1、Schraufnagel DE, Balmes JR, De Matteis S, et al. Health benefits of air
pollution reduction[ J]. Ann Am Thorac Soc, 2019, 16(12): 1478-1487.
DOI: 10.1513/AnnalsATS.201907-538CME.Schraufnagel DE, Balmes JR, De Matteis S, et al. Health benefits of air
pollution reduction[ J]. Ann Am Thorac Soc, 2019, 16(12): 1478-1487.
DOI: 10.1513/AnnalsATS.201907-538CME.
2、Lelieveld J, Evans JS, Fnais M, et al. The contribution of outdoor air
pollution sources to premature mortality on a global scale[ J]. Nature,
2015, 525(7569): 367-371. DOI: 10.1038/nature15371.Lelieveld J, Evans JS, Fnais M, et al. The contribution of outdoor air
pollution sources to premature mortality on a global scale[ J]. Nature,
2015, 525(7569): 367-371. DOI: 10.1038/nature15371.
3、Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the
global burden of disease attributable to ambient air pollution: an analysis
of data from the Global Burden of Diseases Study 2015[ J]. Lancet, 2017,
389(10082): 1907-1918. DOI: 10.1016/S0140-6736(17)30505-6.Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the
global burden of disease attributable to ambient air pollution: an analysis
of data from the Global Burden of Diseases Study 2015[ J]. Lancet, 2017,
389(10082): 1907-1918. DOI: 10.1016/S0140-6736(17)30505-6.
4、Loomis D, Grosse Y, Lauby-Secretan B, et al. The carcinogenicity of
outdoor air pollution[ J]. Lancet Oncol, 2013, 14(13): 1262-1263. DOI:
10.1016/s1470-2045(13)70487-x.Loomis D, Grosse Y, Lauby-Secretan B, et al. The carcinogenicity of
outdoor air pollution[ J]. Lancet Oncol, 2013, 14(13): 1262-1263. DOI:
10.1016/s1470-2045(13)70487-x.
5、Pereira G. Cut particulate air pollution, save lives[ J]. BMJ, 2021, 375:
n2561. DOI: 10.1136/bmj.n2561.Pereira G. Cut particulate air pollution, save lives[ J]. BMJ, 2021, 375:
n2561. DOI: 10.1136/bmj.n2561.
6、Kim KH, Kabir E, Kabir S. A review on the human health impact of
airborne particulate matter[ J]. Environ Int, 2015, 74: 136-143. DOI:
10.1016/j.envint.2014.10.005.Kim KH, Kabir E, Kabir S. A review on the human health impact of
airborne particulate matter[ J]. Environ Int, 2015, 74: 136-143. DOI:
10.1016/j.envint.2014.10.005.
7、World Health Organization. Regional Office For E. Health effects of
particulate matter: policy implications for countries in eastern Europe,
Caucasus and central Asia[M]. Copenhagen: World Health Organization,
2013.World Health Organization. Regional Office For E. Health effects of
particulate matter: policy implications for countries in eastern Europe,
Caucasus and central Asia[M]. Copenhagen: World Health Organization,
2013.
8、Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter
air pollution in underground railway systems - a critical review of the
evidence[ J]. Part Fibre Toxicol, 2019, 16(1): 12. DOI: 10.1186/s12989-
019-0296-2.Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter
air pollution in underground railway systems - a critical review of the
evidence[ J]. Part Fibre Toxicol, 2019, 16(1): 12. DOI: 10.1186/s12989-
019-0296-2.
9、de Oliveira Alves N, Martins Pereira G, Di Domenico M, et al.
Inflammation response, oxidative stress and DNA damage caused by
urban air pollution exposure increase in the lack of DNA repair XPC
protein[ J]. Environ Int, 2020, 145: 106150. DOI: 10.1016/j.envint.
2020.106150.de Oliveira Alves N, Martins Pereira G, Di Domenico M, et al.
Inflammation response, oxidative stress and DNA damage caused by
urban air pollution exposure increase in the lack of DNA repair XPC
protein[ J]. Environ Int, 2020, 145: 106150. DOI: 10.1016/j.envint.
2020.106150.
10、Liu J, Li S, Fei X, et al. Increased alveolar epithelial TRAF6 via autophagy-dependent TRIM37 degradation mediates particulate matterinduced lung metastasis[ J]. Autophagy, 2022, 18(5): 971-989. DOI:
10.1080/15548627.2021.1965421.Liu J, Li S, Fei X, et al. Increased alveolar epithelial TRAF6 via autophagy-dependent TRIM37 degradation mediates particulate matterinduced lung metastasis[ J]. Autophagy, 2022, 18(5): 971-989. DOI:
10.1080/15548627.2021.1965421.
11、Das A, Habib G, Vivekanandan P, et al. Reactive oxygen species
production and inflammatory effects of ambient PM2.5-associated
metals on human lung epithelial A549cells “one year-long study”:
the Delhi chapter[ J]. Chemosphere, 2021, 262: 128305. DOI: 10.1016/
j.chemosphere.2020.128305.Das A, Habib G, Vivekanandan P, et al. Reactive oxygen species
production and inflammatory effects of ambient PM2.5-associated
metals on human lung epithelial A549cells “one year-long study”:
the Delhi chapter[ J]. Chemosphere, 2021, 262: 128305. DOI: 10.1016/
j.chemosphere.2020.128305.
