍碳点的特点及近十年来碳点在眼科疾病诊疗中的研究进展,旨在提供关于碳点在眼科应用现状的系统性认识,为未来研究提供方向。
Carbon dots is a new type of fluorescent carbon nanomaterial, which the diameter is generally less than 10 nm, has the advantages of self-fluorescence, remarkable biocompatibility, easy modification, low cost and so on, has a broad application prospect in the biomedical field. Due to the unique barrier of the eye, conventional drugs have a short residence time and poor penetration, so the concentration of drugs that can reach the lesions through local eye drops is limited, and for what to increase the frequency of administration to maintain efficacy. Up to now, the treatment of posterior eye diseases, such as diabetic macular edema (DME), choroidal neovascularization (CNV) and other diseases still rely on repeated vitreous injection, which is an invasive procedure with potential complications, and need multiple injections, causing a heavy psychological and economic burden on patients. Optimizing the method of ocular drug delivery has always been a hot topic in the field of ophthalmology. Carbon dots have shown excellent application potential in the ocular drug delivery, ocular imaging, and diagnosis and treatment of ocular disease based on its excellent characteristics. This review will systematically introduce the characteristics of carbon dots and the application of carbon dots in the diagnosis and treatment of eye diseases, aiming to provide a comprehensive understanding of the current situation of the application of carbon dots in ophthalmology and provide directions for future research.

文章亮点

1. 关键发现

碳点具有自发荧光、易于修饰、成本低廉、高生物组织相容性、低毒性的特点,在未来眼病的诊疗中具有广阔前景。

2. 已知与发现

碳点具有低毒性、高渗透性和良好的成像能力,在生物医学领域具备广阔的应用前景。基于其优异的特性及眼部解剖的特点,碳点在眼部药物递送、眼部成像、眼疾病诊疗中亦展现出优秀的应用潜力。

3. 意义与改变

碳点的研究主要聚焦在生物成像、药物递送、肿瘤杀伤等方面,在眼部应用的研究较少。本综述对近十年来碳点在眼科方面的相关研究进行汇总,为未来眼科疾病诊疗提供新思路。
      
       碳点是一种新型荧光碳纳米材料,广义上的碳点包括所有主要由碳组成的纳米材料,如碳纳米点(carbon nanodots,CNDs)和石墨烯量子点(graphene quantum dots,GQDs)[1]。最早于2004年由Xu等[2]偶然发现,当时未引起重视,直至2006年,Sun等[3]对碳点的光致发光性进行阐释后,碳点领域的研究开始飞速发展。
       许多的眼部疾病,如年龄相关性黄斑变性、糖尿病视网膜病变、细菌性角膜炎等,需要长期频繁给药,以控制病程进展,维持视力。这类疾病治疗进展的局限性之一在于药物递送,由于眼部独特的屏障结构,常规药物难以在病灶保持治疗浓度[4]。玻璃体内注射是眼底疾病的治疗的主要给药方式,临床上常通过重复的IVT给药以维持药效,该给药方式需要专业人员操作下使用,且存在眼痛、眼内炎、视网膜脱离等不良反应,操作成本高、患者身心负担大。因此,迫切需要开发新的眼部药物递送载体。
       纳米材料一直是眼部药物递送载体的研究热点,金属纳米材料研究起步较早,但因为潜在的安全问题受到限制。大量体内实验已表明,金属纳米颗粒的积累可诱导多种器官毒性,包括脑、心脏、肺、肝脏、皮肤、肾脏和生殖器官[5-8]。而目前大多数研究认为,碳点仅有低毒性,甚至无毒[9-10]。碳点具有高稳定性、低毒性和良好的生物相容性、与生物分子相当的尺寸、成本低等优点,可以穿透体内各种天然屏障,对深层组织进行靶向成像,在眼部疾病,尤其是眼后节疾病的治疗上拥有极大的潜力[11-13]
       迄今,碳点的所有论文中,关于碳点在生物领域的应用的总结的文章层出不穷,而在眼科疾病诊疗中的总结性文章较少。在这篇综述中,我们对碳点的特点及近十年生物学领域的应用进行了总结讨论,重点总结了碳点在眼科疾病的诊疗方向的报道,希望这篇综述能够帮助人们了解碳点在眼科方面的应用现状。

1 碳点

1.1 碳点的结构

       碳点和功能化碳点颗粒的直径一般小于10 nm,具有sp2和sp3杂化共轭碳和官能团或聚合物组成的核壳结构,易于修饰,各种官能团(如-OH、-COOH、-NH2)、杂原子掺杂后可能会改变碳点的性质,包括提高量子产率、改变发射波长和调整发光颜色[14]。含氧官能团使大多数碳点表现出高水溶性和稳定性。

1.2 碳点的合成方法

       目前碳点的制备方法主要分为“自上而下”和“自下而上”两类。最初的碳点合成原料仅限于碳质原材料,近年来为了追求成本效益,越来越多的绿色前体如水果、植物等开始作为原材料用于碳点的绿色合成。在合成过程中或者合成结束后,可以通过掺杂杂原子、官能团或者表面钝化对碳点进行修饰。
       1.2.1 自上而下
       在自上而下的方法中,碳点可以通过激光烧蚀、电弧放电、化学消融、电化学剥离等方法,将大块碳前体分解成直径小于10 nm的量子点,该类方法是一种简单快速的制备方法,但存在碳点形态尺寸不均匀、成本高等缺点。如激光烧蚀法,是通过激光照射碳原料合成碳点,合成过程简单,但是制备过程需要大量碳原材料,且所得碳点尺寸不均一。化学消融法是通过强氧化酸烧蚀,把碳原料分解为颗粒的一种方法。该法所得的碳点具有多色发射和无毒的特点,适合生物医学领域的碳点制备。[15]近年来,研究者通过电化学的方法,以碳材料为阳极电极,在电解质水溶液中通过静电刺激剥离出碳点,实现了碳点可控尺寸的大规模化生产[16-17]
       1.2.2 自下而上
       下而上的方法包括热解、燃烧、水热、微波、沉淀和超声处理等,将简单碳前体,如柠檬酸、果糖、葡萄糖、壳聚糖,逐渐脱水、聚合、碳化、钝化成碳点。水热法具有环保、经济的优点,可以大量合成无毒、高量子产率且尺寸均匀的碳点,但是此法耗时较长。微波法同样环保、节能,且合成速度快,但是制备成本较高。
       总的来说,各种合成方法都存在不同的优缺点,相比之下,自下而上的合成方法与自上而下相比,更环保、合成速度更快、成本更低、尺寸更均匀[18]

