1、Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep
learning in ophthalmology[ J]. Br J Ophthalmol, 2019, 103(2): 167-
175. DOI: 10.1136/bjophthalmol-2018-313173.Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep
learning in ophthalmology[ J]. Br J Ophthalmol, 2019, 103(2): 167-
175. DOI: 10.1136/bjophthalmol-2018-313173.
2、Kebaili A, Lapuyade-Lahorgue J, Ruan S. Deep learning approaches for
data augmentation in medical imaging: a review[ J]. J Imaging, 2023,
9(4): 81. DOI: 10.3390/jimaging9040081.Kebaili A, Lapuyade-Lahorgue J, Ruan S. Deep learning approaches for
data augmentation in medical imaging: a review[ J]. J Imaging, 2023,
9(4): 81. DOI: 10.3390/jimaging9040081.
3、Kim HE, Cosa-Linan A, Santhanam N, et al. Transfer learning for
medical image classification: a literature review[ J]. BMC Med Imaging,
2022, 22(1): 69. DOI: 10.1186/s12880-022-00793-7.Kim HE, Cosa-Linan A, Santhanam N, et al. Transfer learning for
medical image classification: a literature review[ J]. BMC Med Imaging,
2022, 22(1): 69. DOI: 10.1186/s12880-022-00793-7.
4、Liew G, Gopinath B, White AJ, et al. Retinal vasculature fractal and
stroke mortality[ J]. Stroke, 2021, 52(4): 1276-1282. DOI: 10.1161/
STROKEAHA.120.031886.Liew G, Gopinath B, White AJ, et al. Retinal vasculature fractal and
stroke mortality[ J]. Stroke, 2021, 52(4): 1276-1282. DOI: 10.1161/
STROKEAHA.120.031886.
5、Cheung CY, Chan VTT, Mok VC, et al. Potential retinal biomarkers
for dementia: what is new[ J]. Curr Opin Neurol, 2019, 32(1): 82-91.
DOI: 10.1097/WCO.0000000000000645.Cheung CY, Chan VTT, Mok VC, et al. Potential retinal biomarkers
for dementia: what is new[ J]. Curr Opin Neurol, 2019, 32(1): 82-91.
DOI: 10.1097/WCO.0000000000000645.
6、Betzler BK, Rim TH, Sabanayagam C, et al. Artificial intelligence
in predicting systemic parameters and diseases from ophthalmic
imaging[ J]. Front Digit Health, 2022, 4: 889445. DOI: 10.3389/
fdgth.2022.889445.Betzler BK, Rim TH, Sabanayagam C, et al. Artificial intelligence
in predicting systemic parameters and diseases from ophthalmic
imaging[ J]. Front Digit Health, 2022, 4: 889445. DOI: 10.3389/
fdgth.2022.889445.
7、Khan NC, Perera C, Dow ER, et al. Predicting systemic health features
from retinal fundus images using transfer-learning-based artificial
intelligence models[ J]. Diagnostics, 2022, 12(7): 1714. DOI: 10.3390/
diagnostics12071714.Khan NC, Perera C, Dow ER, et al. Predicting systemic health features
from retinal fundus images using transfer-learning-based artificial
intelligence models[ J]. Diagnostics, 2022, 12(7): 1714. DOI: 10.3390/
diagnostics12071714.
8、Klein%20R%2C%20Sharrett%20AR%2C%20Klein%20BE%2C%20et%20al.%20Are%20retinal%20arteriolar%20abnormalities%20%0Arelated%20to%20atherosclerosis%3F%20%3A%20the%20Atherosclerosis%20Risk%20in%20Communities%20%0AStudy%5B%20J%5D.%20Arterioscler%20Thromb%20Vasc%20Biol%2C%202000%2C%2020(6)%3A%201644-1650.%20%0ADOI%3A%2010.1161%2F01.atv.20.6.1644.Klein%20R%2C%20Sharrett%20AR%2C%20Klein%20BE%2C%20et%20al.%20Are%20retinal%20arteriolar%20abnormalities%20%0Arelated%20to%20atherosclerosis%3F%20%3A%20the%20Atherosclerosis%20Risk%20in%20Communities%20%0AStudy%5B%20J%5D.%20Arterioscler%20Thromb%20Vasc%20Biol%2C%202000%2C%2020(6)%3A%201644-1650.%20%0ADOI%3A%2010.1161%2F01.atv.20.6.1644.
