1、Liu Z, Zou Y, Yu Y, et al. Accuracy of intraocular lens power calculation
in pediatric secondary implantation: In-the-bag versus sulcus
placement[ J]. Am J Ophthalmol, 2023, 249: 137-143. DOI: 10.1016/
j.ajo.2022.12.028.Liu Z, Zou Y, Yu Y, et al. Accuracy of intraocular lens power calculation
in pediatric secondary implantation: In-the-bag versus sulcus
placement[ J]. Am J Ophthalmol, 2023, 249: 137-143. DOI: 10.1016/
j.ajo.2022.12.028.
2、Liu Z, Lin H, Jin G, et al. In-the-bag versus ciliary sulcus secondary
intraocular lens implantation for pediatric aphakia: a prospective
comparative study[ J]. Am J Ophthalmol, 2022, 236: 183-192. DOI:
10.1016/j.ajo.2021.10.006.Liu Z, Lin H, Jin G, et al. In-the-bag versus ciliary sulcus secondary
intraocular lens implantation for pediatric aphakia: a prospective
comparative study[ J]. Am J Ophthalmol, 2022, 236: 183-192. DOI:
10.1016/j.ajo.2021.10.006.
3、刘奕志, 吴明星. 先天性白内障的手术治疗及展望[J]. 中
国眼耳鼻喉科杂志, 2017, 17(2): 79-81+84. DOI: 10.14166/
j.issn.1671-2420.2017.02.001.
Liu YZ, Wu MX. Advances and outlook of congenital cataract
surgery[J]. Chin J Ophthalmol Otorhinolaryngol, 2017, 17(2): 79-
81+84. DOI: 10.14166/j.issn.1671-2420.2017.02.001.刘奕志, 吴明星. 先天性白内障的手术治疗及展望[J]. 中
国眼耳鼻喉科杂志, 2017, 17(2): 79-81+84. DOI: 10.14166/
j.issn.1671-2420.2017.02.001.
Liu YZ, Wu MX. Advances and outlook of congenital cataract
surgery[J]. Chin J Ophthalmol Otorhinolaryngol, 2017, 17(2): 79-
81+84. DOI: 10.14166/j.issn.1671-2420.2017.02.001.
4、陈伟蓉. 先天性白内障手术治疗的思考 [ J]. 中华眼科杂志,
2021, 57(1): 11-6. Doi: 10.3760/cma.j.cn112142-20201022-00697.
Chen WR. Reflections on surgical treatment of congenital cataract [ J].
Chin J Ophthalmol, 2021, 57(1): 11-6. Doi: 10.3760/cma.j.cn112142-
20201022-00697.陈伟蓉. 先天性白内障手术治疗的思考 [ J]. 中华眼科杂志,
2021, 57(1): 11-6. Doi: 10.3760/cma.j.cn112142-20201022-00697.
Chen WR. Reflections on surgical treatment of congenital cataract [ J].
Chin J Ophthalmol, 2021, 57(1): 11-6. Doi: 10.3760/cma.j.cn112142-
20201022-00697.
5、Lalwani%20S%2C%20Kekunnaya%20R.%20Secondary%20intraocular%20lens%20implantation%20%0A(IOL)%20in%20children-%20what%2C%20why%2C%20when%2C%20and%20how%3F%5B%20J%5D.%20Semin%20Ophthalmol%2C%20%0A2023%2C%2038(3)%3A%20255-264.%20DOI%3A%2010.1080%2F08820538.2022.2116288.Lalwani%20S%2C%20Kekunnaya%20R.%20Secondary%20intraocular%20lens%20implantation%20%0A(IOL)%20in%20children-%20what%2C%20why%2C%20when%2C%20and%20how%3F%5B%20J%5D.%20Semin%20Ophthalmol%2C%20%0A2023%2C%2038(3)%3A%20255-264.%20DOI%3A%2010.1080%2F08820538.2022.2116288.
6、VanderVeen DK , Drews-Botsch CD, Nizam A, et al. Outcomes
of secondary intraocular lens implantation in the Infant Aphakia
Treatment Study[ J]. J Cataract Refract Surg, 2021, 47(2): 172-177.
DOI: 10.1097/j.jcrs.0000000000000412.VanderVeen DK , Drews-Botsch CD, Nizam A, et al. Outcomes
of secondary intraocular lens implantation in the Infant Aphakia
Treatment Study[ J]. J Cataract Refract Surg, 2021, 47(2): 172-177.
DOI: 10.1097/j.jcrs.0000000000000412.
7、Koch CR, Kara-Junior N, Serra A, et al. Long-term results of secondary
intraocular lens implantation in children under 30 months of age[ J].
