1、Lütjen-Drecoll E. Functional morphology of the trabecular meshwork
in primate eyes[ J]. Prog Retin Eye Res, 1999, 18(1): 91-119. DOI:
10.1016/s1350-9462(98)00011-1.Lütjen-Drecoll E. Functional morphology of the trabecular meshwork
in primate eyes[ J]. Prog Retin Eye Res, 1999, 18(1): 91-119. DOI:
10.1016/s1350-9462(98)00011-1.
2、Tamm ER, Fuchshofer R. What increases outflow resistance in primary
open-angle glaucoma[ J]. Surv Ophthalmol, 2007, 52(Suppl 2):
S101-S104. DOI: 10.1016/j.survophthal.2007.08.002.Tamm ER, Fuchshofer R. What increases outflow resistance in primary
open-angle glaucoma[ J]. Surv Ophthalmol, 2007, 52(Suppl 2):
S101-S104. DOI: 10.1016/j.survophthal.2007.08.002.
3、Acott TS, Kelley MJ. Ex tracellular matri x in the trabecular
meshwork[ J]. Exp Eye Res, 2008, 86(4): 543-561. DOI: 10.1016/
j.exer.2008.01.013.Acott TS, Kelley MJ. Ex tracellular matri x in the trabecular
meshwork[ J]. Exp Eye Res, 2008, 86(4): 543-561. DOI: 10.1016/
j.exer.2008.01.013.
4、Keller KE, Peters DM. Pathogenesis of glaucoma: extracellular
matrix dysfunction in the trabecular meshwork-a review[ J]. Clin Exp
Ophthalmol, 2022, 50(2): 163-182. DOI: 10.1111/ceo.14027.Keller KE, Peters DM. Pathogenesis of glaucoma: extracellular
matrix dysfunction in the trabecular meshwork-a review[ J]. Clin Exp
Ophthalmol, 2022, 50(2): 163-182. DOI: 10.1111/ceo.14027.
5、Gindina S, Hu Y, Barron AO, et al. Tissue plasminogen activator
attenuates outflow facility reduction in mouse model of juvenile open
angle glaucoma[ J]. Exp Eye Res, 2020, 199: 108179. DOI: 10.1016/
j.exer.2020.108179.Gindina S, Hu Y, Barron AO, et al. Tissue plasminogen activator
attenuates outflow facility reduction in mouse model of juvenile open
angle glaucoma[ J]. Exp Eye Res, 2020, 199: 108179. DOI: 10.1016/
j.exer.2020.108179.
6、Sherwood ME, Richardson TM. Phagocytosis by trabecular meshwork
cells: sequence of events in cats and monkeys[ J]. Exp Eye Res, 1988,
46(6): 881-895. DOI: 10.1016/s0014-4835(88)80040-x.Sherwood ME, Richardson TM. Phagocytosis by trabecular meshwork
cells: sequence of events in cats and monkeys[ J]. Exp Eye Res, 1988,
46(6): 881-895. DOI: 10.1016/s0014-4835(88)80040-x.
7、Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular
meshwork and ciliary muscle contractility[ J]. Prog Retin Eye Res,
2000, 19(3): 271-295. DOI: 10.1016/s1350-9462(99)00015-4.Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular
meshwork and ciliary muscle contractility[ J]. Prog Retin Eye Res,
2000, 19(3): 271-295. DOI: 10.1016/s1350-9462(99)00015-4.
8、Renieri G, Choritz L, Rosenthal R, et al. Effects of endothelin-1 on
calcium-independent contraction of bovine trabecular meshwork[ J].
Graefes Arch Clin Exp Ophthalmol, 2008, 246(8): 1107-1115. DOI:
10.1007/s00417-008-0817-4.Renieri G, Choritz L, Rosenthal R, et al. Effects of endothelin-1 on
calcium-independent contraction of bovine trabecular meshwork[ J].
Graefes Arch Clin Exp Ophthalmol, 2008, 246(8): 1107-1115. DOI:
10.1007/s00417-008-0817-4.
