1、Quigley HA. Neuronal death in glaucoma[ J]. Prog Retin Eye Res,
1999, 18(1): 39-57. DOI: 10.1016/s1350-9462(98)00014-7.Quigley HA. Neuronal death in glaucoma[ J]. Prog Retin Eye Res,
1999, 18(1): 39-57. DOI: 10.1016/s1350-9462(98)00014-7.
2、Weinreb RN, Khaw PT. Primary open-angle glaucoma[ J]. Lancet,
2004, 363(9422): 1711-1720. DOI: 10.1016/S0140-6736(04)16257-0.Weinreb RN, Khaw PT. Primary open-angle glaucoma[ J]. Lancet,
2004, 363(9422): 1711-1720. DOI: 10.1016/S0140-6736(04)16257-0.
3、GBD 2019 Blindness and Vision Impairment Collaborators, Vision
Loss Expert Group of the Global Burden of Disease Study. Causes of
blindness and vision impairment in 2020 and trends over 30 years,
and prevalence of avoidable blindness in relation to VISION 2020: the
Right to Sight: an analysis for the Global Burden of Disease Study[ J].
Lancet Glob Health,2021,9(2): e144–e160. DOI: 10.1016/S2214-
109X(20)30489-7.GBD 2019 Blindness and Vision Impairment Collaborators, Vision
Loss Expert Group of the Global Burden of Disease Study. Causes of
blindness and vision impairment in 2020 and trends over 30 years,
and prevalence of avoidable blindness in relation to VISION 2020: the
Right to Sight: an analysis for the Global Burden of Disease Study[ J].
Lancet Glob Health,2021,9(2): e144–e160. DOI: 10.1016/S2214-
109X(20)30489-7.
4、Sommer A , Tielsch JM, K atz J, et al. Relationship between
intraocular pressure and primary open angle glaucoma among
w hite and black Americans. The Baltimore Eye Sur vey[ J].
Arch Ophthalmol,1991,109(8): 1090–1095. DOI: 10.1001/
archopht.1991.01080080050026.Sommer A , Tielsch JM, K atz J, et al. Relationship between
intraocular pressure and primary open angle glaucoma among
w hite and black Americans. The Baltimore Eye Sur vey[ J].
Arch Ophthalmol,1991,109(8): 1090–1095. DOI: 10.1001/
archopht.1991.01080080050026.
5、Wang D, Huang W, Li Y, et al. Intraocular pressure, central corneal
thickness, and glaucoma in Chinese adults: the Liwan eye study[ J].
Am J Ophthalmol, 2011, 152(3): 454-462.e1. DOI: 10.1016/
j.ajo.2011.03.005.Wang D, Huang W, Li Y, et al. Intraocular pressure, central corneal
thickness, and glaucoma in Chinese adults: the Liwan eye study[ J].
Am J Ophthalmol, 2011, 152(3): 454-462.e1. DOI: 10.1016/
j.ajo.2011.03.005.
6、Vranka JA, Kelley MJ, Acott TS, et al. Extracellular matrix in the
trabecular meshwork: intraocular pressure regulation and dysregulation
in glaucoma[ J]. Exp Eye Res, 2015, 133: 112-125. DOI: 10.1016/
j.exer.2014.07.014.Vranka JA, Kelley MJ, Acott TS, et al. Extracellular matrix in the
trabecular meshwork: intraocular pressure regulation and dysregulation
in glaucoma[ J]. Exp Eye Res, 2015, 133: 112-125. DOI: 10.1016/
j.exer.2014.07.014.
7、Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in
primary open-angle glaucoma and nonglaucomatous normals[ J].
Ophthalmology, 1984, 91(6): 564-579. DOI: 10.1016/s0161-
6420(84)34248-8.Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in
primary open-angle glaucoma and nonglaucomatous normals[ J].
Ophthalmology, 1984, 91(6): 564-579. DOI: 10.1016/s0161-
6420(84)34248-8.
8、Alvarado J, Murphy C, Polansky J, et al. Age-related changes in
trabecular meshwork cellularity[ J]. Invest Ophthalmol Vis Sci,1981,
21(5):714–727. 9. Grierson I, Howes RC. Age-related depletion of
the cell population in the human trabecular meshwork[ J]. Eye(Lond),
1987, 1( Pt 2): 204–210. DOI: 10.1038/eye.1987.38.Alvarado J, Murphy C, Polansky J, et al. Age-related changes in
trabecular meshwork cellularity[ J]. Invest Ophthalmol Vis Sci,1981,
21(5):714–727. 9. Grierson I, Howes RC. Age-related depletion of
the cell population in the human trabecular meshwork[ J]. Eye(Lond),
1987, 1( Pt 2): 204–210. DOI: 10.1038/eye.1987.38.