Eye, 2018, 32(12): 1858-1863. DOI: 10.1038/s41433-018-0191-3.Koch CR, Kara-Junior N, Serra A, et al. Long-term results of secondary
intraocular lens implantation in children under 30 months of age[ J].
Eye, 2018, 32(12): 1858-1863. DOI: 10.1038/s41433-018-0191-3.
8、Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens
calculation formulas[ J]. Ophthalmology, 2018, 125(2): 169-178. DOI:
10.1016/j.ophtha.2017.08.027.Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens
calculation formulas[ J]. Ophthalmology, 2018, 125(2): 169-178. DOI:
10.1016/j.ophtha.2017.08.027.
9、Chang P, Li Z, Zhang F, et al. Comparison of aphakic refraction and biometry-based formulae for secondary In-the-bag and sulcus-implanted intraocular lens power estimation in children[ J]. Ophthalmic
Res, 2021, 64(6): 1048-1054. DOI: 10.1159/000512753.Chang P, Li Z, Zhang F, et al. Comparison of aphakic refraction and biometry-based formulae for secondary In-the-bag and sulcus-implanted intraocular lens power estimation in children[ J]. Ophthalmic
Res, 2021, 64(6): 1048-1054. DOI: 10.1159/000512753.
10、Shenoy BH, Mittal V, Gupta A, et al. Refractive outcomes and
prediction error following secondary intraocular lens implantation in
children: a decade-long analysis[ J]. Br J Ophthalmol, 2013, 97(12):
1516-1519. DOI: 10.1136/bjophthalmol-2012-302775.Shenoy BH, Mittal V, Gupta A, et al. Refractive outcomes and
prediction error following secondary intraocular lens implantation in
children: a decade-long analysis[ J]. Br J Ophthalmol, 2013, 97(12):
1516-1519. DOI: 10.1136/bjophthalmol-2012-302775.
11、陈伟蓉, 陈卉, 林浩添. 先天性白内障治疗现状及展望[ J]. 中华
眼视光学与视觉科学杂志, 2018, 20(1): 1-6+13. DOI: 10.3760/
cma.j.issn.1674-845X.2018.01.001.
Chen WR, Chen H, Lin HT. Status and prospect of congenital cataract
treatment[ J]. Chin J Optom Ophthalmol Vis Sci, 2018, 20(1): 1-6+13.
DOI: 10.3760/cma.j.issn.1674-845X.2018.01.001.陈伟蓉, 陈卉, 林浩添. 先天性白内障治疗现状及展望[ J]. 中华
眼视光学与视觉科学杂志, 2018, 20(1): 1-6+13. DOI: 10.3760/
cma.j.issn.1674-845X.2018.01.001.
Chen WR, Chen H, Lin HT. Status and prospect of congenital cataract
treatment[ J]. Chin J Optom Ophthalmol Vis Sci, 2018, 20(1): 1-6+13.
DOI: 10.3760/cma.j.issn.1674-845X.2018.01.001.
12、Baradaran-Rafii A, Shirzadeh E, Eslani M, et al. Optical correction of
aphakia in children[ J]. J Ophthalmic Vis Res, 2014, 9(1): 71-82.Baradaran-Rafii A, Shirzadeh E, Eslani M, et al. Optical correction of
aphakia in children[ J]. J Ophthalmic Vis Res, 2014, 9(1): 71-82.
13、Al Shamrani M, Al Turkmani S. Update of intraocular lens implantation
in children[ J]. Saudi J Ophthalmol, 2012, 26(3): 271-275. DOI:
10.1016/j.sjopt.2012.05.005.Al Shamrani M, Al Turkmani S. Update of intraocular lens implantation
in children[ J]. Saudi J Ophthalmol, 2012, 26(3): 271-275. DOI:
10.1016/j.sjopt.2012.05.005.
14、冯张青, 李俊红. 重视儿童白内障手术时机、手术方法及术后
并发症处理方式的选择[ J]. 中华眼科医学杂志(电子版), 2019,
9(1): 1-6. DOI: 10.3877/cma.j.issn.2095-2007.2019.01.001.
Feng ZQ, Li JH. Pay attention to the choice of operation time,
operation method and treatment of complications after cataract surgery
in children[ J]. Chin J Ophthalmol Med (Electron Ed), 2019, 9(1): 1-6.
DOI: 10.3877/cma.j.issn.2095-2007.2019.01.001.冯张青, 李俊红. 重视儿童白内障手术时机、手术方法及术后
并发症处理方式的选择[ J]. 中华眼科医学杂志(电子版), 2019,
9(1): 1-6. DOI: 10.3877/cma.j.issn.2095-2007.2019.01.001.
Feng ZQ, Li JH. Pay attention to the choice of operation time,
operation method and treatment of complications after cataract surgery
in children[ J]. Chin J Ophthalmol Med (Electron Ed), 2019, 9(1): 1-6.