9、Rosenthal R, Choritz L, Schlott S, et al. Effects of ML-7 and Y-27632
on carbachol- and endothelin-1-induced contraction of bovine
trabecular meshwork[ J]. Exp Eye Res, 2005, 80(6): 837-845. DOI:
10.1016/j.exer.2004.12.013.Rosenthal R, Choritz L, Schlott S, et al. Effects of ML-7 and Y-27632
on carbachol- and endothelin-1-induced contraction of bovine
trabecular meshwork[ J]. Exp Eye Res, 2005, 80(6): 837-845. DOI:
10.1016/j.exer.2004.12.013.
10、Uchida T, Shimizu S, Yamagishi R, et al. Mechanical stretch induces
Ca2+ influx and extracellular release of PGE2 through Piezo1 activation
in trabecular meshwork cells[ J]. Sci Rep, 2021, 11(1): 4044. DOI:
10.1038/s41598-021-83713-z.Uchida T, Shimizu S, Yamagishi R, et al. Mechanical stretch induces
Ca2+ influx and extracellular release of PGE2 through Piezo1 activation
in trabecular meshwork cells[ J]. Sci Rep, 2021, 11(1): 4044. DOI:
10.1038/s41598-021-83713-z.
11、Li H, Henty-Ridilla JL, Bernstein AM, et al. TGFβ2 regulates
human trabecular meshwork cell contractility via ERK and ROCK
pathways with distinct signaling crosstalk dependent on the
culture substrate[ J]. Curr Eye Res, 2022, 47(8): 1165-1178. DOI:
10.1080/02713683.2022.2071943.Li H, Henty-Ridilla JL, Bernstein AM, et al. TGFβ2 regulates
human trabecular meshwork cell contractility via ERK and ROCK
pathways with distinct signaling crosstalk dependent on the
culture substrate[ J]. Curr Eye Res, 2022, 47(8): 1165-1178. DOI:
10.1080/02713683.2022.2071943.
12、Ujiie K, Bill A. The drainage routes for aqueous humor in monkeys as
revealed by scanning electron microscopy of corrosion casts[ J]. Scan
Electron Microsc, 1984(Pt 2): 849-856.Ujiie K, Bill A. The drainage routes for aqueous humor in monkeys as
revealed by scanning electron microscopy of corrosion casts[ J]. Scan
Electron Microsc, 1984(Pt 2): 849-856.
13、Smit BA , Johnstone MA . Effects of viscoelastic injection into
Schlemm's canal in primate and human eyes: potential relevance to
viscocanalostomy[ J]. Ophthalmology, 2002, 109(4): 786-792. DOI:
10.1016/s0161-6420(01)01006-5.Smit BA , Johnstone MA . Effects of viscoelastic injection into
Schlemm's canal in primate and human eyes: potential relevance to
viscocanalostomy[ J]. Ophthalmology, 2002, 109(4): 786-792. DOI:
10.1016/s0161-6420(01)01006-5.
14、Loewen RT, Waxman S, Wang C, et al. 3D-Reconstruction of the
human conventional outflow system by ribbon scanning confocal
microscopy[ J]. PLoS One, 2020, 15(5): e0232833. DOI: 10.1371/
journal.pone.0232833.Loewen RT, Waxman S, Wang C, et al. 3D-Reconstruction of the
human conventional outflow system by ribbon scanning confocal
microscopy[ J]. PLoS One, 2020, 15(5): e0232833. DOI: 10.1371/
journal.pone.0232833.
15、Zhang J, Ren L, Mei X , et al. Microstructure visualization of
conventional outflow pathway and finite element modeling analysis of
trabecular meshwork[ J]. Biomed Eng Online, 2016, 15(Suppl 2): 162.
DOI: 10.1186/s12938-016-0254-2.Zhang J, Ren L, Mei X , et al. Microstructure visualization of
conventional outflow pathway and finite element modeling analysis of
trabecular meshwork[ J]. Biomed Eng Online, 2016, 15(Suppl 2): 162.
DOI: 10.1186/s12938-016-0254-2.
16、Kagemann L, Wollstein G, Ishikawa H, et al. Identification and
assessment of Schlemm's canal by spectral-domain optical coherence
tomography[ J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 4054-4059.