1.3 碳点的属性

       1.3.1 光学特点
       碳点因其独特的光学特性受到关注,随着人们对碳点荧光发光机制的理解不断深入,碳点的特性也得到不断优化。
       大多数碳点在280~360 nm的紫外区域表现出较强的吸光度,延伸到可见光区域。碳点的尺寸、反应温度、表面官能团化和合成模式似乎会影响吸收波长。
       光致发光(Photoluminescence Spectroscopy,PL)指分子在被入射光子激发到更高的能级后,又重新恢复到稳定能级时发射光子现象,是碳点的重要特性,使其在生物传感、生物成像中存在巨大潜力。由于其独特的电子结构,碳点表现出可调的光学特性。通过增加碳点直径,发射光谱有向红光迁移的趋势,且表面官能团发生钝化[19-20]。氧化、还原或调整表面官能团的浓度会改变功能性碳点的发射强度和发光颜色[21-22]。杂原子掺杂是改变碳点光致发光性的重要手段。由于氮的高电子亲和力,氮掺杂碳点后,PL光谱向短波长红光迁移,强度增加;而硼掺杂则会增加碳点发射波长,降低发射光子能量;硫元素掺杂实现了发射光谱蓝移。
      大多数碳点在400~550 nm范围内表现出蓝色或蓝绿色发射,穿透力差、易受组织自发荧光干扰,近年来,越来越多的红光/近红外发射的碳点被合成,以扩展其在成像方面的应用[23]。部分碳点还表现出优异的上变频光致发光(upconversion photoluminescence,UCPL)性。UCPL是吸收两个或多个长波长光子后,发射出较短波长的一种反斯托克斯现象。该现象减少了自发背景荧光干扰,为细胞成像提供了基础[24]
       量子产率(quantum yield,QY)是分子发射的光子数与分子在激发波长下吸收的光子数之比,可以衡量碳点成像效率。目前报告碳点的QY值从1%到94.5%不等[25-27]。大多数仅由碳和氧组成的碳点产率低,通过还原、钝化和掺杂杂原子可以提高QY[28-29]。氮元素掺杂最常用于提高碳点的QY,Tiwari等[30]对碳点掺杂了氮元素后,碳点的产率从54.29%提升至89.82%。早期研究认为碳点具有良好的光稳定性,在几小时的激光照射下,碳点的荧光强度没有明显下降[31-32]。然而,最近也有研究报告了碳点的光漂白现象,即碳点在接受光照射后,发生不同程度的荧光强度下降[33]。碳点光漂白的程度主要取决于暴露于照射光的持续时间和强度,同时也与氧气浓度和碳点的浓度有关[33]
       1.3.2 低毒性
       碳点的毒性与表面电荷等多种因素密切相关。体外细胞学实验发现,即使在高剂量(1 000 mg/L)处理下,也并未检测到碳点显著的细胞毒性[34]。对小鼠尾静脉注射碳点,进行体内成像和器官离体分析发现,碳点12 h后开始从体内清除,碳点处理组和对照组小鼠全血细胞计数和组织病理分析未检测到差异,即未发现碳点的生物毒性[35]
       近年来,一些研究者也对碳点的眼毒性进行了相关的研究。Karakoçak等研究者[36]发现,在使用体外成像所需的十倍剂量的碳点处理下,视网膜色素上皮细胞、晶状体上皮细胞才出现明显凋亡。Jian等[37]将碳点微针贴片贴敷于兔眼后,观察碳点对角膜、视网膜是否存在潜在的生物毒性,研究结果未观察到角膜、视网膜的损伤,也再次证明碳点良好的生物相容性。
1.3.3 生物分布、代谢
       确定碳点的生物分布和循环对检测碳点的治疗效果、研究脏器毒性有重要意义。碳点的分布与其表面官能团及与细胞、各种大分子的相互作用有关。各项研究都发现,肾脏是碳点的主要排泄器官[38-39]。给药方法不同,碳点在体内的清除率也不同,静脉注射清除速度最快,其次是皮下注射和肌内注射[40]。碳点被细胞通过内吞作用摄取,可能进入活细胞溶酶体内或被细胞质各种酶降解[41]

2 碳点在眼科疾病中的应用

       近年来,多种高渗透性的新型药物,如脂质体、金属量子点等,逐渐开始在眼部进行研究,然而,此类药物仍存在成本高、眼毒性等问题。碳点成本低廉、低毒性,又具有独特的物理、化学和生物特性,在眼部具有广阔的应用前景。目前碳点在眼科领域中主要的应用场景包括以下几种。

2.1 眼部成像

       为了降低组织自发蓝色、绿色荧光的干扰,Karakoçak等[36]合成了具有长波长红色荧光(600~700 nm)的氮掺杂碳点(nCDs),使用小动物成像仪进行拍摄,发现n-CDs可以对猪眼进行清晰成像,研究提示了碳点在眼部成像中良好的应用前景。
       荧光素眼底血管造影(fundus fluorescein angiography, FFA)是诊断和检查眼科疾病的重要手段,被认为是评估视网膜和脉络膜病变最有用的诊断工具,但FFA的成像依赖于静脉注射荧光素钠,部分患者仍有发生严重并发症的可能。研究者将合成的功能性碳点腹腔注射于小鼠和大鼠后,可清晰呈现出视网膜的血管结构,成像效果与荧光素钠相当[37, 45]。碳点因其成本低廉、荧光稳定、低毒性和出色的生物相容性的特点,有望替代荧光素钠成为眼底血管造影更加安全的造影剂。

2.2 抗菌

       近年来,抗菌纳米材料备受关注,纳米材料的抗菌能力与表面的电荷有关[46-48]。Wei等[49]发现带正电荷的碳点可以通过破坏细菌细胞膜发挥显著的杀菌作用。另外,碳点表面丰富的官能团可以促进细菌内源性活性氧(reactive oxygen species,ROS)的产生,碳点还可以通过扩散和静电作用吸附到细胞和真菌的细胞壁,导致细胞代谢障碍。最终在多种作用的影响下,起到抗菌效果。Wang等[50]使用了金黄色葡萄球菌为模型研究了碳点抗细菌生物膜效应的原理。研究者发现碳点通过与淀粉样蛋白肽的竞争性组装干扰金黄色葡萄球菌生物膜形成。除了增加细菌内源性ROS产生外,一些研究证明,光照可以促进碳点与氧气反应,生成更多的ROS。产生的ROS会对细菌细胞产生非特异性的损伤,最终起到杀菌的作用。 这种现象被称为光动力抗菌,在对抗耐药菌方面有着巨大的应用潜力[51-52]
       细菌性角膜炎、真菌性角膜炎是感染性角膜炎的主要类型,治疗不及时或干预不当可导致角膜溃疡、穿孔,甚至视力丧失。目前一线治疗方法是使用广谱抗生素或抗真菌药物辅助以类固醇药物治疗,局部滴眼仍是给药的主要方式。然而多重耐药菌引起的细菌性角膜炎对广谱抗生素治疗效果差,且由于角膜紧密连接的存在,常规抗菌滴眼液停留时间短、穿透性差,生物利用率低。Jian等[37]设计并合成的亚精胺(spermidine,Spd)掺杂碳点(CQDSpds),具有产率高、尺寸小(直径约6 nm)和高正电荷的优点,不仅对非多重耐药细菌具有有效的抗菌性能,而且对多重耐药细菌也具有明显的抗菌性。在兔的细菌性角膜炎的治疗中,CQDSpds抗菌效果与市售磺胺甲口恶唑的商用眼药水相当。Chen等[42]合成的超小带正电荷碳点(SP-CDs),可以诱导真菌细胞内氧化应激,破坏真菌细胞壁和细胞膜,在低浓度(2.5 μ g/mL)下抑制超90%的真菌生长,在20 μ g/mL下致真菌孢子完全失活。对真菌性角膜炎小鼠进行对比治疗发现,SP-CDs的治疗效果优于临床常用药物伏立康唑。如前所述,带正电的碳点可以暂时诱导角膜上皮细胞紧密连接的开放,促进细胞摄取,比传统抗菌药物更容易进入角膜基质,并长时间驻留[37, 42]。为了进一步提高药物利用效率,Fang等[53]使用微针贴片封装抗菌碳点,局部施用于细菌性角膜炎模型兔的角膜上,以辅助药物穿透角膜上皮屏障。