DOI: 10.3877/cma.j.issn.2095-2007.2019.01.001.
15、Sachdeva V, Katukuri S, Kekunnaya R, et al. Validation of guidelines
for undercorrection of intraocular lens power in children[ J]. Am J
Ophthalmol, 2017, 174: 17-22. DOI: 10.1016/j.ajo.2016.10.017.Sachdeva V, Katukuri S, Kekunnaya R, et al. Validation of guidelines
for undercorrection of intraocular lens power in children[ J]. Am J
Ophthalmol, 2017, 174: 17-22. DOI: 10.1016/j.ajo.2016.10.017.
16、Trivedi RH, Wilson ME. Pediatric cataract: preoperative issues
and considerations[M]//Wilson M, Trivedi R , Saunders R .
Pediatric Ophthalmology. Berlin, Heidelberg: Springer, 2009: 311-
324.10.1007/978-3-540-68632-3_22.Trivedi RH, Wilson ME. Pediatric cataract: preoperative issues
and considerations[M]//Wilson M, Trivedi R , Saunders R .
Pediatric Ophthalmology. Berlin, Heidelberg: Springer, 2009: 311-
324.10.1007/978-3-540-68632-3_22.
17、张玉婷, 赵春梅, 刘湘云, 等. 人工晶状体度数计算公式的研
究现状[ J]. 国际眼科杂志, 2021, 21(3): 462-466. DOI: 10.3980/
j.issn.1672-5123.2021.3.17.
Zhang YT, Zhao CM, Liu XY, et al. Research status of the formulas for
calculating the degree of intraocular lens[ J]. Int Eye Sci, 2021, 21(3):
462-466. DOI: 10.3980/j.issn.1672-5123.2021.3.17.张玉婷, 赵春梅, 刘湘云, 等. 人工晶状体度数计算公式的研
究现状[ J]. 国际眼科杂志, 2021, 21(3): 462-466. DOI: 10.3980/
j.issn.1672-5123.2021.3.17.
Zhang YT, Zhao CM, Liu XY, et al. Research status of the formulas for
calculating the degree of intraocular lens[ J]. Int Eye Sci, 2021, 21(3):
462-466. DOI: 10.3980/j.issn.1672-5123.2021.3.17.
18、向菁, 管怀进. 人工晶状体计算公式的研究进展[ J]. 眼科新进
展, 2018, 38(6): 583-587. DOI: 10.13389/j.cnki.rao.2018.0138.
Xiang J, Guan HJ. Research progress on the calculation formulas
of IOL[ J]. Recent Adv Ophthalmol, 2018, 38(6): 583-587. DOI:
10.13389/j.cnki.rao.2018.0138. 向菁, 管怀进. 人工晶状体计算公式的研究进展[ J]. 眼科新进
展, 2018, 38(6): 583-587. DOI: 10.13389/j.cnki.rao.2018.0138.
Xiang J, Guan HJ. Research progress on the calculation formulas
of IOL[ J]. Recent Adv Ophthalmol, 2018, 38(6): 583-587. DOI:
10.13389/j.cnki.rao.2018.0138.
19、李鑫鑫, 李绍伟. 新型人工晶状体屈光度数计算公式的研究进
展[ J]. 中华眼科杂志, 2022, 58(7): 544-548. DOI: 10.3760/cma.
j.cn112142-20211003-00468.
Li XX, Li SW. Research progress of new generation intraocular lens
calculation formulas[ J]. Chin J Ophthalmol, 2022, 58(7): 544-548.
DOI: 10.3760/cma.j.cn112142-20211003-00468.李鑫鑫, 李绍伟. 新型人工晶状体屈光度数计算公式的研究进
展[ J]. 中华眼科杂志, 2022, 58(7): 544-548. DOI: 10.3760/cma.
j.cn112142-20211003-00468.
Li XX, Li SW. Research progress of new generation intraocular lens
calculation formulas[ J]. Chin J Ophthalmol, 2022, 58(7): 544-548.
DOI: 10.3760/cma.j.cn112142-20211003-00468.
20、Koch DD, Hill W, Abulafia A, et al. Pursuing perfection in intraocular
lens calculations: I. Logical approach for classifying IOL calculation
formulas[J]. J Cataract Refract Surg, 2017, 43(6): 717-718. DOI:
10.1016/j.jcrs.2017.06.006.Koch DD, Hill W, Abulafia A, et al. Pursuing perfection in intraocular
lens calculations: I. Logical approach for classifying IOL calculation
formulas[J]. J Cataract Refract Surg, 2017, 43(6): 717-718. DOI:
10.1016/j.jcrs.2017.06.006.
21、Savini G, Hoffer KJ, Kohnen T. IOL power formula classifications[ J].