DOI: 10.1167/iovs.09-4559.Kagemann L, Wollstein G, Ishikawa H, et al. Identification and
assessment of Schlemm's canal by spectral-domain optical coherence
tomography[ J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 4054-4059.
DOI: 10.1167/iovs.09-4559.
17、Uji A , Muraoka Y, Yoshimura N. In vivo identification of the
posttrabecular aqueous outflow pathway using swept-source optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(10):
4162-4169. DOI: 10.1167/iovs.16-19869.Uji A , Muraoka Y, Yoshimura N. In vivo identification of the
posttrabecular aqueous outflow pathway using swept-source optical
coherence tomography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(10):
4162-4169. DOI: 10.1167/iovs.16-19869.
18、Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography
angiography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT27.
DOI: 10.1167/iovs.15-19043.Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography
angiography[ J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT27.
DOI: 10.1167/iovs.15-19043.
19、Mendrinos E, Mermoud A, Shaarawy T. Nonpenetrating glaucoma
surgery[ J]. Surv Ophthalmol, 2008, 53(6): 592-630. DOI: 10.1016/
j.survophthal.2008.08.023.Mendrinos E, Mermoud A, Shaarawy T. Nonpenetrating glaucoma
surgery[ J]. Surv Ophthalmol, 2008, 53(6): 592-630. DOI: 10.1016/
j.survophthal.2008.08.023.
20、Grieshaber MC. Ab externo Schlemm's canal surgery: viscocanalostomy
and canaloplasty[ J]. Dev Ophthalmol, 2012, 50: 109-124. DOI:
10.1159/000334793.Grieshaber MC. Ab externo Schlemm's canal surgery: viscocanalostomy
and canaloplasty[ J]. Dev Ophthalmol, 2012, 50: 109-124. DOI:
10.1159/000334793.
21、Saraswathy S, Tan JC, Yu F, et al. Aqueous angiography: real-time and
physiologic aqueous humor outflow imaging[ J]. PLoS One, 2016,
11(1): e0147176. DOI: 10.1371/journal.pone.0147176.Saraswathy S, Tan JC, Yu F, et al. Aqueous angiography: real-time and
physiologic aqueous humor outflow imaging[ J]. PLoS One, 2016,
11(1): e0147176. DOI: 10.1371/journal.pone.0147176.
22、Huang AS, Saraswathy S, Dastiridou A, et al. Aqueous angiography
with fluorescein and indocyanine green in bovine eyes[ J]. Transl Vis
Sci Technol, 2016, 5(6): 5. DOI: 10.1167/tvst.5.6.5.Huang AS, Saraswathy S, Dastiridou A, et al. Aqueous angiography
with fluorescein and indocyanine green in bovine eyes[ J]. Transl Vis
Sci Technol, 2016, 5(6): 5. DOI: 10.1167/tvst.5.6.5.
23、Huang AS, Li M, Yang D, et al. Aqueous angiography in living
nonhuman Primates shows segmental, pulsatile, and dynamic
angiographic aqueous humor outflow[ J]. Ophthalmology, 2017,
124(6): 793-803. DOI: 10.1016/j.ophtha.2017.01.030.Huang AS, Li M, Yang D, et al. Aqueous angiography in living
nonhuman Primates shows segmental, pulsatile, and dynamic
angiographic aqueous humor outflow[ J]. Ophthalmology, 2017,
124(6): 793-803. DOI: 10.1016/j.ophtha.2017.01.030.
24、Lusthaus JA, Meyer PAR, Khatib TZ, et al. The effects of trabecular
bypass surgery on conventional aqueous outflow, visualized by
hemoglobin video imaging[ J]. J Glaucoma, 2020, 29(8): 656-665.
DOI: 10.1097/IJG.0000000000001561.Lusthaus JA, Meyer PAR, Khatib TZ, et al. The effects of trabecular
bypass surgery on conventional aqueous outflow, visualized by
hemoglobin video imaging[ J]. J Glaucoma, 2020, 29(8): 656-665.
DOI: 10.1097/IJG.0000000000001561.