9、Ikram%20MK%2C%20de%20Jong%20FJ%2C%20Vingerling%20JR%2C%20et%20al.%20Are%20retinal%20arteriolar%20or%0Avenular%20diameters%20associated%20with%20markers%20for%20cardiovascular%20disorders%3F%20%0AThe%20Rotterdam%20Study%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202004%2C%2045(7)%3A%20%0A2129-2134.%20DOI%3A%2010.1167%2Fiovs.03-1390.Ikram%20MK%2C%20de%20Jong%20FJ%2C%20Vingerling%20JR%2C%20et%20al.%20Are%20retinal%20arteriolar%20or%0Avenular%20diameters%20associated%20with%20markers%20for%20cardiovascular%20disorders%3F%20%0AThe%20Rotterdam%20Study%5B%20J%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202004%2C%2045(7)%3A%20%0A2129-2134.%20DOI%3A%2010.1167%2Fiovs.03-1390.
10、Bakalli%20A%2C%20Ko%C3%A7inaj%20D%2C%20Bakalli%20A%2C%20et%20al.%20Relationship%20of%20hypertensive%20%0Aretinopathy%20to%20thoracic%20aortic%20atherosclerosis%20in%20patients%20with%20severe%20%0Aarterial%20hypertension%5B%20J%5D.%20Clin%20Exp%20Hypertens%2C%202011%2C%2033(2)%3A%2089-94.%20%0ADOI%3A%2010.3109%2F10641963.2010.503307.Bakalli%20A%2C%20Ko%C3%A7inaj%20D%2C%20Bakalli%20A%2C%20et%20al.%20Relationship%20of%20hypertensive%20%0Aretinopathy%20to%20thoracic%20aortic%20atherosclerosis%20in%20patients%20with%20severe%20%0Aarterial%20hypertension%5B%20J%5D.%20Clin%20Exp%20Hypertens%2C%202011%2C%2033(2)%3A%2089-94.%20%0ADOI%3A%2010.3109%2F10641963.2010.503307.
11、Cheung N, Bluemke DA , K lein R , et al. R etinal ar ter iolar
narrowing and left ventricular remodeling: the multi-ethnic study
of atherosclerosis[ J]. J Am Coll Cardiol, 2007, 50(1): 48-55. DOI:
10.1016/j.jacc.2007.03.029.Cheung N, Bluemke DA , K lein R , et al. R etinal ar ter iolar
narrowing and left ventricular remodeling: the multi-ethnic study
of atherosclerosis[ J]. J Am Coll Cardiol, 2007, 50(1): 48-55. DOI:
10.1016/j.jacc.2007.03.029.
12、Wang L, Wong TY, Sharrett AR, et al. Relationship between retinal
arteriolar narrowing and myocardial perfusion: multi-ethnic study
of atherosclerosis[ J]. Hypertension, 2008, 51(1): 119-126. DOI:
10.1161/HYPERTENSIONAHA.107.098343.Wang L, Wong TY, Sharrett AR, et al. Relationship between retinal
arteriolar narrowing and myocardial perfusion: multi-ethnic study
of atherosclerosis[ J]. Hypertension, 2008, 51(1): 119-126. DOI:
10.1161/HYPERTENSIONAHA.107.098343.
13、Fu Y, Yusufu M, Wang Y, et al. Association of retinal microvascular
density and complexity with incident coronary heart disease[ J].
Atherosclerosis, 2023, 380: 117196. DOI: 10.1016/j.atherosclerosis.
2023.117196.Fu Y, Yusufu M, Wang Y, et al. Association of retinal microvascular
density and complexity with incident coronary heart disease[ J].
Atherosclerosis, 2023, 380: 117196. DOI: 10.1016/j.atherosclerosis.