J Cataract Refract Surg, 2024, 50(2): 105-107. DOI: 10.1097/
j.jcrs.0000000000001378.Savini G, Hoffer KJ, Kohnen T. IOL power formula classifications[ J].
J Cataract Refract Surg, 2024, 50(2): 105-107. DOI: 10.1097/
j.jcrs.0000000000001378.
22、Zou M, Lian Z, Young CA, et al. Improving effective lens position
prediction for transscleral fixation of intraocular lens among congenital
ectopia lentis patients[ J]. Am J Ophthalmol, 2023, 252: 121-129. DOI:
10.1016/j.ajo.2023.03.021.Zou M, Lian Z, Young CA, et al. Improving effective lens position
prediction for transscleral fixation of intraocular lens among congenital
ectopia lentis patients[ J]. Am J Ophthalmol, 2023, 252: 121-129. DOI:
10.1016/j.ajo.2023.03.021.
23、Kane JX, Chang DF. Intraocular lens power formulas, biometry, and
intraoperative aberrometry: a review[ J]. Ophthalmology, 2021,
128(11): e94-e114. DOI: 10.1016/j.ophtha.2020.08.010.Kane JX, Chang DF. Intraocular lens power formulas, biometry, and
intraoperative aberrometry: a review[ J]. Ophthalmology, 2021,
128(11): e94-e114. DOI: 10.1016/j.ophtha.2020.08.010.
24、Stopyra W, Langenbucher A, Grzybowski A. Intraocular lens power
calculation formulas-a systematic review[ J]. Ophthalmol Ther, 2023,
12(6): 2881-2902. DOI: 10.1007/s40123-023-00799-6.Stopyra W, Langenbucher A, Grzybowski A. Intraocular lens power
calculation formulas-a systematic review[ J]. Ophthalmol Ther, 2023,
12(6): 2881-2902. DOI: 10.1007/s40123-023-00799-6.
25、Kothari SS, Reddy JC. Recent developments in the intraocular lens
formulae: an update[ J]. Semin Ophthalmol, 2023, 38(2): 143-150.
DOI: 10.1080/08820538.2022.2094712.Kothari SS, Reddy JC. Recent developments in the intraocular lens
formulae: an update[ J]. Semin Ophthalmol, 2023, 38(2): 143-150.
DOI: 10.1080/08820538.2022.2094712.
26、李修远, 常平骏, 赵云娥. 人工晶状体屈光度计算公式中有效晶
状体位置的预测及其影响因素[ J]. 国际眼科纵览, 2021, 45(5):
409-414. DOI: 10.3760/cma.j.issn.1673-5803.2021.05.008.
Li XY, Chang PJ, Zhao YE. Prediction of effective lens position in
intraocular lens calculation formula and its influencing factors[ J].
Int Rev Ophthalmol, 2021, 45(5): 409-414. DOI: 10.3760/cma.
j.issn.1673-5803.2021.05.008.李修远, 常平骏, 赵云娥. 人工晶状体屈光度计算公式中有效晶
状体位置的预测及其影响因素[ J]. 国际眼科纵览, 2021, 45(5):
409-414. DOI: 10.3760/cma.j.issn.1673-5803.2021.05.008.
Li XY, Chang PJ, Zhao YE. Prediction of effective lens position in
intraocular lens calculation formula and its influencing factors[ J].
Int Rev Ophthalmol, 2021, 45(5): 409-414. DOI: 10.3760/cma.
j.issn.1673-5803.2021.05.008.
27、Holladay JT. Standardizing constants for ultrasonic biometry,
keratometry, and intraocular lens power calculations[J]. J Cataract
Refract Surg, 1997, 23(9): 1356-1370. DOI: 10.1016/s0886-
3350(97)80115-0.Holladay JT. Standardizing constants for ultrasonic biometry,
keratometry, and intraocular lens power calculations[J]. J Cataract
Refract Surg, 1997, 23(9): 1356-1370. DOI: 10.1016/s0886-
3350(97)80115-0.
28、Retzlaff JA, Sanders DR , Kraff MC. Development of the SRK/T
intraocular lens implant power calculation formula[ J]. J Cataract Refract Surg, 1990, 16(3): 333-340. DOI: 10.1016/s0886-
3350(13)80705-5.Retzlaff JA, Sanders DR , Kraff MC. Development of the SRK/T
intraocular lens implant power calculation formula[ J]. J Cataract Refract Surg, 1990, 16(3): 333-340. DOI: 10.1016/s0886-
3350(13)80705-5.
29、Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and
regression formulas[ J]. J Cataract Refract Surg, 1993, 19(6): 700-712.
DOI: 10.1016/s0886-3350(13)80338-0.Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and
regression formulas[ J]. J Cataract Refract Surg, 1993, 19(6): 700-712.