2.3 抗新生血管生成

       眼部病理性新生血管相关疾病,如糖尿病性视网膜病变、脉络膜新生血管等,威胁患者视力,严重者可导致患者失明。而这些疾病的治疗主要依赖激光光凝术、玻璃体腔药物注射和玻璃体切割术,技术要求高、风险大,且很多患者视功能预后不佳。因此,亟需新的抗新生血管治疗策略。
       Shereema等[54]首次探索了碳点在抗新生血管方面的作用。雏鸡胚胎的绒毛膜尿囊膜(chorioallantoic membrane,CAM)经过碳点处理后,血管密度显著降低,且血管生成因子和血红蛋白水平也显著下降。这提示碳点具有优秀的抗新生血管生成能力。
       Zhao等[55]也揭示了碳点在治疗病理性视网膜新生血管的治疗前景。该团队发现石墨烯量子点可以显著抑制脐静脉内皮细胞的迁移、成管和萌芽。研究者将石墨烯量子点注射至氧诱导的视网膜病变模型小鼠玻璃体腔内,发现显著减少了病理性视网膜血管的生成。进一步机制研究揭示,其可能是通过STAT3/periostin/ERK信号通路起作用[55]
       以碳点为载体,Shoval等[44]设计了一种抗VEGF适配体-碳点复合体。该复合体可以短时间内通过局部滴眼的方式穿透眼屏障到达大鼠视网膜,显著抑制了体外大鼠脉络膜血管生成,效果与临床常用的抗血管生成药物贝伐珠单抗和阿柏西普相当。这为病理性新生血管相关眼底病变的治疗提供了一种更加安全、无创、便捷的治疗策略。
2.4 眼部药物递送
       常规药物角膜前停留时间短、药物生物利用度低,常通过增加给药频次以达到有效药物浓度,然而该方法副作用大、患者依从性差,仍需进一步开发理想的载体,以实现在治疗期间可以持续可控地对药物进行释放。角膜是滴眼药物入眼的主要屏障,主要由疏水的上皮和亲水的基质构成。Karakoçak等[36]将碳点注射至离体猪眼玻璃体内,发现碳点在半小时内即可扩散至角膜。由于碳点直径大于角膜上皮的细胞旁孔径,理论上无法进入角膜基质,研究者发现碳点的高正电荷可以暂时开放角膜上皮紧密连接,进入角膜基质[37, 42]。Wang等[43]对小鼠通过局部滴眼的方法给药,发现碳点已渗透到角膜组织内,但是不存在于房水中。碳点具有疏水性,使其能够快速渗透角膜上皮细胞,对碳点附加亲水官能团后,携带亲水基团的碳点能够进一步渗透至亲水性角膜基质,在晶状体、视网膜和后巩膜都能检测到药物荧光[44]。 因此,碳点在眼部具有良好的渗透性,可以有效穿透角膜,甚至到达眼后极部。
       Wang等[56]以透明质酸为碳源合成碳点,用于双氯芬酸钠的眼部药物递送,该复合药物可在给药后在角膜表面形成凝胶,增加黏附力并持续释放药物12 h。为了减少重复玻璃体腔注射抗VEGF药物产生的不良事件,Anisha等[57]使用碳基纳米囊泡包裹贝伐珠单抗,研究发现该复合药物可有效抑制VEGF诱导的内皮细胞增殖和迁移,并减少VEGF诱导的新生血管生成。该纳米囊泡具有优越的包封效率,可以持续释放药物,延长单次IVT后药物作用时间,为今后治疗DR、CNV等疾病提供了新的治疗手段。
       另外,碳点还具有高水溶性,与传统药物结合后可以显著提高药物的水溶性。雷帕霉素(rapamycin, RAPA)是一种自噬诱导剂,可以保护青光眼高眼压导致的视神经损伤,然而RAPA具有全身毒性及水溶性差等缺点,限制了其临床应用的范围。 Wang等[43]以壳聚糖(chitosan,CS)为碳源合成了RAPA碳点纳米复合物,该复合物保留了RAPA的生物活性及良好的水溶性,可以通过有效减轻青光眼小鼠模型的视神经损伤,进一步展现了碳点在眼部药物递送中的优秀潜力。
2.5 基因递送
       多种基因缺陷型眼病,如视网膜色素变性(retinitis pigmentosa,RP)、视锥细胞或视杆细胞营养不良(cone-rod dystrophy,CRD)、黄斑营养不良(macular dystrophy, MD)等,严重影响患者视力,且暂无有效的治疗方法,目前基因治疗已成为该类基因缺陷疾病最有希望的治疗方法。眼部得益于其天然的组织屏障和免疫豁免,被认为是基因治疗的优势器官,药物在实现局部有效递送的同时,减少对全身系统的影响。2017年12月美国食品药物管理局(US Food and Drug Administration,FDA)批准了首款直接矫正基因缺陷的基因疗法—Luxturna,该疗法以腺相关病毒(nadeno-associated virus,AVV)为载体,通过向眼部输送RPE65基因,可用于治疗RPE65基因双等位基因突变的Leber先天性黑朦(Leber's Congenital Amaurosis,LCA)患者[58]。目前,大多数基因治疗均以AVV为载体,该载体成本昂贵,并且可以在多个阶段与宿主免疫系统反应,从对基因的有效递送和持久表达造成影响[59]。低毒性、高组织相容性、极小尺寸、低廉的价格使碳点成为基因递送领域的一颗新星。碳点表现出良好的遗传物质细胞内递送潜力,拥有较强的DNA结合能力和卓越的转染效率[60-62]。研究发现,碳点可以递送质粒DNA至神经元细胞,且摄取率高达97%[63]。已有其他领域以碳点为载体进行基因递送的研究,而碳点在眼部基因递送尚处在空白阶段,Yang等[64-65]使用纳米金刚石(nanodiamond,ND)作为基因递送载体治疗X连锁青少年视网膜分裂症,发现ND可以被视网膜成功内化并保持稳定长达2周,揭示了碳纳米材料在眼部基因递送治疗的可行性。
2.6 干眼症快速诊断、治疗
       碳点易于修饰、自发荧光的特点使它们能够充当荧光探针来检测各种生物分子,不仅可以用于眼部成像,也可以用于微量物质的快速检测,从而辅助疾病诊断。研究者基于荧光偏振技术,以碳点为荧光探针,检测泪液中乳铁蛋白含量,用于干眼症的早期、快速诊断[66]
       另外,还有研究者探索了碳点在干眼症治疗中的作用。Wei等[67]合成的碳点纳米酶原位凝胶系统(C-dots@Gel),在施用于眼部后,可以在眼表迅速形成水凝胶,维持时间长达120 min。经C-dots@Gel治疗后,干眼模型小鼠泪膜更稳定,泪液分泌时间延长,角膜表面损伤得到修复,结膜杯状细胞数量增加。与传统剂型相比,C-dots@Gel角膜前保留时间大大延长,生物利用度更高,治疗效果更显著。
2.7 玻璃体混浊消融
       玻璃体混浊又被称为“飞蚊症”,是由胶原纤维交联变性导致的,常见于近视和衰老患者,影响患者视觉质量。目前治疗玻璃体混浊的主要方法是玻璃体消融术,此方法具有一定的局限性,适用患者人群有限。
        碳点在近红外区域可以将光子转化为热量[68-69]。Barras等[70]利用碳点的光热特点,发现带正电荷的碳点可以体外抑制Ⅰ型胶原的颤动,联合微脉冲激光后可以破坏的Ⅰ型胶原纤维聚集,从而改善玻璃体混浊。该法有望成为未来治疗玻璃体混浊的一种非手术治疗方法。
2.8 在眼部恶性肿瘤诊断及治疗中的作用
       碳点在肿瘤诊断中的靶向成像及治疗中的药物靶向运输中均取得了巨大的进步,在眼部恶性肿瘤的诊断及治疗中亦展现出巨大潜力。葡萄膜黑色素瘤(uveal melanoma,UM)是成人中最常见的眼内恶性肿瘤,研究者研究了碳点诱导的ROS对葡萄膜黑色素瘤的影响。ROS曾被认为可以用于杀死肿瘤细胞,然而近年来一些研究发现,ROS也可以促进肿瘤形成、转移和耐药性增加[74]。研究发现低剂量碳点(50~100 μ g/mL)产生的ROS可以促进肿瘤细胞的迁移和侵袭,需要辅助抗氧化剂才能逆转这种促肿瘤作用,在高剂量(大于200 μ g/mL)的碳点作用下可表现出肿瘤抑制作用[75]。另外,由于碳点优异的成像能力及眼部独特的解剖特点,在未来有望实现眼部恶性肿瘤(特别是视网膜、脉络膜恶性肿瘤)的成像和治疗一次完成。这种个性化的治疗手段既提高了疗效又降低了药物的副作用,应用前景广阔。