2023.117196.
14、Gerrits N, Elen B, Craenendonck TV, et al. Age and sex affect deep
learning prediction of cardiometabolic risk factors from retinal
images[ J]. Sci Rep, 2020, 10(1): 9432. DOI: 10.1038/s41598-020-
65794-4.Gerrits N, Elen B, Craenendonck TV, et al. Age and sex affect deep
learning prediction of cardiometabolic risk factors from retinal
images[ J]. Sci Rep, 2020, 10(1): 9432. DOI: 10.1038/s41598-020-
65794-4.
15、Kim YD, Noh KJ, Byun SJ, et al. Effects of hypertension, diabetes, and
smoking on age and sex prediction from retinal fundus images[ J]. Sci
Rep, 2020, 10(1): 4623. DOI: 10.1038/s41598-020-61519-9.Kim YD, Noh KJ, Byun SJ, et al. Effects of hypertension, diabetes, and
smoking on age and sex prediction from retinal fundus images[ J]. Sci
Rep, 2020, 10(1): 4623. DOI: 10.1038/s41598-020-61519-9.
16、Iao WC, Zhang W, Wang X, et al. Deep learning algorithms for
screening and diagnosis of systemic diseases based on ophthalmic
manifestations: a systematic review[ J]. Diagnostics, 2023, 13(5): 900.
DOI: 10.3390/diagnostics13050900.Iao WC, Zhang W, Wang X, et al. Deep learning algorithms for
screening and diagnosis of systemic diseases based on ophthalmic
manifestations: a systematic review[ J]. Diagnostics, 2023, 13(5): 900.
DOI: 10.3390/diagnostics13050900.
17、Shigueoka LS, Mariottoni EB, Thompson AC, et al. Predicting age from
optical coherence tomography scans with deep learning[ J]. Transl Vis
Sci Technol, 2021, 10(1): 12. DOI: 10.1167/tvst.10.1.12.Shigueoka LS, Mariottoni EB, Thompson AC, et al. Predicting age from
optical coherence tomography scans with deep learning[ J]. Transl Vis
Sci Technol, 2021, 10(1): 12. DOI: 10.1167/tvst.10.1.12.
18、Chueh KM, Hsieh YT, Chen HH, et al. Identification of sex and age
from macular optical coherence tomography and feature analysis
using deep learning[ J]. Am J Ophthalmol, 2022, 235: 221-228. DOI:
10.1016/j.ajo.2021.09.015.Chueh KM, Hsieh YT, Chen HH, et al. Identification of sex and age
from macular optical coherence tomography and feature analysis
using deep learning[ J]. Am J Ophthalmol, 2022, 235: 221-228. DOI:
10.1016/j.ajo.2021.09.015.
19、Rim TH, Lee G, Kim Y, et al. Prediction of systemic biomarkers from
retinal photographs: development and validation of deep-learning
algorithms[ J]. Lancet Digit Health, 2020, 2(10): e526-e536. DOI:
10.1016/S2589-7500(20)30216-8.Rim TH, Lee G, Kim Y, et al. Prediction of systemic biomarkers from
retinal photographs: development and validation of deep-learning
algorithms[ J]. Lancet Digit Health, 2020, 2(10): e526-e536. DOI:
10.1016/S2589-7500(20)30216-8.
20、Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular
risk factors from retinal fundus photographs via deep learning[ J]. Nat
Biomed Eng, 2018, 2(3): 158-164. DOI: 10.1038/s41551-018-0195-0.Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular
risk factors from retinal fundus photographs via deep learning[ J]. Nat
Biomed Eng, 2018, 2(3): 158-164. DOI: 10.1038/s41551-018-0195-0.
21、Wilson PW, D'Agostino RB, Levy D, et al. Prediction of coronary heart
disease using risk factor categories[ J]. Circulation, 1998, 97(18): 1837-1847. DOI: 10.1161/01.cir.97.18.1837.Wilson PW, D'Agostino RB, Levy D, et al. Prediction of coronary heart
disease using risk factor categories[ J]. Circulation, 1998, 97(18): 1837-1847. DOI: 10.1161/01.cir.97.18.1837.