12、Guarnieri M, Balmes JR. Outdoor air pollution and asthma[ J]. Lancet,
2014, 383(9928): 1581-1592. DOI: 10.1016/S0140-6736(14)60617-6.Guarnieri M, Balmes JR. Outdoor air pollution and asthma[ J]. Lancet,
2014, 383(9928): 1581-1592. DOI: 10.1016/S0140-6736(14)60617-6.
13、Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive
pulmonary disease[ J]. Lancet, 2022, 399(10342): 2227-2242. DOI:
10.1016/S0140-6736(22)00470-6.Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive
pulmonary disease[ J]. Lancet, 2022, 399(10342): 2227-2242. DOI:
10.1016/S0140-6736(22)00470-6.
14、Kaur M, Chandel J, Malik J, et al. Particulate matter in COPD
pathogenesis: an overview[ J]. Inflamm Res, 2022, 71(7-8): 797-815.
DOI: 10.1007/s00011-022-01594-yKaur M, Chandel J, Malik J, et al. Particulate matter in COPD
pathogenesis: an overview[ J]. Inflamm Res, 2022, 71(7-8): 797-815.
DOI: 10.1007/s00011-022-01594-y
15、Wang Y, Du Z, Zhang Y, et al. Long-term exposure to particulate matter
and COPD mortality: insights from causal inference methods based on a
large population cohort in Southern China[ J]. Sci Total Environ, 2023,
863: 160808. DOI: 10.1016/j.scitotenv.2022.160808.Wang Y, Du Z, Zhang Y, et al. Long-term exposure to particulate matter
and COPD mortality: insights from causal inference methods based on a
large population cohort in Southern China[ J]. Sci Total Environ, 2023,
863: 160808. DOI: 10.1016/j.scitotenv.2022.160808.
16、Xue Y, Wang L, Zhang Y, et al. Air pollution: a culprit of lung
cancer[ J]. J Hazard Mater, 2022, 434: 128937. DOI: 10.1016/
j.jhazmat.2022.128937.Xue Y, Wang L, Zhang Y, et al. Air pollution: a culprit of lung
cancer[ J]. J Hazard Mater, 2022, 434: 128937. DOI: 10.1016/
j.jhazmat.2022.128937.
17、Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled
particles into the blood circulation in humans[ J]. Circulation, 2002,
105(4): 411-414. DOI: 10.1161/hc0402.104118.Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled
particles into the blood circulation in humans[ J]. Circulation, 2002,
105(4): 411-414. DOI: 10.1161/hc0402.104118.
18、Rajagopalan S, Landrigan PJ. Pollution and the heart[ J]. N Engl J Med,
2021, 385(20): 1881-1892. DOI: 10.1056/NEJMra2030281.Rajagopalan S, Landrigan PJ. Pollution and the heart[ J]. N Engl J Med,
2021, 385(20): 1881-1892. DOI: 10.1056/NEJMra2030281.
19、Thiankhaw K, Chattipakorn N, Chattipakorn SC. PM2.5 exposure
in association with AD-related neuropathology and cognitive
outcomes[ J]. Environ Pollut, 2022, 292(Pt A): 118320. DOI: 10.1016/
j.envpol.2021.118320.Thiankhaw K, Chattipakorn N, Chattipakorn SC. PM2.5 exposure
in association with AD-related neuropathology and cognitive
outcomes[ J]. Environ Pollut, 2022, 292(Pt A): 118320. DOI: 10.1016/
j.envpol.2021.118320.
20、Kel ly FJ. Urban air qualit y and health: t wo steps for ward,
one step back[ J]. Eur Respir J, 2019, 53(3): 1900280. DOI:
10.1183/13993003.00280-2019.Kel ly FJ. Urban air qualit y and health: t wo steps for ward,
one step back[ J]. Eur Respir J, 2019, 53(3): 1900280. DOI:
10.1183/13993003.00280-2019.
21、Jung SJ, Mehta JS, Tong L. Effects of environment pollution on the
ocular surface[ J]. Ocul Surf, 2018, 16(2): 198-205. DOI: 10.1016/
j.jtos.2018.03.001.Jung SJ, Mehta JS, Tong L. Effects of environment pollution on the
ocular surface[ J]. Ocul Surf, 2018, 16(2): 198-205. DOI: 10.1016/
j.jtos.2018.03.001.
22、Gupta SK, Gupta SC, Agarwal R, et al. A multicentric case-control study
on the impact of air pollution on eyes in a metropolitan city of India[ J].
Indian J Occup Environ Med, 2007, 11(1): 37-40. DOI: 10.4103/0019-
5278.32463.Gupta SK, Gupta SC, Agarwal R, et al. A multicentric case-control study
on the impact of air pollution on eyes in a metropolitan city of India[ J].
Indian J Occup Environ Med, 2007, 11(1): 37-40. DOI: 10.4103/0019-
5278.32463.