3 碳点的局限性

       纳米颗粒产生ROS可能会造成潜在的不良影响。碳点暴露于光照下可诱导ROS的生成,该特性使其在光动力疗法等领域得到应用。但同时产生的ROS可能会激发细胞氧化应激、造成线粒体损伤等,从而导致细胞损伤[35, 72-73]。另外,碳点的长期生物毒性尚不清楚,其安全性仍需进一步验证。

4 总结

       碳点凭借其低成本、出色的光学特性、高化学稳定性、良好生物相容性、易于修饰等优点,在生物医学领域拥有无限的潜力。目前,大多数关于碳点的研究集中在生物成像和抗肿瘤方面,在眼科方面的研究相对较少。现有的研究已证实了碳点在眼部血管成像、药物递送、抗新生血管、抗菌、抗肿瘤等许多方面均具备独特的优势,有望突破现有眼部治疗瓶颈,优化给药方法。总体而言,碳点是一种优秀的荧光纳米材料,不久的将来有望在眼部疾病的诊疗方面拥有更为广阔的应用前景。

利益冲突

    所有作者均声明不存在利益冲突。

开放获取声明

    本文适用于知识共享许可协议 ( Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。详情请访问:https://creativecommons.org/licenses/by-nc-nd/4.0/。

1、Anwar S, Ding H, Xu M, et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots[ J]. ACS Appl Bio Mater, 2019, 2(6): 2317-2338. DOI: 10.1021/acsabm.9b00112.Anwar S, Ding H, Xu M, et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots[ J]. ACS Appl Bio Mater, 2019, 2(6): 2317-2338. DOI: 10.1021/acsabm.9b00112.
2、Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[ J]. J Am Chem Soc, 2004, 126(40): 12736-12737. DOI: 10.1021/ja040082h.Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[ J]. J Am Chem Soc, 2004, 126(40): 12736-12737. DOI: 10.1021/ja040082h.
3、Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[ J]. J Am Chem Soc, 2006, 128(24): 7756- 7757. DOI: 10.1021/ja062677d.Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[ J]. J Am Chem Soc, 2006, 128(24): 7756- 7757. DOI: 10.1021/ja062677d.
4、Cosert KM, Kim S, Jalilian I, et al. Metallic engineered nanomaterials and ocular toxicity: a current perspective[ J]. Pharmaceutics, 2022, 14(5): 981. DOI: 10.3390/pharmaceutics14050981.Cosert KM, Kim S, Jalilian I, et al. Metallic engineered nanomaterials and ocular toxicity: a current perspective[ J]. Pharmaceutics, 2022, 14(5): 981. DOI: 10.3390/pharmaceutics14050981.
5、Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review[ J]. Arch Toxicol, 2013, 87(7): 1181-1200. DOI: 10.1007/s00204-013-1079-4.Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review[ J]. Arch Toxicol, 2013, 87(7): 1181-1200. DOI: 10.1007/s00204-013-1079-4.
6、 Gaillet S, Rouanet JM. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms: a review[ J]. Food Chem Toxicol, 2015, 77: 58-63. DOI: 10.1016/j.fct.2014.12.019. Gaillet S, Rouanet JM. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms: a review[ J]. Food Chem Toxicol, 2015, 77: 58-63. DOI: 10.1016/j.fct.2014.12.019.
7、Antony JJ, Sivalingam P, Chen B. Toxicological effects of silver nanoparticles[ J]. Environ Toxicol Pharmacol, 2015, 40(3): 729-732. DOI: 10.1016/j.etap.2015.09.003.Antony JJ, Sivalingam P, Chen B. Toxicological effects of silver nanoparticles[ J]. Environ Toxicol Pharmacol, 2015, 40(3): 729-732. DOI: 10.1016/j.etap.2015.09.003.
8、Ivask A, Titma T, Visnapuu M, et al. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro[ J]. Curr Top Med Chem, 2015, 15(18): 1914-1929. DOI: 10.2174/15680266156661505 06150109.Ivask A, Titma T, Visnapuu M, et al. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro[ J]. Curr Top Med Chem, 2015, 15(18): 1914-1929. DOI: 10.2174/15680266156661505 06150109.
9、Nurunnabi M, Khatun Z, Huh KM, et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots[ J]. ACS Nano, 2013, 7(8): 6858-6867. DOI: 10.1021/nn402043cNurunnabi M, Khatun Z, Huh KM, et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots[ J]. ACS Nano, 2013, 7(8): 6858-6867. DOI: 10.1021/nn402043c
10、Li Y, Wu S, Zhang J, et al. Sulphur doped carbon dots enhance photodynamic therapy via PI3K/Akt signalling pathway[ J]. Cell Prolif, 2020, 53(5): e12821. DOI: 10.1111/cpr.12821.Li Y, Wu S, Zhang J, et al. Sulphur doped carbon dots enhance photodynamic therapy via PI3K/Akt signalling pathway[ J]. Cell Prolif, 2020, 53(5): e12821. DOI: 10.1111/cpr.12821.
11、Dong X , Liang W, Meziani MJ, et al. Carbon dots as potent antimicrobial agents[ J]. Theranostics, 2020, 10(2): 671-686. DOI: 10.7150/thno.39863Dong X , Liang W, Meziani MJ, et al. Carbon dots as potent antimicrobial agents[ J]. Theranostics, 2020, 10(2): 671-686. DOI: 10.7150/thno.39863
12、Mintz KJ, Mercado G, Zhou Y, et al. Tryptophan carbon dots and their ability to cross the blood-brain barrier[ J]. Colloids Surf B Biointerfaces, 2019, 176: 488-493. DOI: 10.1016/j.colsurfb.2019.01.031.Mintz KJ, Mercado G, Zhou Y, et al. Tryptophan carbon dots and their ability to cross the blood-brain barrier[ J]. Colloids Surf B Biointerfaces, 2019, 176: 488-493. DOI: 10.1016/j.colsurfb.2019.01.031.
13、Ye P, Li L, Qi XT, et al. Macrophage membrane-encapsulated nitrogendoped carbon quantum dot nanosystem for targeted treatment of Alzheimer 's disease: Regulating metal ion homeostasis and photothermal removal of β-amyloid[ J]. J Colloid Interface Sci, 2023,650(Pt B): 1749-1761. DOI: 10.1016/j.jcis.2023.07.132Ye P, Li L, Qi XT, et al. Macrophage membrane-encapsulated nitrogendoped carbon quantum dot nanosystem for targeted treatment of Alzheimer 's disease: Regulating metal ion homeostasis and photothermal removal of β-amyloid[ J]. J Colloid Interface Sci, 2023,650(Pt B): 1749-1761. DOI: 10.1016/j.jcis.2023.07.132
14、Lesani P, Mohamad Hadi AH, Lu Z, et al. Design principles and biological applications of red-emissive two-photon carbon dots[ J]. Commun Mater, 2021, 2: 108. DOI: 10.1038/s43246-021-00214-2.Lesani P, Mohamad Hadi AH, Lu Z, et al. Design principles and biological applications of red-emissive two-photon carbon dots[ J]. Commun Mater, 2021, 2: 108. DOI: 10.1038/s43246-021-00214-2.
15、Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[ J]. Chem Mater, 2009, 21(23): 5563-5565. DOI: 10.1021/cm901593yPeng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[ J]. Chem Mater, 2009, 21(23): 5563-5565. DOI: 10.1021/cm901593y