25、Johnstone MA. The aqueous outflow system as a mechanical pump:
evidence from examination of tissue and aqueous movement in human
and non-human Primates[ J]. J Glaucoma, 2004, 13(5): 421-438. DOI:
10.1097/01.ijg.0000131757.63542.24.Johnstone MA. The aqueous outflow system as a mechanical pump:
evidence from examination of tissue and aqueous movement in human
and non-human Primates[ J]. J Glaucoma, 2004, 13(5): 421-438. DOI:
10.1097/01.ijg.0000131757.63542.24.
26、Xin C, Song S, Johnstone M, et al. Quantification of pulse-dependent
trabecular meshwork motion in normal humans using phase-sensitive
OCT[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3675-3681. DOI:
10.1167/iovs.17-23579.Xin C, Song S, Johnstone M, et al. Quantification of pulse-dependent
trabecular meshwork motion in normal humans using phase-sensitive
OCT[ J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3675-3681. DOI:
10.1167/iovs.17-23579.
27、Johnstone MA, Grant WG. Pressure-dependent changes in structures
of the aqueous outflow system of human and monkey eyes[ J].
Am J Ophthalmol, 1973, 75(3): 365-383. DOI: 10.1016/0002-
9394(73)91145-8.Johnstone MA, Grant WG. Pressure-dependent changes in structures
of the aqueous outflow system of human and monkey eyes[ J].
Am J Ophthalmol, 1973, 75(3): 365-383. DOI: 10.1016/0002-
9394(73)91145-8.
28、Sang Q, Du R , Xin C, et al. Effects of Schlemm's canal suture
implantation surgery and pilocarpine eye drops on trabecular
meshwork pulsatile motion[ J]. Biomedicines, 2023, 11(11): 2932.
DOI: 10.3390/biomedicines11112932.Sang Q, Du R , Xin C, et al. Effects of Schlemm's canal suture
implantation surgery and pilocarpine eye drops on trabecular
meshwork pulsatile motion[ J]. Biomedicines, 2023, 11(11): 2932.
DOI: 10.3390/biomedicines11112932.
29、Acott TS, Vranka JA, Keller KE, et al. Normal and glaucomatous
outflow regulation[ J]. Prog Retin Eye Res, 2021, 82: 100897. DOI:
10.1016/j.preteyeres.2020.100897.Acott TS, Vranka JA, Keller KE, et al. Normal and glaucomatous
outflow regulation[ J]. Prog Retin Eye Res, 2021, 82: 100897. DOI:
10.1016/j.preteyeres.2020.100897.
30、K arimi A , Crouch DJ, R azaghi R , et al. Mor phological and
biomechanical analyses of the human healthy and glaucomatous
aqueous outflow pathway: imaging-to-modeling[ J]. Comput
Methods Programs Biomed, 2023, 236: 107485. DOI: 10.1016/
j.cmpb.2023.107485.K arimi A , Crouch DJ, R azaghi R , et al. Mor phological and
biomechanical analyses of the human healthy and glaucomatous
aqueous outflow pathway: imaging-to-modeling[ J]. Comput
Methods Programs Biomed, 2023, 236: 107485. DOI: 10.1016/
j.cmpb.2023.107485.
31、Lusthaus JA, Meyer PAR, McCluskey PJ, et al. Hemoglobin video
imaging detects differences in aqueous outflow between eyes with and
without glaucoma during the water drinking test[ J]. J Glaucoma, 2022,
31(7): 511-522. DOI: 10.1097/IJG.0000000000002029.Lusthaus JA, Meyer PAR, McCluskey PJ, et al. Hemoglobin video
imaging detects differences in aqueous outflow between eyes with and
without glaucoma during the water drinking test[ J]. J Glaucoma, 2022,
31(7): 511-522. DOI: 10.1097/IJG.0000000000002029.
32、Vranka JA, Acott TS. Pressure-induced expression changes in segmental
flow regions of the human trabecular meshwork[ J]. Exp Eye Res, 2017,
158: 67-72. DOI: 10.1016/j.exer.2016.06.009.Vranka JA, Acott TS. Pressure-induced expression changes in segmental
flow regions of the human trabecular meshwork[ J]. Exp Eye Res, 2017,
158: 67-72. DOI: 10.1016/j.exer.2016.06.009.