9、Calkins DJ. Adaptive responses to neurodegenerative stress in
glaucoma[ J]. Prog Retin Eye Res,2021, 84: 100953. DOI: 10.1016/
j.preteyeres.2021.100953.Calkins DJ. Adaptive responses to neurodegenerative stress in
glaucoma[ J]. Prog Retin Eye Res,2021, 84: 100953. DOI: 10.1016/
j.preteyeres.2021.100953.
10、Chong RS, Martin KR . Glial cell interactions and glaucoma[ J].
Curr Opin Ophthalmol, 2015, 26(2): 73-77. DOI: 10.1097/
ICU.0000000000000125.Chong RS, Martin KR . Glial cell interactions and glaucoma[ J].
Curr Opin Ophthalmol, 2015, 26(2): 73-77. DOI: 10.1097/
ICU.0000000000000125.
11、Trivli A, Koliarakis I, Terzidou C, et al. Normal-tension glaucoma:
Pathogenesis and genetics[ J]. Exp Ther Med, 2019, 17(1): 563-574.
DOI: 10.3892/etm.2018.7011.Trivli A, Koliarakis I, Terzidou C, et al. Normal-tension glaucoma:
Pathogenesis and genetics[ J]. Exp Ther Med, 2019, 17(1): 563-574.
DOI: 10.3892/etm.2018.7011.
12、Stern JH, Tian Y, Funderburgh J, et al. Regenerating eye tissues to
preserve and restore vision[ J]. Cell Stem Cell, 2018, 22(6): 834-849.
DOI: 10.1016/j.stem.2018.05.013.Stern JH, Tian Y, Funderburgh J, et al. Regenerating eye tissues to
preserve and restore vision[ J]. Cell Stem Cell, 2018, 22(6): 834-849.
DOI: 10.1016/j.stem.2018.05.013.
13、Costa EC, Moreira AF, de Melo-Diogo D, et al. 3D tumor spheroids:
an overview on the tools and techniques used for their analysis[ J].
Biotechnol Adv, 2016, 34(8): 1427-1441. DOI: 10.1016/j.biotechadv.
2016.11.002.Costa EC, Moreira AF, de Melo-Diogo D, et al. 3D tumor spheroids:
an overview on the tools and techniques used for their analysis[ J].
Biotechnol Adv, 2016, 34(8): 1427-1441. DOI: 10.1016/j.biotechadv.
2016.11.002.
14、Lv D, Hu Z, Lu L, et al. Three-dimensional cell culture: a powerful tool
in tumor research and drug discovery[ J]. Oncol Lett, 2017, 14(6):
6999-7010. DOI: 10.3892/ol.2017.7134.Lv D, Hu Z, Lu L, et al. Three-dimensional cell culture: a powerful tool
in tumor research and drug discovery[ J]. Oncol Lett, 2017, 14(6):
6999-7010. DOI: 10.3892/ol.2017.7134.
15、Szot CS, Buchanan CF, Freeman JW, et al. 3D in vitro bioengineered
tumors based on collagen I hydrogels[ J]. Biomaterials, 2011, 32(31):
7905-7912. DOI: 10.1016/j.biomaterials.2011.07.001.Szot CS, Buchanan CF, Freeman JW, et al. 3D in vitro bioengineered
tumors based on collagen I hydrogels[ J]. Biomaterials, 2011, 32(31):
7905-7912. DOI: 10.1016/j.biomaterials.2011.07.001.
16、Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer
in 3D[ J]. Cell, 2007, 130(4): 601-610. DOI: 10.1016/j.cell.2007.
08.006.Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer
in 3D[ J]. Cell, 2007, 130(4): 601-610. DOI: 10.1016/j.cell.2007.
08.006.
17、Bin Kim J. Three-dimensional tissue culture models in cancer
biology[ J]. Semin Cancer Biol, 2005, 15(5): 365-377. DOI: 10.1016/
j.semcancer.2005.05.002.Bin Kim J. Three-dimensional tissue culture models in cancer
biology[ J]. Semin Cancer Biol, 2005, 15(5): 365-377. DOI: 10.1016/
j.semcancer.2005.05.002.
18、Koroleva A, Deiwick A, El-Tamer A, et al. In vitro development of
human iPSC-derived functional neuronal networks on laser-fabricated
3D scaffolds[ J]. ACS Appl Mater Interfaces, 2021, 13(7): 7839-7853.