16、Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of watersoluble carbon nanocr ystals released electrochemically from graphite[ J]. J Am Chem Soc, 2009, 131(13): 4564-4565. DOI: 10.1021/ja809073f.Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of watersoluble carbon nanocr ystals released electrochemically from graphite[ J]. J Am Chem Soc, 2009, 131(13): 4564-4565. DOI: 10.1021/ja809073f.
17、Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[ J]. Dalton Trans, 2012, 41(31): 9526-9531. DOI: 10.1039/C2DT30985H.Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[ J]. Dalton Trans, 2012, 41(31): 9526-9531. DOI: 10.1039/C2DT30985H.
18、Chan KK, Yap SHK, Yong KT. Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications[ J]. Nanomicro Lett, 2018, 10(4): 72. DOI: 10.1007/s40820-018-0223-3.Chan KK, Yap SHK, Yong KT. Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications[ J]. Nanomicro Lett, 2018, 10(4): 72. DOI: 10.1007/s40820-018-0223-3.
19、Yan X, Cui X, Li LS. Synthesis of large, stable colloidal graphene quantum dots with tunable size[ J]. J Am Chem Soc, 2010, 132(17): 5944-5945. DOI: 10.1021/ja1009376.Yan X, Cui X, Li LS. Synthesis of large, stable colloidal graphene quantum dots with tunable size[ J]. J Am Chem Soc, 2010, 132(17): 5944-5945. DOI: 10.1021/ja1009376.
20、Tang L, Ji R, Cao X, et al. Deep ultraviolet photoluminescence of watersoluble self-passivated graphene quantum dots[ J]. ACS Nano, 2012, 6(6): 5102-5110. DOI: 10.1021/nn300760g.Tang L, Ji R, Cao X, et al. Deep ultraviolet photoluminescence of watersoluble self-passivated graphene quantum dots[ J]. ACS Nano, 2012, 6(6): 5102-5110. DOI: 10.1021/nn300760g.
21、Lai S, Jin Y, Shi L, et al. Mechanisms behind excitation- and concentration-dependent multicolor photoluminescence in graphene quantum dots[ J]. Nanoscale, 2020, 12(2): 591-601. DOI: 10.1039/ c9nr08461d.Lai S, Jin Y, Shi L, et al. Mechanisms behind excitation- and concentration-dependent multicolor photoluminescence in graphene quantum dots[ J]. Nanoscale, 2020, 12(2): 591-601. DOI: 10.1039/ c9nr08461d.
22、Zhu S, Zhang J, Tang S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications[ J]. Adv Funct Mater, 2012, 22(22): 4732-4740. DOI: 10.1002/adfm.201201499Zhu S, Zhang J, Tang S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications[ J]. Adv Funct Mater, 2012, 22(22): 4732-4740. DOI: 10.1002/adfm.201201499
23、Ansari L, Hallaj S, Hallaj T, et al. Doped-carbon dots: recent advances in their biosensing, bioimaging and therapy applications[ J]. Colloids Surf B Biointerfaces, 2021, 203: 111743. DOI: 10.1016/ j.colsurfb.2021.111743.Ansari L, Hallaj S, Hallaj T, et al. Doped-carbon dots: recent advances in their biosensing, bioimaging and therapy applications[ J]. Colloids Surf B Biointerfaces, 2021, 203: 111743. DOI: 10.1016/ j.colsurfb.2021.111743.
24、Liu Q, Guo B, Rao Z, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[ J]. Nano Lett, 2013, 13(6): 2436-2441. DOI: 10.1021/nl400368v.Liu Q, Guo B, Rao Z, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[ J]. Nano Lett, 2013, 13(6): 2436-2441. DOI: 10.1021/nl400368v.
25、Zhao QL, Zhang ZL, Huang BH, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[ J]. Chem Commun, 2008(41): 5116-5118. DOI: 10.1039/ b812420e.Zhao QL, Zhang ZL, Huang BH, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[ J]. Chem Commun, 2008(41): 5116-5118. DOI: 10.1039/ b812420e.
26、Liu H, Li Z, Sun Y, et al. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability[ J]. Sci Rep, 2018, 8(1): 1086. DOI: 10.1038/s41598- 018-19373-3.Liu H, Li Z, Sun Y, et al. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability[ J]. Sci Rep, 2018, 8(1): 1086. DOI: 10.1038/s41598- 018-19373-3.
27、Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[ J]. J Am Chem Soc, 2012, 134(1): 15-18. DOI: 10.1021/ja206030c.Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[ J]. J Am Chem Soc, 2012, 134(1): 15-18. DOI: 10.1021/ja206030c.
28、L i L L , J i J, Fe i R , e t a l . A f a c i l e m i c r o w a v e a v e n u e t o electrochemiluminescent two-color graphene quantum dots[ J]. Adv Funct Materials, 2012, 22(14): 2971-2979. DOI: 10.1002/adfm. 201200166.L i L L , J i J, Fe i R , e t a l . A f a c i l e m i c r o w a v e a v e n u e t o electrochemiluminescent two-color graphene quantum dots[ J]. Adv Funct Materials, 2012, 22(14): 2971-2979. DOI: 10.1002/adfm. 201200166.
29、Shen J, Zhu Y, Yang X, et al. One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[ J]. New J Chem, 2012, 36(1): 97-101. DOI: 10.1039/C1NJ20658C.Shen J, Zhu Y, Yang X, et al. One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[ J]. New J Chem, 2012, 36(1): 97-101. DOI: 10.1039/C1NJ20658C.
30、Tiwari A, Walia S, Sharma S, et al. High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum[ J]. J Mater Chem B, 2023, 11(5): 1029-1043. DOI: 10.1039/D2TB02188A.Tiwari A, Walia S, Sharma S, et al. High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum[ J]. J Mater Chem B, 2023, 11(5): 1029-1043. DOI: 10.1039/D2TB02188A.
31、Wei W, Xu C, Wu L, et al. Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display[ J]. Sci Rep, 2014, 4: 3564. DOI: 10.1038/srep03564.Wei W, Xu C, Wu L, et al. Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display[ J]. Sci Rep, 2014, 4: 3564. DOI: 10.1038/srep03564.