DOI: 10.1016/s0886-3350(13)80338-0.
30、Roberts TV, Hodge C, Sutton G, et al. Comparison of Hill-radial basis
function, Barrett Universal and current third generation formulas for
the calculation of intraocular lens power during cataract surgery[ J].
Clin Exp Ophthalmol, 2018, 46(3): 240-246. DOI: 10.1111/
ceo.13034.Roberts TV, Hodge C, Sutton G, et al. Comparison of Hill-radial basis
function, Barrett Universal and current third generation formulas for
the calculation of intraocular lens power during cataract surgery[ J].
Clin Exp Ophthalmol, 2018, 46(3): 240-246. DOI: 10.1111/
ceo.13034.
31、Zhang J, Han X, Chen X, et al. Choice of intraocular lens calculation formula for cataract patients with prior pars Plana vitrectomy[ J]. J Cataract Refract Surg, 2023, 49(9): 956-963. DOI: 10.1097/j.jcrs.0000000000001253.Zhang J, Han X, Chen X, et al. Choice of intraocular lens calculation formula for cataract patients with prior pars Plana vitrectomy[ J]. J Cataract Refract Surg, 2023, 49(9): 956-963. DOI: 10.1097/j.jcrs.0000000000001253.
32、Nakhli FR, Emarah K, Jeddawi L. Accuracy of formulae for secondary intraocular lens power calculations in pediatric aphakia[ J]. J Curr Ophthalmol, 2017, 29(3): 199-203. DOI: 10.1016/j.joco.2017.05.007.Nakhli FR, Emarah K, Jeddawi L. Accuracy of formulae for secondary intraocular lens power calculations in pediatric aphakia[ J]. J Curr Ophthalmol, 2017, 29(3): 199-203. DOI: 10.1016/j.joco.2017.05.007.
33、Hug T. Use of the aphakic refraction in intraocular lens (IOL) power calculations for secondary IOLs in pediatric patients[ J]. J Pediatr Ophthalmol Strabismus, 2004, 41(4): 209-211. DOI: 10.3928/0191-3913-20040701-07.Hug T. Use of the aphakic refraction in intraocular lens (IOL) power calculations for secondary IOLs in pediatric patients[ J]. J Pediatr Ophthalmol Strabismus, 2004, 41(4): 209-211. DOI: 10.3928/0191-3913-20040701-07.
34、Khan AO, AlGaeed A. Paediatric secondary intraocular lens estimation from the aphakic refraction alone: comparison with a standard biometric technique[ J]. Br J Ophthalmol, 2006, 90(12): 1458-1460. DOI: 10.1136/bjo.2006.100834.Khan AO, AlGaeed A. Paediatric secondary intraocular lens estimation from the aphakic refraction alone: comparison with a standard biometric technique[ J]. Br J Ophthalmol, 2006, 90(12): 1458-1460. DOI: 10.1136/bjo.2006.100834.
35、Abdel-Hafez G, Trivedi RH, Wilson ME, et al. Comparison of aphakic refraction formulas for secondary in-the-bag intraocular lens power estimation in children[ J]. J AAPOS, 2011, 15(5): 432-434. DOI: 10.1016/j.jaapos.2011.05.021.Abdel-Hafez G, Trivedi RH, Wilson ME, et al. Comparison of aphakic refraction formulas for secondary in-the-bag intraocular lens power estimation in children[ J]. J AAPOS, 2011, 15(5): 432-434. DOI: 10.1016/j.jaapos.2011.05.021.
36、Barrett GD. An improved universal theoretical formula for intraocular lens power prediction[ J]. J Cataract Refract Surg, 1993, 19(6): 713-720. DOI: 10.1016/s0886-3350(13)80339-2.Barrett GD. An improved universal theoretical formula for intraocular lens power prediction[ J]. J Cataract Refract Surg, 1993, 19(6): 713-720. DOI: 10.1016/s0886-3350(13)80339-2.
37、Shammas HJ, Taroni L, Pellegrini M, et al. Accuracy of newer intraocular lens power formulas in short and long eyes using sum-of-segments biometry[ J]. J Cataract Refract Surg, 2022, 48(10): 1113-1120. DOI: 10.1097/j.jcrs.0000000000000958.Shammas HJ, Taroni L, Pellegrini M, et al. Accuracy of newer intraocular lens power formulas in short and long eyes using sum-of-segments biometry[ J]. J Cataract Refract Surg, 2022, 48(10): 1113-1120. DOI: 10.1097/j.jcrs.0000000000000958.
38、Haigis W, Lege B, Miller N, et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis[ J]. Graefe’s Arch Clin Exp Ophthalmol, 2000, 238(9): 765-773. DOI: 10.1007/s004170000188.Haigis W, Lege B, Miller N, et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis[ J]. Graefe’s Arch Clin Exp Ophthalmol, 2000, 238(9): 765-773. DOI: 10.1007/s004170000188.