DOI: 10.1021/acsami.0c16616.Koroleva A, Deiwick A, El-Tamer A, et al. In vitro development of
human iPSC-derived functional neuronal networks on laser-fabricated
3D scaffolds[ J]. ACS Appl Mater Interfaces, 2021, 13(7): 7839-7853.
DOI: 10.1021/acsami.0c16616.
19、Miller CP, Tsuchida C, Zheng Y, et al. A 3D human renal cell carcinomaon-a-chip for the study of tumor angiogenesis[ J]. Neoplasia, 2018, 20(6): 610-620. DOI: 10.1016/j.neo.2018.02.011.Miller CP, Tsuchida C, Zheng Y, et al. A 3D human renal cell carcinomaon-a-chip for the study of tumor angiogenesis[ J]. Neoplasia, 2018, 20(6): 610-620. DOI: 10.1016/j.neo.2018.02.011.
20、Dasgupta S, Barui A. 3D cell culture for pharmaceutical application//
Advances and Challenges in Pharmaceutical Technology[M].
Amsterdam: Elsevier, 2021: 261-282. DOI: 10.1016/b978-0-12-
820043-8.00003-7.Dasgupta S, Barui A. 3D cell culture for pharmaceutical application//
Advances and Challenges in Pharmaceutical Technology[M].
Amsterdam: Elsevier, 2021: 261-282. DOI: 10.1016/b978-0-12-
820043-8.00003-7.
21、Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator
of breast epithelial function[ J]. Curr Opin Cell Biol, 2003, 15(6): 753-
762. DOI: 10.1016/j.ceb.2003.10.016.Bissell MJ, Rizki A, Mian IS. Tissue architecture: the ultimate regulator
of breast epithelial function[ J]. Curr Opin Cell Biol, 2003, 15(6): 753-
762. DOI: 10.1016/j.ceb.2003.10.016.
22、Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour
and misbehaviour[ J]. Trends Cell Biol, 1998, 8(11): 437-441. DOI:
10.1016/s0962-8924(98)01362-2.Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour
and misbehaviour[ J]. Trends Cell Biol, 1998, 8(11): 437-441. DOI:
10.1016/s0962-8924(98)01362-2.
23、Even-Ram S, Yamada KM. Cell migration in 3D matrix. Curr Opin
Cell Biol.(2005) 17:524–32.26. Lee J, Cuddihy MJ, Kotov NA. Threedimensional cell culture matrices: state of the art. Tissue Eng Part B
Rev. (2008) 14:61–86.Even-Ram S, Yamada KM. Cell migration in 3D matrix. Curr Opin
Cell Biol.(2005) 17:524–32.26. Lee J, Cuddihy MJ, Kotov NA. Threedimensional cell culture matrices: state of the art. Tissue Eng Part B
Rev. (2008) 14:61–86.
24、Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices:
state of the art[ J]. Tissue Eng Part B Rev, 2008, 14(1): 61-86. DOI:
10.1089/teb.2007.0150.Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices:
state of the art[ J]. Tissue Eng Part B Rev, 2008, 14(1): 61-86. DOI:
10.1089/teb.2007.0150.
25、Kleinman HK, Martin GR. Matrigel: basement membrane matrix with
biological activity[ J]. Semi Cancer Biol, 2005, 15(3):378–386. DOI:
10.1016/j.semcancer.2005.05.004.Kleinman HK, Martin GR. Matrigel: basement membrane matrix with
biological activity[ J]. Semi Cancer Biol, 2005, 15(3):378–386. DOI:
10.1016/j.semcancer.2005.05.004.
26、徐怡朦, 唐靓, 王晗, 等. 3D打印肝肿瘤模型及其白术和薏
米药敏试验[ J]. 医学理论与实践, 2021, 34(5): 721-725. DOI:
10.19381/j.issn.1001-7585.2021.05.001.
Xu YM, Tang ( J, Wang H, et al. 3D printing liver tumor model and
its atractylodes macrocephala and semen coicis drug sensitivity
tests[ J]. J Med Theory Pract, 2021, 34(5): 721-725. DOI: 10.19381/
j.issn.1001-7585.2021.05.001.Xu YM, Tang ( J, Wang H, et al. 3D printing liver tumor model and
its atractylodes macrocephala and semen coicis drug sensitivity
tests[ J]. J Med Theory Pract, 2021, 34(5): 721-725. DOI: 10.19381/
j.issn.1001-7585.2021.05.001.