22、Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/
AHA guideline on the treatment of blood cholesterol to reduce
atherosclerotic cardiovascular risk in adults: a report of the American
College of Cardiology/American Heart Association Task Force on
Practice Guidelines[ J]. J Am Coll Cardiol, 2014, 63(25 Pt B): 2889-
2934. DOI: 10.1016/j.jacc.2013.11.002.Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/
AHA guideline on the treatment of blood cholesterol to reduce
atherosclerotic cardiovascular risk in adults: a report of the American
College of Cardiology/American Heart Association Task Force on
Practice Guidelines[ J]. J Am Coll Cardiol, 2014, 63(25 Pt B): 2889-
2934. DOI: 10.1016/j.jacc.2013.11.002.
23、Hira RS, Kennedy K, Nambi V, et al. Frequency and practice-level
variation in inappropriate aspirin use for the primary prevention of
cardiovascular disease: insights from the National Cardiovascular
Disease Registry 's Practice Innovation and Clinical Excellence
registry[ J]. J Am Coll Cardiol, 2015, 65(2): 111-121. DOI: 10.1016/
j.jacc.2014.10.035.Hira RS, Kennedy K, Nambi V, et al. Frequency and practice-level
variation in inappropriate aspirin use for the primary prevention of
cardiovascular disease: insights from the National Cardiovascular
Disease Registry 's Practice Innovation and Clinical Excellence
registry[ J]. J Am Coll Cardiol, 2015, 65(2): 111-121. DOI: 10.1016/
j.jacc.2014.10.035.
24、Yi JK, Rim TH, Park S, et al. Cardiovascular disease risk assessment
using a deep-learning-based retinal biomarker: a comparison with
existing risk scores[ J]. Eur Heart J Digit Health, 2023, 4(3): 236-244.
DOI: 10.1093/ehjdh/ztad023.Yi JK, Rim TH, Park S, et al. Cardiovascular disease risk assessment
using a deep-learning-based retinal biomarker: a comparison with
existing risk scores[ J]. Eur Heart J Digit Health, 2023, 4(3): 236-244.
DOI: 10.1093/ehjdh/ztad023.
25、Xu J, Xue K, Zhang K. Current status and future trends of clinical
diagnoses via image-based deep learning[ J]. Theranostics, 2019, 9(25):
7556-7565. DOI: 10.7150/thno.38065.Xu J, Xue K, Zhang K. Current status and future trends of clinical
diagnoses via image-based deep learning[ J]. Theranostics, 2019, 9(25):
7556-7565. DOI: 10.7150/thno.38065.
26、Zhu Z, Chen Y, Wang W, et al. Association of retinal age gap with
arterial stiffness and incident cardiovascular disease[ J]. Stroke, 2022,
53(11): 3320-3328. DOI: 10.1161/STROKEAHA.122.038809.Zhu Z, Chen Y, Wang W, et al. Association of retinal age gap with
arterial stiffness and incident cardiovascular disease[ J]. Stroke, 2022,
53(11): 3320-3328. DOI: 10.1161/STROKEAHA.122.038809.
27、Chen C, Bickford ME, Hirsch JA. Untangling the web between eye and
brain[ J]. Cell, 2016, 165(1): 20-21. DOI: 10.1016/j.cell.2016.03.010.Chen C, Bickford ME, Hirsch JA. Untangling the web between eye and
brain[ J]. Cell, 2016, 165(1): 20-21. DOI: 10.1016/j.cell.2016.03.010.