32、Ge J, Jia Q, Liu W, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice[ J]. Adv Mater, 2015, 27(28): 4169-4177. DOI: 10.1002/adma.201500323.Ge J, Jia Q, Liu W, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice[ J]. Adv Mater, 2015, 27(28): 4169-4177. DOI: 10.1002/adma.201500323.
33、Wang W, Damm C, Walter J, et al. Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis[ J]. Phys Chem Chem Phys, 2016, 18(1): 466-475. DOI: 10.1039/C5CP04942C.Wang W, Damm C, Walter J, et al. Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis[ J]. Phys Chem Chem Phys, 2016, 18(1): 466-475. DOI: 10.1039/C5CP04942C.
34、Chen W, Shen J, Wang Z, et al. Turning waste into wealth: facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging[ J]. Chem Sci, 2021, 12(35): 11722-11729. DOI: 10.1039/ d1sc02837e.Chen W, Shen J, Wang Z, et al. Turning waste into wealth: facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging[ J]. Chem Sci, 2021, 12(35): 11722-11729. DOI: 10.1039/ d1sc02837e.
35、Tabish TA, Scotton CJ, Ferguson DC, et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy[ J]. Nanomedicine, 2018, 13(15): 1923-1937. DOI: 10.2217/nnm-2018-0018.Tabish TA, Scotton CJ, Ferguson DC, et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy[ J]. Nanomedicine, 2018, 13(15): 1923-1937. DOI: 10.2217/nnm-2018-0018.
36、Karako%C3%A7ak%20BB%2C%20Liang%20J%2C%20Kavadiya%20S%2C%20et%20al.%20Optimizing%20the%20synthesis%20of%20red-emissive%20nitrogen-doped%20carbon%20dots%20for%20use%20in%20bioimaging%5B%20J%5D.%20%0AACS%20Appl%20Nano%20Mater%2C%202018%2C%201(7)%3A%203682-3692.%20DOI%3A%2010.1021%2Facsanm.%20%0A8b00799.Karako%C3%A7ak%20BB%2C%20Liang%20J%2C%20Kavadiya%20S%2C%20et%20al.%20Optimizing%20the%20synthesis%20of%20red-emissive%20nitrogen-doped%20carbon%20dots%20for%20use%20in%20bioimaging%5B%20J%5D.%20%0AACS%20Appl%20Nano%20Mater%2C%202018%2C%201(7)%3A%203682-3692.%20DOI%3A%2010.1021%2Facsanm.%20%0A8b00799.
37、Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis[ J]. ACS Nano, 2017, 11(7): 6703-6716. DOI: 10.1021/acsnano.7b01023.Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis[ J]. ACS Nano, 2017, 11(7): 6703-6716. DOI: 10.1021/acsnano.7b01023.
38、 Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k. Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k.
39、Lee C, Kwon W, Beack S, et al. Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy[ J]. Theranostics, 2016, 6(12): 2196-2208. DOI: 10.7150/ thno.16923.Lee C, Kwon W, Beack S, et al. Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy[ J]. Theranostics, 2016, 6(12): 2196-2208. DOI: 10.7150/ thno.16923.
40、Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k.Huang X, Zhang F, Zhu L, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots[ J]. ACS Nano, 2013, 7(7): 5684-5693. DOI: 10.1021/nn401911k.
41、Tong L, Wang X, Chen Z, et al. One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging[ J]. Anal Chem, 2020, 92(9): 6430-6436. DOI: 10.1021/acs.analchem.9b05553.Tong L, Wang X, Chen Z, et al. One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging[ J]. Anal Chem, 2020, 92(9): 6430-6436. DOI: 10.1021/acs.analchem.9b05553.
42、Chen H, Geng X, Ning Q, et al. Biophilic positive carbon dot exerts antifungal activity and augments corneal permeation for fungal keratitis[ J]. Nano Lett, 2024, 24(13): 4044-4053. DOI: 10.1021/acs. nanolett.4c01042.Chen H, Geng X, Ning Q, et al. Biophilic positive carbon dot exerts antifungal activity and augments corneal permeation for fungal keratitis[ J]. Nano Lett, 2024, 24(13): 4044-4053. DOI: 10.1021/acs. nanolett.4c01042.
43、Wang Q, Dong J, Du M, et al. Chitosan-rapamycin carbon dots alleviate glaucomatous retinal injury by inducing autophagy to promote M2 microglial polarization[ J]. Int J Nanomedicine, 2024, 19: 2265-2284. DOI: 10.2147/IJN.S440025.Wang Q, Dong J, Du M, et al. Chitosan-rapamycin carbon dots alleviate glaucomatous retinal injury by inducing autophagy to promote M2 microglial polarization[ J]. Int J Nanomedicine, 2024, 19: 2265-2284. DOI: 10.2147/IJN.S440025.
44、Shoval A, Markus A, Zhou Z, et al. Anti-VEGF-Aptamer modified C-dots-a hybrid nanocomposite for topical treatment of ocular vascular disorders[ J]. Small, 2019, 15(40): e1902776. DOI: 10.1002/ smll.201902776.Shoval A, Markus A, Zhou Z, et al. Anti-VEGF-Aptamer modified C-dots-a hybrid nanocomposite for topical treatment of ocular vascular disorders[ J]. Small, 2019, 15(40): e1902776. DOI: 10.1002/ smll.201902776.
45、Ilhan H, Erdem B, Ozkasapoglu S, et al. Fluorescent and biocompatible nitrogen and sulfur Co-doped carbon nanodot as an ocular fundus angiography imaging agent[ J]. J Fluoresc, 2023, 33(5): 1917-1925. DOI: 10.1007/s10895-023-03200-8.Ilhan H, Erdem B, Ozkasapoglu S, et al. Fluorescent and biocompatible nitrogen and sulfur Co-doped carbon nanodot as an ocular fundus angiography imaging agent[ J]. J Fluoresc, 2023, 33(5): 1917-1925. DOI: 10.1007/s10895-023-03200-8.
46、Schneider R, Wolpert C, Guilloteau H, et al. The exposure of bacteria to CdTe-core quantum dots: the importance of surface chemistry on cytotoxicity[ J]. Nanotechnology, 2009, 20(22): 225101. DOI: 10.1088/0957-4484/20/22/225101.Schneider R, Wolpert C, Guilloteau H, et al. The exposure of bacteria to CdTe-core quantum dots: the importance of surface chemistry on cytotoxicity[ J]. Nanotechnology, 2009, 20(22): 225101. DOI: 10.1088/0957-4484/20/22/225101.
47、Zhao Y, Chen Z, Chen Y, et al. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs[ J]. J Am Chem Soc, 2013, 135(35): 12940-12943. DOI: 10.1021/ja4058635.Zhao Y, Chen Z, Chen Y, et al. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs[ J]. J Am Chem Soc, 2013, 135(35): 12940-12943. DOI: 10.1021/ja4058635.