27、梁提松. 基于3D细胞模型的杨梅花色苷纳米脂质体抗氧化机制
的研究[D]. 杭州: 中国计量大学, 2018.
Liang TS. Study on antiox idant mechanism of myrica rubra
anthocyanin nanoliposomes based on 3D cell model[D].Hangzhou:
China University of Metrology, 2018.Liang TS. Study on antiox idant mechanism of myrica rubra
anthocyanin nanoliposomes based on 3D cell model[D].Hangzhou:
China University of Metrology, 2018.
28、Keller KE, Acott TS. The juxtacanalicular region of ocular trabecular
meshwork: a tissue with a unique extracellular matrix and specialized
function[ J]. J Ocul Biol, 2013, 1(1): 3.Keller KE, Acott TS. The juxtacanalicular region of ocular trabecular
meshwork: a tissue with a unique extracellular matrix and specialized
function[ J]. J Ocul Biol, 2013, 1(1): 3.
29、Ashok A , Kang MH, Wise AS, et al. Prion protein modulates
endothelial to mesenchyme-like transition in trabecular meshwork
cells: implications for primary open angle glaucoma[ J]. Sci Rep, 2019,
9(1): 13090. DOI: 10.1038/s41598-019-49482-6.Ashok A , Kang MH, Wise AS, et al. Prion protein modulates
endothelial to mesenchyme-like transition in trabecular meshwork
cells: implications for primary open angle glaucoma[ J]. Sci Rep, 2019,
9(1): 13090. DOI: 10.1038/s41598-019-49482-6.
30、Wallace DM, Clark AF, Lipson KE, et al. Anti-connective tissue growth
factor antibody treatment reduces extracellular matrix production in
trabecular meshwork and lamina cribrosa cells[ J]. Invest Ophthalmol
Vis Sci, 2013, 54(13): 7836-7848. DOI: 10.1167/iovs.13-12494.Wallace DM, Clark AF, Lipson KE, et al. Anti-connective tissue growth
factor antibody treatment reduces extracellular matrix production in
trabecular meshwork and lamina cribrosa cells[ J]. Invest Ophthalmol
Vis Sci, 2013, 54(13): 7836-7848. DOI: 10.1167/iovs.13-12494.
31、Chhunchha B, Singh P, Stamer WD, et al. Prdx6 retards senescence
and restores trabecular meshwork cell health by regulating reactive
oxygen species[ J]. Cell Death Discov, 2017, 3: 17060. DOI: 10.1038/
cddiscovery.2017.60.Chhunchha B, Singh P, Stamer WD, et al. Prdx6 retards senescence
and restores trabecular meshwork cell health by regulating reactive
oxygen species[ J]. Cell Death Discov, 2017, 3: 17060. DOI: 10.1038/
cddiscovery.2017.60.
32、Izzotti A , Bagnis A , Saccà SC. The role of oxidative stress in
glaucoma[ J]. Mutat Res, 2006, 612(2): 105-114. DOI: 10.1016/
j.mrrev.2005.11.001.Izzotti A , Bagnis A , Saccà SC. The role of oxidative stress in
glaucoma[ J]. Mutat Res, 2006, 612(2): 105-114. DOI: 10.1016/
j.mrrev.2005.11.001.
33、Peters JC, Bhattacharya S, Clark AF, et al. Increased endoplasmic
reticulum stress in human glaucomatous trabecular meshwork cells and
tissues[ J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3860-3868. DOI:
10.1167/iovs.14-16220.Peters JC, Bhattacharya S, Clark AF, et al. Increased endoplasmic
reticulum stress in human glaucomatous trabecular meshwork cells and
tissues[ J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3860-3868. DOI:
10.1167/iovs.14-16220.
34、Kasetti RB, Maddineni P, Millar JC, et al. Increased synthesis and
deposition of extracellular matrix proteins leads to endoplasmic
reticulum stress in the trabecular meshwork[ J]. Sci Rep, 2017, 7(1):
14951. DOI: 10.1038/s41598-017-14938-0.Kasetti RB, Maddineni P, Millar JC, et al. Increased synthesis and
deposition of extracellular matrix proteins leads to endoplasmic
reticulum stress in the trabecular meshwork[ J]. Sci Rep, 2017, 7(1):
14951. DOI: 10.1038/s41598-017-14938-0.
35、Watanabe M, Ida Y, Ohguro H, et al. Establishment of appropriate
glaucoma models using dexamethasone or TGFβ2 treated threedimension (3D) cultured human trabecular meshwork (HTM) cells[ J].