33、Duffy L, O'Reilly S. Functional implications of cross-linked actin
networks in trabecular meshwork cells[ J]. Cell Physiol Biochem, 2018,
45(2): 783-794. DOI: 10.1159/000487170.Duffy L, O'Reilly S. Functional implications of cross-linked actin
networks in trabecular meshwork cells[ J]. Cell Physiol Biochem, 2018,
45(2): 783-794. DOI: 10.1159/000487170.
34、Tran MN, Medveczki T, Besztercei B, et al. Sigma-1 receptor activation
is protective against TGFβ2-induced extracellular matrix changes in
human trabecular meshwork cells[ J]. Life, 2023, 13(7): 1581. DOI:
10.3390/life13071581.Tran MN, Medveczki T, Besztercei B, et al. Sigma-1 receptor activation
is protective against TGFβ2-induced extracellular matrix changes in
human trabecular meshwork cells[ J]. Life, 2023, 13(7): 1581. DOI:
10.3390/life13071581.
35、Kim MH, Lim SH. Matrix metalloproteinases and glaucoma[ J].
Biomolecules, 2022, 12(10): 1368. DOI: 10.3390/biom12101368.Kim MH, Lim SH. Matrix metalloproteinases and glaucoma[ J].
Biomolecules, 2022, 12(10): 1368. DOI: 10.3390/biom12101368.
36、Li H, Raghunathan V, Stamer WD, et al. Extracellular matrix stiffness
and TGFβ2 regulate YAP/TA Z activity in human trabecular
meshwork cells[ J]. Front Cell Dev Biol, 2022, 10: 844342. DOI:
10.3389/fcell.2022.844342.Li H, Raghunathan V, Stamer WD, et al. Extracellular matrix stiffness
and TGFβ2 regulate YAP/TA Z activity in human trabecular
meshwork cells[ J]. Front Cell Dev Biol, 2022, 10: 844342. DOI:
10.3389/fcell.2022.844342.
37、Peng M, Rayana NP, Dai J, et al. Cross-linked actin networks (CLANs)
affect stiffness and/or actin dynamics in transgenic transformed and
primary human trabecular meshwork cells[ J]. Exp Eye Res, 2022, 220:
109097. DOI: 10.1016/j.exer.2022.109097.Peng M, Rayana NP, Dai J, et al. Cross-linked actin networks (CLANs)
affect stiffness and/or actin dynamics in transgenic transformed and
primary human trabecular meshwork cells[ J]. Exp Eye Res, 2022, 220:
109097. DOI: 10.1016/j.exer.2022.109097.
38、Di X, Gao X, Peng L, et al. Cellular mechanotransduction in health and
diseases: from molecular mechanism to therapeutic targets[ J]. Signal
Transduct Target Ther, 2023, 8(1): 282. DOI: 10.1038/s41392-023-
01501-9.Di X, Gao X, Peng L, et al. Cellular mechanotransduction in health and
diseases: from molecular mechanism to therapeutic targets[ J]. Signal
Transduct Target Ther, 2023, 8(1): 282. DOI: 10.1038/s41392-023-
01501-9.
39、Faralli JA, Filla MS, Peters DM. Effect of αvβ3 integrin expression
and activity on intraocular pressure[ J]. Invest Ophthalmol Vis Sci,
2019, 60(5): 1776-1788. DOI: 10.1167/iovs.18-26038.Faralli JA, Filla MS, Peters DM. Effect of αvβ3 integrin expression
and activity on intraocular pressure[ J]. Invest Ophthalmol Vis Sci,
2019, 60(5): 1776-1788. DOI: 10.1167/iovs.18-26038.
40、Chen L, Chen Z, Deng C, et al. Changes to outflow structures after
pilocarpine in primary open angle glaucoma compared with healthy
individuals using optical coherence tomography[ J]. J Glaucoma, 2023,
32(7): 593-599. DOI: 10.1097/IJG.0000000000002165.Chen L, Chen Z, Deng C, et al. Changes to outflow structures after
pilocarpine in primary open angle glaucoma compared with healthy
individuals using optical coherence tomography[ J]. J Glaucoma, 2023,
32(7): 593-599. DOI: 10.1097/IJG.0000000000002165.