39、Kane JX, Van Heerden A, Atik A, et al. Intraocular lens power formula accuracy: comparison of 7 formulas[ J]. J Cataract Refract Surg, 2016, 42(10): 1490-1500. DOI: 10.1016/j.jcrs.2016.07.021.Kane JX, Van Heerden A, Atik A, et al. Intraocular lens power formula accuracy: comparison of 7 formulas[ J]. J Cataract Refract Surg, 2016, 42(10): 1490-1500. DOI: 10.1016/j.jcrs.2016.07.021.
40、Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D “super surface”combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy[ J]. JAMA Ophthalmol, 2015, 133(12): 1431-1436. DOI: 10.1001/jamaophthalmol.2015.3832.Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D “super surface”combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy[ J]. JAMA Ophthalmol, 2015, 133(12): 1431-1436. DOI: 10.1001/jamaophthalmol.2015.3832.
41、Debellemanière G, Dubois M, Gauvin M, et al. The PEARL-DGS formula: the development of an open-source machine learning-based thick IOL calculation formula[ J]. Am J Ophthalmol, 2021, 232: 58-69. DOI: 10.1016/j.ajo.2021.05.004.Debellemanière G, Dubois M, Gauvin M, et al. The PEARL-DGS formula: the development of an open-source machine learning-based thick IOL calculation formula[ J]. Am J Ophthalmol, 2021, 232: 58-69. DOI: 10.1016/j.ajo.2021.05.004.
42、Shenoy BH, Mittal V, Gupta A, et al. Complications and visual outcomes after secondary intraocular lens implantation in children[ J]. Am J Ophthalmol, 2015, 159(4): 720-726. DOI: 10.1016/j.ajo.2015.01.002.Shenoy BH, Mittal V, Gupta A, et al. Complications and visual outcomes after secondary intraocular lens implantation in children[ J]. Am J Ophthalmol, 2015, 159(4): 720-726. DOI: 10.1016/j.ajo.2015.01.002.
43、Dubey R, Birchall W, Grigg J. Improved refractive outcome for ciliary sulcus-implanted intraocular lenses[ J]. Ophthalmology, 2012, 119(2): 261-265. DOI: 10.1016/j.ophtha.2011.07.050.Dubey R, Birchall W, Grigg J. Improved refractive outcome for ciliary sulcus-implanted intraocular lenses[ J]. Ophthalmology, 2012, 119(2): 261-265. DOI: 10.1016/j.ophtha.2011.07.050.
44、Knox Cartwright NE, Aristodemou P, Sparrow JM, et al. Adjustment of intraocular lens power for sulcus implantation[ J]. J Cataract Refract Surg, 2011, 37(4): 798-799;authorreply 799-800. DOI: 10.1016/j.jcrs.2011.02.020.Knox Cartwright NE, Aristodemou P, Sparrow JM, et al. Adjustment of intraocular lens power for sulcus implantation[ J]. J Cataract Refract Surg, 2011, 37(4): 798-799;authorreply 799-800. DOI: 10.1016/j.jcrs.2011.02.020.
45、Mehta R, Aref AA. Intraocular lens implantation in the ciliary sulcus: challenges and risks[ J]. Clin Ophthalmol, 2019, 13: 2317-2323. DOI: 10.2147/OPTH.S205148.Mehta R, Aref AA. Intraocular lens implantation in the ciliary sulcus: challenges and risks[ J]. Clin Ophthalmol, 2019, 13: 2317-2323. DOI: 10.2147/OPTH.S205148.
46、Wei L, Cheng K, He W, et al. Application of total keratometry in ten intraocular lens power calculation formulas in highly myopic eyes[ J]. Eye Vis, 2022, 9(1): 21. DOI: 10.1186/s40662-022-00293-3.Wei L, Cheng K, He W, et al. Application of total keratometry in ten intraocular lens power calculation formulas in highly myopic eyes[ J]. Eye Vis, 2022, 9(1): 21. DOI: 10.1186/s40662-022-00293-3.
47、Qin Y, Liu L, Mao Y, et al. Accuracy of intraocular lens power calculation based on total keratometry in patients with flat and steep corneas[ J]. Am J Ophthalmol, 2023, 247: 103-110. DOI: 10.1016/j.ajo.2022.11.011.Qin Y, Liu L, Mao Y, et al. Accuracy of intraocular lens power calculation based on total keratometry in patients with flat and steep corneas[ J]. Am J Ophthalmol, 2023, 247: 103-110. DOI: 10.1016/j.ajo.2022.11.011.