28、Zhang Q, Li J, Bian M, et al. Retinal imaging techniques based on
machine learning models in recognition and prediction of mild
cognitive impairment[ J]. Neuropsychiatr Dis Treat, 2021, 17: 3267-
3281. DOI: 10.2147/NDT.S333833.Zhang Q, Li J, Bian M, et al. Retinal imaging techniques based on
machine learning models in recognition and prediction of mild
cognitive impairment[ J]. Neuropsychiatr Dis Treat, 2021, 17: 3267-
3281. DOI: 10.2147/NDT.S333833.
29、Tian J, Smith G, Guo H, et al. Modular machine learning for
Alzheimer's disease classification from retinal vasculature[ J]. Sci Rep,
2021, 11(1): 238. DOI: 10.1038/s41598-020-80312-2.Tian J, Smith G, Guo H, et al. Modular machine learning for
Alzheimer's disease classification from retinal vasculature[ J]. Sci Rep,
2021, 11(1): 238. DOI: 10.1038/s41598-020-80312-2.
30、Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection
of Alzheimer's disease based on retinal photographs: a retrospective,
multicentre case-control study[ J]. Lancet Digit Health, 2022, 4(11):
e806-e815. DOI: 10.1016/S2589-7500(22)00169-8.Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection
of Alzheimer's disease based on retinal photographs: a retrospective,
multicentre case-control study[ J]. Lancet Digit Health, 2022, 4(11):
e806-e815. DOI: 10.1016/S2589-7500(22)00169-8.
31、Wisely CE, Wang D, Henao R, et al. Convolutional neural network to
identify symptomatic Alzheimer's disease using multimodal retinal
imaging[ J]. Br J Ophthalmol, 2022, 106(3): 388-395. DOI: 10.1136/
bjophthalmol-2020-317659.Wisely CE, Wang D, Henao R, et al. Convolutional neural network to
identify symptomatic Alzheimer's disease using multimodal retinal
imaging[ J]. Br J Ophthalmol, 2022, 106(3): 388-395. DOI: 10.1136/
bjophthalmol-2020-317659.
32、Arevalo-Rodriguez I, Smailagic N, Roqué-Figuls M, et al. Mini-Mental
State Examination (MMSE) for the early detection of dementia in
people with mild cognitive impairment (MCI)[ J]. Cochrane Database
Syst Rev, 2021, 7(7): CD010783. DOI: 10.1002/14651858.CD010783.
pub3.Arevalo-Rodriguez I, Smailagic N, Roqué-Figuls M, et al. Mini-Mental
State Examination (MMSE) for the early detection of dementia in
people with mild cognitive impairment (MCI)[ J]. Cochrane Database
Syst Rev, 2021, 7(7): CD010783. DOI: 10.1002/14651858.CD010783.
pub3.
33、Kim J, Jeong M, Stiles WR , et al. Neuroimaging modalities in Alzheimer's disease: diagnosis and clinical features[ J]. Int J Mol Sci,
2022, 23(11): 6079. DOI: 10.3390/ijms23116079.Kim J, Jeong M, Stiles WR , et al. Neuroimaging modalities in Alzheimer's disease: diagnosis and clinical features[ J]. Int J Mol Sci,
2022, 23(11): 6079. DOI: 10.3390/ijms23116079.
34、Hui HYH, Ran AR, Dai JJ, et al. Deep reinforcement learning-based
retinal imaging in Alzheimer's disease: potential and perspectives[ J]. J
Alzheimers Dis, 2023, 94(1): 39-50. DOI: 10.3233/JAD-230055.Hui HYH, Ran AR, Dai JJ, et al. Deep reinforcement learning-based
retinal imaging in Alzheimer's disease: potential and perspectives[ J]. J
Alzheimers Dis, 2023, 94(1): 39-50. DOI: 10.3233/JAD-230055.
35、Nunes A, Silva G, Duque C, et al. Retinal texture biomarkers may
help to discriminate between Alzheimer's, Parkinson's, and healthy
controls[ J]. PLoS One, 2019, 14(6): e0218826. DOI: 10.1371/journal.
pone.0218826.Nunes A, Silva G, Duque C, et al. Retinal texture biomarkers may
help to discriminate between Alzheimer's, Parkinson's, and healthy
controls[ J]. PLoS One, 2019, 14(6): e0218826. DOI: 10.1371/journal.
pone.0218826.
36、Reiner J, Franken L, Raveh E, et al. Oculometric measures as a tool for
assessment of clinical symptoms and severity of Parkinson's disease[ J].