Sci Rep, 2021, 11(1): 19369. DOI: 10.1038/s41598-021-98766-3.Watanabe M, Ida Y, Ohguro H, et al. Establishment of appropriate
glaucoma models using dexamethasone or TGFβ2 treated threedimension (3D) cultured human trabecular meshwork (HTM) cells[ J].
Sci Rep, 2021, 11(1): 19369. DOI: 10.1038/s41598-021-98766-3.
36、Osmond M, Bernier SM, Pantcheva MB, et al. Collagen and collagenchondroitin sulfate scaffolds with uniaxially aligned pores for the
biomimetic, three dimensional culture of trabecular meshwork cells[ J].
Biotechnol Bioeng, 2017, 114(4): 915-923. DOI: 10.1002/bit.26206.Osmond M, Bernier SM, Pantcheva MB, et al. Collagen and collagenchondroitin sulfate scaffolds with uniaxially aligned pores for the
biomimetic, three dimensional culture of trabecular meshwork cells[ J].
Biotechnol Bioeng, 2017, 114(4): 915-923. DOI: 10.1002/bit.26206.
37、Waduthanthri KD, He Y, Montemagno C, et al. An injectable peptide
hydrogel for reconstruction of the human trabecular meshwork[ J]. Acta
Biomater, 2019, 100: 244-254. DOI: 10.1016/j.actbio.2019.09.032.Waduthanthri KD, He Y, Montemagno C, et al. An injectable peptide
hydrogel for reconstruction of the human trabecular meshwork[ J]. Acta
Biomater, 2019, 100: 244-254. DOI: 10.1016/j.actbio.2019.09.032.
38、Huff R, Osmond MJ, Krebs MD.In vitro 3D bioprinting trabecular
meshwork models using organic hydrogels[R/OL]. [2024-07-10].
https://hdl.handle.net/11124/171213.DOI: 10.25676/ 11124/
171213.Huff R, Osmond MJ, Krebs MD.In vitro 3D bioprinting trabecular
meshwork models using organic hydrogels[R/OL]. [2024-07-10].
https://hdl.handle.net/11124/171213.DOI: 10.25676/ 11124/
171213.
39、Wu H, Li D, Tang Y, et al. Rapid fabrication of alumina-based ceramic
cores for gas turbine blades by stereolithography and gelcasting[ J]. J
Mater Process Technol, 2009, 209(18-19): 5886-5891. DOI: 10.1016/
j.jmatprotec.2009.07.002.Wu H, Li D, Tang Y, et al. Rapid fabrication of alumina-based ceramic
cores for gas turbine blades by stereolithography and gelcasting[ J]. J
Mater Process Technol, 2009, 209(18-19): 5886-5891. DOI: 10.1016/
j.jmatprotec.2009.07.002.
40、Hertz J, Robinson R, Valenzuela DA, et al. A tunable synthetic hydrogel
system for culture of retinal ganglion cells and amacrine cells[ J]. Acta
Biomater, 2013, 9(8): 7622-7629. DOI: 10.1016/j.actbio.2013.04.048.Hertz J, Robinson R, Valenzuela DA, et al. A tunable synthetic hydrogel
system for culture of retinal ganglion cells and amacrine cells[ J]. Acta
Biomater, 2013, 9(8): 7622-7629. DOI: 10.1016/j.actbio.2013.04.048.
41、Laughter MR, Ammar DA, Bardill JR, et al. A self-assembling injectable
biomimetic microenvironment encourages retinal ganglion cell axon
extension in vitro[ J]. ACS Appl Mater Interfaces, 2016, 8(32): 20540-
20548. DOI: 10.1021/acsami.6b04679.Laughter MR, Ammar DA, Bardill JR, et al. A self-assembling injectable
biomimetic microenvironment encourages retinal ganglion cell axon
extension in vitro[ J]. ACS Appl Mater Interfaces, 2016, 8(32): 20540-
20548. DOI: 10.1021/acsami.6b04679.
42、Kador KE, Montero RB, Venugopalan P, et al. Tissue engineering the
retinal ganglion cell nerve fiber layer[ J]. Biomaterials, 2013, 34(17):
4242-4250. DOI: 10.1016/j.biomaterials.2013.02.027.Kador KE, Montero RB, Venugopalan P, et al. Tissue engineering the
retinal ganglion cell nerve fiber layer[ J]. Biomaterials, 2013, 34(17):
4242-4250. DOI: 10.1016/j.biomaterials.2013.02.027.