41、Yamagishi-Kimura R, Honjo M, Aihara M. Effect of a fixed combination
of ripasudil and brimonidine on aqueous humor dynamics in mice[ J].
Sci Rep, 2024, 14(1): 7861. DOI: 10.1038/s41598-024-58212-6.Yamagishi-Kimura R, Honjo M, Aihara M. Effect of a fixed combination
of ripasudil and brimonidine on aqueous humor dynamics in mice[ J].
Sci Rep, 2024, 14(1): 7861. DOI: 10.1038/s41598-024-58212-6.
42、Araki T, Shimazawa M, Nakamura S, et al. Investigation into the
usefulness of cynomolgus monkeys with spontaneously elevated
intraocular pressure as a model for glaucoma treatment research[ J]. J
Pharmacol Sci, 2024, 154(2): 52-60. DOI: 10.1016/j.jphs.2023.12.004.Araki T, Shimazawa M, Nakamura S, et al. Investigation into the
usefulness of cynomolgus monkeys with spontaneously elevated
intraocular pressure as a model for glaucoma treatment research[ J]. J
Pharmacol Sci, 2024, 154(2): 52-60. DOI: 10.1016/j.jphs.2023.12.004.
43、Clement Freiberg J, von Spreckelsen A, Kolko M, et al. Rho kinase
inhibitor for primary open-angle glaucoma and ocular hypertension[ J].
Cochrane Database Syst Rev, 2022, 6(6): CD013817. DOI:
10.1002/14651858.CD013817.pub2.Clement Freiberg J, von Spreckelsen A, Kolko M, et al. Rho kinase
inhibitor for primary open-angle glaucoma and ocular hypertension[ J].
Cochrane Database Syst Rev, 2022, 6(6): CD013817. DOI:
10.1002/14651858.CD013817.pub2.
44、Heijl A, Peters D, Leske MC, et al. Effects of argon laser trabeculoplasty
in the Early Manifest Glaucoma Trial[ J]. Am J Ophthalmol, 2011,
152(5): 842-848. DOI: 10.1016/j.ajo.2011.04.036.Heijl A, Peters D, Leske MC, et al. Effects of argon laser trabeculoplasty
in the Early Manifest Glaucoma Trial[ J]. Am J Ophthalmol, 2011,
152(5): 842-848. DOI: 10.1016/j.ajo.2011.04.036.
45、Takusagawa HL, Hoguet A, Sit AJ, et al. Selective laser trabeculoplasty
for the treatment of glaucoma: a report by the American academy
of ophthalmology[ J]. Ophthalmology, 2024, 131(1): 37-47. DOI:
10.1016/j.ophtha.2023.07.029.Takusagawa HL, Hoguet A, Sit AJ, et al. Selective laser trabeculoplasty
for the treatment of glaucoma: a report by the American academy
of ophthalmology[ J]. Ophthalmology, 2024, 131(1): 37-47. DOI:
10.1016/j.ophtha.2023.07.029.
46、Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Laser in
glaucoma and ocular hypertension (LiGHT) trial: six-year results
of primary selective laser trabeculoplasty versus eye drops for the
treatment of glaucoma and ocular hypertension[ J]. Ophthalmology,
2023, 130(2): 139-151. DOI: 10.1016/j.ophtha.2022.09.009.Gazzard G, Konstantakopoulou E, Garway-Heath D, et al. Laser in
glaucoma and ocular hypertension (LiGHT) trial: six-year results
of primary selective laser trabeculoplasty versus eye drops for the
treatment of glaucoma and ocular hypertension[ J]. Ophthalmology,
2023, 130(2): 139-151. DOI: 10.1016/j.ophtha.2022.09.009.
47、Moussa K, Feinstein M, Pekmezci M, et al. Histologic changes following
continuous wave and micropulse transscleral cyclophotocoagulation: a
randomized comparative study[ J]. Transl Vis Sci Technol, 2020, 9(5):
22. DOI: 10.1167/tvst.9.5.22.Moussa K, Feinstein M, Pekmezci M, et al. Histologic changes following
continuous wave and micropulse transscleral cyclophotocoagulation: a
randomized comparative study[ J]. Transl Vis Sci Technol, 2020, 9(5):
22. DOI: 10.1167/tvst.9.5.22.