48、Yan C, Yao K. Effect of lens vault on the accuracy of intraocular lens calculation formulas in shallow anterior chamber eyes[ J]. Am J Ophthalmol, 2022, 233: 57-67. DOI: 10.1016/j.ajo.2021.07.011.Yan C, Yao K. Effect of lens vault on the accuracy of intraocular lens calculation formulas in shallow anterior chamber eyes[ J]. Am J Ophthalmol, 2022, 233: 57-67. DOI: 10.1016/j.ajo.2021.07.011.
49、Dooley I, Charalampidou S, Malik A, et al. Changes in intraocular pressure and anterior segment morphometry after uneventful phacoemulsification cataract surgery[ J]. Eye, 2010, 24(4): 519-526;quiz527. DOI: 10.1038/eye.2009.339.Dooley I, Charalampidou S, Malik A, et al. Changes in intraocular pressure and anterior segment morphometry after uneventful phacoemulsification cataract surgery[ J]. Eye, 2010, 24(4): 519-526;quiz527. DOI: 10.1038/eye.2009.339.
50、Elfiky M, Saad H, Elseht R, et al. Role of ultrasound biomicroscopy in the planning for secondary implantation of intra ocular lens in aphakia[ J]. Int Ophthalmol, 2016, 36(3): 391-400. DOI: 10.1007/s10792-015-0141-z.Elfiky M, Saad H, Elseht R, et al. Role of ultrasound biomicroscopy in the planning for secondary implantation of intra ocular lens in aphakia[ J]. Int Ophthalmol, 2016, 36(3): 391-400. DOI: 10.1007/s10792-015-0141-z.
51、Landegger GP, Roth N. Anterior chamber depth and its stability in aphakia[ J]. Am J Ophthalmol, 1968, 65(5): 706-708. DOI: 10.1016/0002-9394(68)94385-7.Landegger GP, Roth N. Anterior chamber depth and its stability in aphakia[ J]. Am J Ophthalmol, 1968, 65(5): 706-708. DOI: 10.1016/0002-9394(68)94385-7.
52、Norn MS. Depth of anterior chamber after cataract extraction[ J]. Br J Ophthalmol, 1978, 62(7): 474-477. DOI: 10.1136/bjo.62.7.474.Norn MS. Depth of anterior chamber after cataract extraction[ J]. Br J Ophthalmol, 1978, 62(7): 474-477. DOI: 10.1136/bjo.62.7.474.
53、Ding Y, Hou M, Liu L, et al. Prediction of postoperative effective lens position using iris root depth in primary angle-closure diseases[ J]. J Cataract Refract Surg, 2023, 49(7): 691-696. DOI: 10.1097/j.jcrs.0000000000001174.Ding Y, Hou M, Liu L, et al. Prediction of postoperative effective lens position using iris root depth in primary angle-closure diseases[ J]. J Cataract Refract Surg, 2023, 49(7): 691-696. DOI: 10.1097/j.jcrs.0000000000001174.
54、Eom Y, Song JS, Kim HM. Modified haigis formula effective lens position equation for ciliary sulcus-implanted intraocular lenses[ J]. Am J Ophthalmol, 2016, 161: 142-149.e1-2. DOI: 10.1016/j.ajo.2015.09.040.Eom Y, Song JS, Kim HM. Modified haigis formula effective lens position equation for ciliary sulcus-implanted intraocular lenses[ J]. Am J Ophthalmol, 2016, 161: 142-149.e1-2. DOI: 10.1016/j.ajo.2015.09.040.
55、Wang L, Shirayama M, Ma XJ, et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm[ J]. J Cataract Refract Surg, 2011, 37(11): 2018-2027. DOI: 10.1016/j.jcrs.2011.05.042.Wang L, Shirayama M, Ma XJ, et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm[ J]. J Cataract Refract Surg, 2011, 37(11): 2018-2027. DOI: 10.1016/j.jcrs.2011.05.042.
56、Zhang J, Tan X, Wang W, et al. Effect of axial length adjustment methods on intraocular lens power calculation in highly myopic eyes[ J]. Am J Ophthalmol, 2020, 214: 110-118. DOI: 10.1016/j.ajo.2020.02.023.Zhang J, Tan X, Wang W, et al. Effect of axial length adjustment methods on intraocular lens power calculation in highly myopic eyes[ J]. Am J Ophthalmol, 2020, 214: 110-118. DOI: 10.1016/j.ajo.2020.02.023.
57、Wang L, Koch DD. Intraocular lens power calculations in eyes with previous corneal refractive surgery: challenges, approaches, and outcomes[ J]. Taiwan J Ophthalmol, 2021, 12(1): 22-31. DOI: 10.4103/tjo.tjo_38_21.Wang L, Koch DD. Intraocular lens power calculations in eyes with previous corneal refractive surgery: challenges, approaches, and outcomes[ J]. Taiwan J Ophthalmol, 2021, 12(1): 22-31. DOI: 10.4103/tjo.tjo_38_21.