J Neural Transm, 2023, 130(10): 1241-1248. DOI: 10.1007/s00702-
023-02681-y.Reiner J, Franken L, Raveh E, et al. Oculometric measures as a tool for
assessment of clinical symptoms and severity of Parkinson's disease[ J].
J Neural Transm, 2023, 130(10): 1241-1248. DOI: 10.1007/s00702-
023-02681-y.
37、Ahn S, Shin J, Song SJ, et al. Neurologic dysfunction assessment in
parkinson disease based on fundus photographs using deep learning[ J].
JAMA Ophthalmol, 2023, 141(3): 234-240. DOI: 10.1001/
jamaophthalmol.2022.5928.Ahn S, Shin J, Song SJ, et al. Neurologic dysfunction assessment in
parkinson disease based on fundus photographs using deep learning[ J].
JAMA Ophthalmol, 2023, 141(3): 234-240. DOI: 10.1001/
jamaophthalmol.2022.5928.
38、Hu W, Wang W, Wang Y, et al. Retinal age gap as a predictive biomarker
of future risk of Parkinson's disease[ J]. Age Ageing, 2022, 51(3):
afac062. DOI: 10.1093/ageing/afac062.Hu W, Wang W, Wang Y, et al. Retinal age gap as a predictive biomarker
of future risk of Parkinson's disease[ J]. Age Ageing, 2022, 51(3):
afac062. DOI: 10.1093/ageing/afac062.
39、Montol%C3%ADo%20A%2C%20Mart%C3%ADn-Gallego%20A%2C%20Cego%C3%B1ino%20J%2C%20et%20al.%20Machine%20learning%20in%20%0Adiagnosis%20and%20disability%20prediction%20of%20multiple%20sclerosis%20using%20optical%20%0Acoherence%20tomography%5B%20J%5D.%20Comput%20Biol%20Med%2C%202021%2C%20133%3A%20104416.%20%0ADOI%3A%2010.1016%2Fj.compbiomed.2021.104416.Montol%C3%ADo%20A%2C%20Mart%C3%ADn-Gallego%20A%2C%20Cego%C3%B1ino%20J%2C%20et%20al.%20Machine%20learning%20in%20%0Adiagnosis%20and%20disability%20prediction%20of%20multiple%20sclerosis%20using%20optical%20%0Acoherence%20tomography%5B%20J%5D.%20Comput%20Biol%20Med%2C%202021%2C%20133%3A%20104416.%20%0ADOI%3A%2010.1016%2Fj.compbiomed.2021.104416.
40、López-Dorado A, Ortiz M, Satue M, et al. Early diagnosis of multiple
sclerosis using swept-source optical coherence tomography and
convolutional neural networks trained with data augmentation[ J].
Sensors, 2021, 22(1): 167. DOI: 10.3390/s22010167.López-Dorado A, Ortiz M, Satue M, et al. Early diagnosis of multiple
sclerosis using swept-source optical coherence tomography and
convolutional neural networks trained with data augmentation[ J].
Sensors, 2021, 22(1): 167. DOI: 10.3390/s22010167.
41、Cavaliere C, Vilades E, Alonso-Rodríguez MC, et al. Computer-aided
diagnosis of multiple sclerosis using a support vector machine and
optical coherence tomography features[ J]. Sensors, 2019, 19(23):
5323. DOI: 10.3390/s19235323.Cavaliere C, Vilades E, Alonso-Rodríguez MC, et al. Computer-aided
diagnosis of multiple sclerosis using a support vector machine and
optical coherence tomography features[ J]. Sensors, 2019, 19(23):
5323. DOI: 10.3390/s19235323.
42、Bodaghi B, Massamba N, Izzedine H. The eye: a window on kidney
diseases[ J]. Clin Kidney J, 2014, 7(4): 337-338. DOI: 10.1093/ckj/
sfu073.Bodaghi B, Massamba N, Izzedine H. The eye: a window on kidney
diseases[ J]. Clin Kidney J, 2014, 7(4): 337-338. DOI: 10.1093/ckj/
sfu073.