48、Li P, Poon YF, Li W, et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioningability[ J]. Nat Mater, 2011, 10(2): 149-156. DOI: 10.1038/nmat2915.Li P, Poon YF, Li W, et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioningability[ J]. Nat Mater, 2011, 10(2): 149-156. DOI: 10.1038/nmat2915.
49、Bing W, Sun H, Yan Z, et al. Programmed bacteria death induced by carbon dots with different surface charge[ J]. Small, 2016, 12(34): 4713-4718. DOI: 10.1002/smll.201600294.Bing W, Sun H, Yan Z, et al. Programmed bacteria death induced by carbon dots with different surface charge[ J]. Small, 2016, 12(34): 4713-4718. DOI: 10.1002/smll.201600294.
50、Wang Y, Kadiyala U, Qu Z, et al. Anti-biofilm activity of graphene quantum dots via self-assembly with bacterial amyloid proteins[ J]. ACS Nano, 2019, 13(4): 4278-4289. DOI: 10.1021/acsnano.8b09403.Wang Y, Kadiyala U, Qu Z, et al. Anti-biofilm activity of graphene quantum dots via self-assembly with bacterial amyloid proteins[ J]. ACS Nano, 2019, 13(4): 4278-4289. DOI: 10.1021/acsnano.8b09403.
51、Wang L, Li Y, Wang Y, et al. Chlorine-doped graphene quantum dots with enhanced anti- and pro-oxidant properties[ J]. ACS Appl Mater Interfaces, 2019, 11(24): 21822-21829. DOI: 10.1021/ acsami.9b03194.Wang L, Li Y, Wang Y, et al. Chlorine-doped graphene quantum dots with enhanced anti- and pro-oxidant properties[ J]. ACS Appl Mater Interfaces, 2019, 11(24): 21822-21829. DOI: 10.1021/ acsami.9b03194.
52、Meziani MJ, Dong X, Zhu L, et al. Visible-light-activated bactericidal functions of carbon “quantum” dots[ J]. ACS Appl Mater Interfaces, 2016, 8(17): 10761-10766. DOI: 10.1021/acsami.6b01765.Meziani MJ, Dong X, Zhu L, et al. Visible-light-activated bactericidal functions of carbon “quantum” dots[ J]. ACS Appl Mater Interfaces, 2016, 8(17): 10761-10766. DOI: 10.1021/acsami.6b01765.
53、Fang Y, Zhuo L, Yuan H, et al. Construction of graphene quantum dot-based dissolving microneedle patches for the treatment of bacterial keratitis[ J]. Int J Pharm, 2023, 639: 122945. DOI: 10.1016/ j.ijpharm.2023.122945.Fang Y, Zhuo L, Yuan H, et al. Construction of graphene quantum dot-based dissolving microneedle patches for the treatment of bacterial keratitis[ J]. Int J Pharm, 2023, 639: 122945. DOI: 10.1016/ j.ijpharm.2023.122945.
54、Shereema RM, Sruthi TV, Sameer Kumar VB, et al. Angiogenic profiling of synthesized carbon quantum dots[ J]. Biochemistry, 2015, 54(41): 6352-6356. DOI: 10.1021/acs.biochem.5b00781.Shereema RM, Sruthi TV, Sameer Kumar VB, et al. Angiogenic profiling of synthesized carbon quantum dots[ J]. Biochemistry, 2015, 54(41): 6352-6356. DOI: 10.1021/acs.biochem.5b00781.
55、Zhao N, Gui X, Fang Q, et al. Graphene quantum dots rescue angiogenic retinopathy via blocking STAT3/Periostin/ERK signaling[ J]. J Nanobiotechnology, 2022, 20(1): 174. DOI: 10.1186/ s12951-022-01362-4.Zhao N, Gui X, Fang Q, et al. Graphene quantum dots rescue angiogenic retinopathy via blocking STAT3/Periostin/ERK signaling[ J]. J Nanobiotechnology, 2022, 20(1): 174. DOI: 10.1186/ s12951-022-01362-4.
56、Wang L, Pan H, Gu D, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging, and in vivo evaluation[ J]. Int J Mol Sci, 2021, 22(18): 9934. DOI: 10.3390/ijms22189934.Wang L, Pan H, Gu D, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging, and in vivo evaluation[ J]. Int J Mol Sci, 2021, 22(18): 9934. DOI: 10.3390/ijms22189934.
57、Anand A , Jian HJ, Huang HH, et al. Anti-angiogenic carbon nanovesicles loaded with bevacizumab for the treatment of age-related macular degeneration[ J]. Carbon, 2023. 201: 362-370.Anand A , Jian HJ, Huang HH, et al. Anti-angiogenic carbon nanovesicles loaded with bevacizumab for the treatment of age-related macular degeneration[ J]. Carbon, 2023. 201: 362-370.
58、FDA approves hereditary blindness gene therapy[ J]. Nat Biotechnol, 2018, 36(1): 6. DOI: 10.1038/nbt0118-6a.FDA approves hereditary blindness gene therapy[ J]. Nat Biotechnol, 2018, 36(1): 6. DOI: 10.1038/nbt0118-6a.
59、Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery[ J]. Nat Rev Drug Discov, 2019, 18(5): 358- 378. DOI: 10.1038/s41573-019-0012-9.Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery[ J]. Nat Rev Drug Discov, 2019, 18(5): 358- 378. DOI: 10.1038/s41573-019-0012-9.
60、Hasanzadeh A, Radmanesh F, Kiani J, et al. Photoluminescent functionalized carbon dots for CRISPR deliver y: synthesis, optimization and cellular investigation[ J]. Nanotechnology, 2019, 30(13): 135101. DOI: 10.1088/1361-6528/aafbf9.Hasanzadeh A, Radmanesh F, Kiani J, et al. Photoluminescent functionalized carbon dots for CRISPR deliver y: synthesis, optimization and cellular investigation[ J]. Nanotechnology, 2019, 30(13): 135101. DOI: 10.1088/1361-6528/aafbf9.
61、Zhou J, Deng W, Wang Y, et al. Cationic carbon quantum dots derived from alginate for gene delivery: one-step synthesis and cellular uptake[ J]. Acta Biomater, 2016, 42: 209-219. DOI: 10.1016/ j.actbio.2016.06.021.Zhou J, Deng W, Wang Y, et al. Cationic carbon quantum dots derived from alginate for gene delivery: one-step synthesis and cellular uptake[ J]. Acta Biomater, 2016, 42: 209-219. DOI: 10.1016/ j.actbio.2016.06.021.
62、 Chen J, Li F, Zhao B, et al. Gene transfection efficiency improvement w i th l ip i d conjugated cat io nic car bo n dots [ J] . ACS A ppl Mater Interfaces, 2024, 16(21): 27087-27101. DOI: 10.1021/ acsami.4c02614. Chen J, Li F, Zhao B, et al. Gene transfection efficiency improvement w i th l ip i d conjugated cat io nic car bo n dots [ J] . ACS A ppl Mater Interfaces, 2024, 16(21): 27087-27101. DOI: 10.1021/ acsami.4c02614.