58、Aristodemou P, Knox Cartwright NE, Sparrow JM, et al. Intraocular lens for mula constant opt imizat ion and par t ial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery[ J]. J Cataract Refract Surg, 2011, 37(1): 50-62. DOI: 10.1016/j.jcrs.2010.07.037.Aristodemou P, Knox Cartwright NE, Sparrow JM, et al. Intraocular lens for mula constant opt imizat ion and par t ial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery[ J]. J Cataract Refract Surg, 2011, 37(1): 50-62. DOI: 10.1016/j.jcrs.2010.07.037.
59、Langenbucher A, Hoffmann P, Cayless A, et al. Limitations of constant optimization with disclosed intraocular lens power formulae[ J]. J Cataract Refract Surg, 2024, 50(3): 201-208. DOI: 10.1097/j.jcrs.0000000000001337.Langenbucher A, Hoffmann P, Cayless A, et al. Limitations of constant optimization with disclosed intraocular lens power formulae[ J]. J Cataract Refract Surg, 2024, 50(3): 201-208. DOI: 10.1097/j.jcrs.0000000000001337.
60、Langenbucher A , Szentmáry N, Cayless A , et al. IOL formula constants: strategies for optimization and defining standards for presenting data[ J]. Ophthalmic Res, 2021, 64(6): 1055-1067. DOI: 10.1159/000514916.Langenbucher A , Szentmáry N, Cayless A , et al. IOL formula constants: strategies for optimization and defining standards for presenting data[ J]. Ophthalmic Res, 2021, 64(6): 1055-1067. DOI: 10.1159/000514916.
61、Gatinel D, Debellemanière G, Saad A, et al. A simplified method to minimize systematic bias of single-optimized intraocular lens power calculation formulas[ J]. Am J Ophthalmol, 2023, 253: 65-73. DOI: 10.1016/j.ajo.2023.05.005.Gatinel D, Debellemanière G, Saad A, et al. A simplified method to minimize systematic bias of single-optimized intraocular lens power calculation formulas[ J]. Am J Ophthalmol, 2023, 253: 65-73. DOI: 10.1016/j.ajo.2023.05.005.
62、郭海科, 金海鹰, GerdUAUFFARTH, 等. 应用优化计算方法与计算机软件计算角膜屈光手术后人工晶状体屈光力[ J]. 中华眼视光学与视觉科学杂志, 2010, 12(6): 429-432. DOI: 10.3760/cma.j.issn.1674-845X.2010.06.007.
Guo HK, Jin HY, Gerd U, et al. Intraocular lens power calculation after corneal refractive surgery using serf-designed computer software programmed with optimized calculation method[ J]. Chin J Optom Ophthalmol Vis Sci, 2010, 12(6): 429-432. DOI: 10.3760/cma.
j.issn.1674-845X.2010.06.007.郭海科, 金海鹰, GerdUAUFFARTH, 等. 应用优化计算方法与计算机软件计算角膜屈光手术后人工晶状体屈光力[ J]. 中华眼视光学与视觉科学杂志, 2010, 12(6): 429-432. DOI: 10.3760/cma.j.issn.1674-845X.2010.06.007.
Guo HK, Jin HY, Gerd U, et al. Intraocular lens power calculation after corneal refractive surgery using serf-designed computer software programmed with optimized calculation method[ J]. Chin J Optom Ophthalmol Vis Sci, 2010, 12(6): 429-432. DOI: 10.3760/cma.
j.issn.1674-845X.2010.06.007.
63、Guo D, He W, Wei L, et al. The Zhu-Lu formula: a machine learning-based intraocular lens power calculation formula for highly myopic eyes[ J]. Eye Vis, 2023, 10(1): 26. DOI: 10.1186/s40662-023-00342-5.Guo D, He W, Wei L, et al. The Zhu-Lu formula: a machine learning-based intraocular lens power calculation formula for highly myopic eyes[ J]. Eye Vis, 2023, 10(1): 26. DOI: 10.1186/s40662-023-00342-5.
64、Zhang J, Jin A, Han X, et al. The LISA-PPV formula: an ensemble artificial intelligence-based thick intraocular lens calculation formula for vitrectomized eyes[ J]. Am J Ophthalmol, 2024, 262: 237-245. DOI: 10.1016/j.ajo.2024.02.037.Zhang J, Jin A, Han X, et al. The LISA-PPV formula: an ensemble artificial intelligence-based thick intraocular lens calculation formula for vitrectomized eyes[ J]. Am J Ophthalmol, 2024, 262: 237-245. DOI: 10.1016/j.ajo.2024.02.037.