43、Booij JC, Baas DC, Beisekeeva J, et al. The dynamic nature of Bruch's
membrane[ J]. Prog Retin Eye Res, 2010, 29(1): 1-18. DOI: 10.1016/
j.preteyeres.2009.08.003.Booij JC, Baas DC, Beisekeeva J, et al. The dynamic nature of Bruch's
membrane[ J]. Prog Retin Eye Res, 2010, 29(1): 1-18. DOI: 10.1016/
j.preteyeres.2009.08.003.
44、Grunwald JE, Alexander J, Ying GS, et al. Retinopathy and chronic
kidney disease in the Chronic Renal Insufficiency Cohort (CRIC)
study[ J]. Arch Ophthalmol, 2012, 130(9): 1136-1144. DOI: 10.1001/
archophthalmol.2012.1800.Grunwald JE, Alexander J, Ying GS, et al. Retinopathy and chronic
kidney disease in the Chronic Renal Insufficiency Cohort (CRIC)
study[ J]. Arch Ophthalmol, 2012, 130(9): 1136-1144. DOI: 10.1001/
archophthalmol.2012.1800.
45、Weiner DE, Tighiouart H, Reynolds R , et al. Kidney function,
albuminuria and age-related macular degeneration in NHANES III[ J].
Nephrol Dial Transplant, 2011, 26(10): 3159-3165. DOI: 10.1093/
ndt/gfr022.Weiner DE, Tighiouart H, Reynolds R , et al. Kidney function,
albuminuria and age-related macular degeneration in NHANES III[ J].
Nephrol Dial Transplant, 2011, 26(10): 3159-3165. DOI: 10.1093/
ndt/gfr022.
46、Wong CW, Lamoureux EL, Cheng CY, et al. Increased burden of vision
impairment and eye diseases in persons with chronic kidney disease -
A population-based study[ J]. EBioMedicine, 2016, 5: 193-197. DOI:
10.1016/j.ebiom.2016.01.023.Wong CW, Lamoureux EL, Cheng CY, et al. Increased burden of vision
impairment and eye diseases in persons with chronic kidney disease -
A population-based study[ J]. EBioMedicine, 2016, 5: 193-197. DOI:
10.1016/j.ebiom.2016.01.023.
47、Liew G, Mitchell P, Wong TY, et al. Retinal microvascular signs are
associated with chronic kidney disease in persons with and without
diabetes[ J]. Kidney Blood Press Res, 2012, 35(6): 589-594. DOI:
10.1159/000339173.Liew G, Mitchell P, Wong TY, et al. Retinal microvascular signs are
associated with chronic kidney disease in persons with and without
diabetes[ J]. Kidney Blood Press Res, 2012, 35(6): 589-594. DOI:
10.1159/000339173.
48、Kang EYC, Hsieh YT, Li CH, et al. Deep learning-based detection of
early renal function impairment using retinal fundus images: model
development and validation[ J]. JMIR Med Inform, 2020, 8(11):
e23472. DOI: 10.2196/23472.Kang EYC, Hsieh YT, Li CH, et al. Deep learning-based detection of
early renal function impairment using retinal fundus images: model
development and validation[ J]. JMIR Med Inform, 2020, 8(11):
e23472. DOI: 10.2196/23472.
49、Betzler BK, Chee EYL, He F, et al. Deep learning algorithms to detect
diabetic kidney disease from retinal photographs in multiethnic
populations with diabetes[ J]. J Am Med Inform Assoc, 2023, 30(12):
1904-1914. DOI: 10.1093/jamia/ocad179.Betzler BK, Chee EYL, He F, et al. Deep learning algorithms to detect
diabetic kidney disease from retinal photographs in multiethnic
populations with diabetes[ J]. J Am Med Inform Assoc, 2023, 30(12):
1904-1914. DOI: 10.1093/jamia/ocad179.
50、Sabanayagam C, Xu D, Ting DSW, et al. A deep learning algorithm to
detect chronic kidney disease from retinal photographs in communitybased populations[ J]. Lancet Digit Health, 2020, 2(6): e295-e302.