63、 Huang YC, Lai JZ, Luo CL, et al. A fluorescent vector of carbon dot to deliver Rab13 and Rab14 plasmids for promoting neurite outgrowth[ J]. ACS Appl Bio Mater, 2023, 6(9): 3739-3749. DOI: 10.1021/acsabm.3c00418. Huang YC, Lai JZ, Luo CL, et al. A fluorescent vector of carbon dot to deliver Rab13 and Rab14 plasmids for promoting neurite outgrowth[ J]. ACS Appl Bio Mater, 2023, 6(9): 3739-3749. DOI: 10.1021/acsabm.3c00418.
64、Yang TC, Chang CY, Yarmishyn AA, et al. Carboxylated nanodiamondmediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina[ J]. Acta Biomater, 2020, 101: 484-494. DOI: 10.1016/j.actbio.2019.10.037.Yang TC, Chang CY, Yarmishyn AA, et al. Carboxylated nanodiamondmediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina[ J]. Acta Biomater, 2020, 101: 484-494. DOI: 10.1016/j.actbio.2019.10.037.
65、Ma Y, Gao W, Zhang Y, et al. Biomimetic MOF nanoparticles delivery of C-dot nanozyme and CRISPR/Cas9 system for site-specific treatment of ulcerative colitis[ J]. ACS Appl Mater Interfaces, 2022, 14(5): 6358-6369. DOI: 10.1021/acsami.1c21700.Ma Y, Gao W, Zhang Y, et al. Biomimetic MOF nanoparticles delivery of C-dot nanozyme and CRISPR/Cas9 system for site-specific treatment of ulcerative colitis[ J]. ACS Appl Mater Interfaces, 2022, 14(5): 6358-6369. DOI: 10.1021/acsami.1c21700.
66、Zhang Y, Yan P, Tang H, et al. Rapid detection of tear lactoferrin for diagnosis of dry eyes by using fluorescence polarization-based aptasensor[ J]. Sci Rep, 2023, 13(1): 15179. DOI: 10.1038/s41598- 023-42484-5.Zhang Y, Yan P, Tang H, et al. Rapid detection of tear lactoferrin for diagnosis of dry eyes by using fluorescence polarization-based aptasensor[ J]. Sci Rep, 2023, 13(1): 15179. DOI: 10.1038/s41598- 023-42484-5.
67、Wei W, Cao H, Shen D, et al. Antioxidant Carbon Dots Nanozyme Loaded in Thermosensitive in situ Hydrogel System for Efficient Dry Eye Disease Treatment[ J]. Int J Nanomedicine, 2024, 19: 4045-4060. DOI: 10.2147/IJN.S456613.Wei W, Cao H, Shen D, et al. Antioxidant Carbon Dots Nanozyme Loaded in Thermosensitive in situ Hydrogel System for Efficient Dry Eye Disease Treatment[ J]. Int J Nanomedicine, 2024, 19: 4045-4060. DOI: 10.2147/IJN.S456613.
68、Nurunnabi M, Khatun Z, Reeck GR , et al. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging[ J]. ACS Appl Mater Interfaces, 2014, 6(15): 12413-12421. DOI: 10.1021/ am504071z.Nurunnabi M, Khatun Z, Reeck GR , et al. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging[ J]. ACS Appl Mater Interfaces, 2014, 6(15): 12413-12421. DOI: 10.1021/ am504071z.
69、Bao X, Yuan Y, Chen J, et al. In vivo theranostics with near-infraredemitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration[ J]. Light Sci Appl, 2018, 7: 91. DOI: 10.1038/s41377-018-0090-1.Bao X, Yuan Y, Chen J, et al. In vivo theranostics with near-infraredemitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration[ J]. Light Sci Appl, 2018, 7: 91. DOI: 10.1038/s41377-018-0090-1.
70、Barras A, Sauvage F, de Hoon I, et al. Carbon quantum dots as a dual platform for the inhibition and light-based destruction of collagen fibers: implications for the treatment of eye floaters[ J]. Nanoscale Horiz, 2021, 6(6): 449-461. DOI: 10.1039/D1NH00157D.Barras A, Sauvage F, de Hoon I, et al. Carbon quantum dots as a dual platform for the inhibition and light-based destruction of collagen fibers: implications for the treatment of eye floaters[ J]. Nanoscale Horiz, 2021, 6(6): 449-461. DOI: 10.1039/D1NH00157D.
71、Qu D, Miao X, Wang X, et al. Se & N Co-doped carbon dots for highperformance fluorescence imaging agent of angiography[ J]. J Mater Chem B, 2017, 5(25): 4988-4992. DOI: 10.1039/C7TB00875A. [LinkOut]Qu D, Miao X, Wang X, et al. Se & N Co-doped carbon dots for highperformance fluorescence imaging agent of angiography[ J]. J Mater Chem B, 2017, 5(25): 4988-4992. DOI: 10.1039/C7TB00875A. [LinkOut]
72、Zhou Y, Sun H, Wang F, et al. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots[ J]. Chem Commun, 2017, 53(76): 10588-10591. DOI: 10.1039/c7cc04831a.Zhou Y, Sun H, Wang F, et al. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots[ J]. Chem Commun, 2017, 53(76): 10588-10591. DOI: 10.1039/c7cc04831a.
73、Wang%20D%2C%20Zhu%20L%2C%20Chen%20JF%2C%20et%20al.%20Can%20graphene%20quantum%20dots%20cause%20%0ADNA%20damage%20in%20cells%3F%5B%20J%5D.%20Nanoscale%2C%202015%2C%207(21)%3A%209894-9901.%20DOI%3A%20%0A10.1039%2Fc5nr01734c.Wang%20D%2C%20Zhu%20L%2C%20Chen%20JF%2C%20et%20al.%20Can%20graphene%20quantum%20dots%20cause%20%0ADNA%20damage%20in%20cells%3F%5B%20J%5D.%20Nanoscale%2C%202015%2C%207(21)%3A%209894-9901.%20DOI%3A%20%0A10.1039%2Fc5nr01734c.
74、Wallace DC. Mitochondria and cancer[ J]. Nat Rev Cancer, 2012, 12(10): 685-698. DOI: 10.1038/nrc3365.Wallace DC. Mitochondria and cancer[ J]. Nat Rev Cancer, 2012, 12(10): 685-698. DOI: 10.1038/nrc3365.
75、Ding Y, Yu J, Chen X, et al. Dose-dependent carbon-dot-induced ROS promote uveal melanoma cell tumorigenicity via activation of mTOR signaling and glutamine metabolism[ J]. Adv Sci, 2021, 8(8): 2002404. DOI: 10.1002/advs.202002404.Ding Y, Yu J, Chen X, et al. Dose-dependent carbon-dot-induced ROS promote uveal melanoma cell tumorigenicity via activation of mTOR signaling and glutamine metabolism[ J]. Adv Sci, 2021, 8(8): 2002404. DOI: 10.1002/advs.202002404.
1、山东省自然基金项目(ZR2023MH139)。
This work was supported by the Natural Science Foundation of Shandong Province, China (ZR2023MH139).()
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息
目录