DOI: 10.1016/S2589-7500(20)30063-7.Sabanayagam C, Xu D, Ting DSW, et al. A deep learning algorithm to
detect chronic kidney disease from retinal photographs in communitybased populations[ J]. Lancet Digit Health, 2020, 2(6): e295-e302.
DOI: 10.1016/S2589-7500(20)30063-7.
51、Zhang S, Chen R, Wang Y, et al. Association of retinal age gap and
risk of kidney failure: a UK biobank study[ J]. Am J Kidney Dis, 2023,
81(5): 537-544.e1. DOI: 10.1053/j.ajkd.2022.09.018.Zhang S, Chen R, Wang Y, et al. Association of retinal age gap and
risk of kidney failure: a UK biobank study[ J]. Am J Kidney Dis, 2023,
81(5): 537-544.e1. DOI: 10.1053/j.ajkd.2022.09.018.
52、Liu Y, Zhang F, Gao X, et al. Lesion-aware attention network for
diabetic nephropathy diagnosis with optical coherence tomography
images[ J]. Front Med, 2023, 10: 1259478. DOI: 10.3389/
fmed.2023.1259478.Liu Y, Zhang F, Gao X, et al. Lesion-aware attention network for
diabetic nephropathy diagnosis with optical coherence tomography
images[ J]. Front Med, 2023, 10: 1259478. DOI: 10.3389/
fmed.2023.1259478.
53、Bobrov E, Georgievskaya A, Kiselev K, et al. PhotoAgeClock: deep
learning algorithms for development of non-invasive visual biomarkers
of aging[ J]. Aging, 2018, 10(11): 3249-3259. DOI: 10.18632/
aging.101629.Bobrov E, Georgievskaya A, Kiselev K, et al. PhotoAgeClock: deep
learning algorithms for development of non-invasive visual biomarkers
of aging[ J]. Aging, 2018, 10(11): 3249-3259. DOI: 10.18632/
aging.101629.
54、Ma J, Xu X, Li M, et al. Predictive models of aging of the human eye
based on ocular anterior segment morphology[ J]. J Biomed Inform,
2021, 120: 103855. DOI: 10.1016/j.jbi.2021.103855.Ma J, Xu X, Li M, et al. Predictive models of aging of the human eye
based on ocular anterior segment morphology[ J]. J Biomed Inform,
2021, 120: 103855. DOI: 10.1016/j.jbi.2021.103855.
55、Nusinovici S, Rim TH, Yu M, et al. Retinal photograph-based deep
learning predicts biological age, and stratifies morbidity and mortality
risk[ J]. Age Ageing, 2022, 51(4): afac065. DOI: 10.1093/ageing/
afac065.Nusinovici S, Rim TH, Yu M, et al. Retinal photograph-based deep
learning predicts biological age, and stratifies morbidity and mortality
risk[ J]. Age Ageing, 2022, 51(4): afac065. DOI: 10.1093/ageing/
afac065.
56、Zhu Z, Shi D, Peng G, et al. Retinal age gap as a predictive biomarker
for mortality risk[ J]. Br J Ophthalmol, 2023, 107(4): 547-554. DOI:
10.1136/bjophthalmol-2021-319807.Zhu Z, Shi D, Peng G, et al. Retinal age gap as a predictive biomarker
for mortality risk[ J]. Br J Ophthalmol, 2023, 107(4): 547-554. DOI:
10.1136/bjophthalmol-2021-319807.
57、Li R, Chen W, Li M, et al. LensAge index as a deep learning-based
biological age for self-monitoring the risks of age-related diseases and
mortality[ J]. Nat Commun, 2023, 14(1): 7126. DOI: 10.1038/s41467-
023-42934-8.Li R, Chen W, Li M, et al. LensAge index as a deep learning-based
biological age for self-monitoring the risks of age-related diseases and
mortality[ J]. Nat Commun, 2023, 14(1): 7126. DOI: 10.1038/s41467-
023-42934-8.