23、Camara JG, Lagunzad JKD. Ocular findings in volcanic fog induced
conjunctivitis[ J]. Hawaii Med J, 2011, 70(12): 262-265.Camara JG, Lagunzad JKD. Ocular findings in volcanic fog induced
conjunctivitis[ J]. Hawaii Med J, 2011, 70(12): 262-265.
24、Mimura T, Ichinose T, Yamagami S, et al. Airborne particulate
matter (PM2.5) and the prevalence of allergic conjunctivitis in Japan[ J]. Sci Total Environ, 2014, 487: 493-499. DOI: 10.1016/
j.scitotenv.2014.04.057.Mimura T, Ichinose T, Yamagami S, et al. Airborne particulate
matter (PM2.5) and the prevalence of allergic conjunctivitis in Japan[ J]. Sci Total Environ, 2014, 487: 493-499. DOI: 10.1016/
j.scitotenv.2014.04.057.
25、Chang CJ, Yang HH, Chang CA, et al. Relationship between air pollution
and outpatient visits for nonspecific conjunctivitis[ J]. Invest Ophthalmol
Vis Sci, 2012, 53(1): 429-433. DOI: 10.1167/iovs.11-8253.Chang CJ, Yang HH, Chang CA, et al. Relationship between air pollution
and outpatient visits for nonspecific conjunctivitis[ J]. Invest Ophthalmol
Vis Sci, 2012, 53(1): 429-433. DOI: 10.1167/iovs.11-8253.
26、Sendra VG, Tau J, Zapata G, et al. Polluted air exposure compromises
corneal immunity and exacerbates inflammation in acute herpes
simplex keratitis[ J]. Front Immunol, 2021, 12: 618597. DOI: 10.3389/
fimmu.2021.618597.Sendra VG, Tau J, Zapata G, et al. Polluted air exposure compromises
corneal immunity and exacerbates inflammation in acute herpes
simplex keratitis[ J]. Front Immunol, 2021, 12: 618597. DOI: 10.3389/
fimmu.2021.618597.
27、Mo Z, Fu Q, Lyu D, et al. Impacts of air pollution on dry eye disease
among residents in Hangzhou, China: a case-crossover study[ J]. Environ
Pollut, 2019, 246: 183-189. DOI: 10.1016/j.envpol.2018.11.109.Mo Z, Fu Q, Lyu D, et al. Impacts of air pollution on dry eye disease
among residents in Hangzhou, China: a case-crossover study[ J]. Environ
Pollut, 2019, 246: 183-189. DOI: 10.1016/j.envpol.2018.11.109.
28、Hao R, Wan Y, Zhao L, et al. The effects of short-term and long-term air
pollution exposure on meibomian gland dysfunction[ J]. Sci Rep, 2022,
12(1): 6710. DOI: 10.1038/s41598-022-10527-yHao R, Wan Y, Zhao L, et al. The effects of short-term and long-term air
pollution exposure on meibomian gland dysfunction[ J]. Sci Rep, 2022,
12(1): 6710. DOI: 10.1038/s41598-022-10527-y
29、Li L, Xing C, Zhou J, et al. Airborne particulate matter (PM2.5) triggers
ocular hypertension and glaucoma through pyroptosis[ J]. Part Fibre
Toxicol, 2021, 18(1): 10. DOI: 10.1186/s12989-021-00403-4.Li L, Xing C, Zhou J, et al. Airborne particulate matter (PM2.5) triggers
ocular hypertension and glaucoma through pyroptosis[ J]. Part Fibre
Toxicol, 2021, 18(1): 10. DOI: 10.1186/s12989-021-00403-4.
30、Chua SYL, Khawaja AP, Desai P, et al. The association of ambient air
pollution with cataract surgery in UK biobank participants: prospective
cohort study[ J]. Invest Ophthalmol Vis Sci, 2021, 62(15): 7. DOI:
10.1167/iovs.62.15.7.Chua SYL, Khawaja AP, Desai P, et al. The association of ambient air
pollution with cataract surgery in UK biobank participants: prospective
cohort study[ J]. Invest Ophthalmol Vis Sci, 2021, 62(15): 7. DOI:
10.1167/iovs.62.15.7.
31、Gu Y, Hao S, Liu K, et al. Airborne fine particulate matter (PM2.5)
damages the inner blood-retinal barrier by inducing inflammation and
ferroptosis in retinal vascular endothelial cells[ J]. Sci Total Environ,
2022, 838(Pt 4): 156563. DOI: 10.1016/j.scitotenv.2022.156563.Gu Y, Hao S, Liu K, et al. Airborne fine particulate matter (PM2.5)
damages the inner blood-retinal barrier by inducing inflammation and
ferroptosis in retinal vascular endothelial cells[ J]. Sci Total Environ,
2022, 838(Pt 4): 156563. DOI: 10.1016/j.scitotenv.2022.156563.
32、Provost EB, Int Panis L, Saenen ND, et al. Recent versus chronic
fine particulate air pollution exposure as determinant of the retinal
microvasculature in school children[ J]. Environ Res, 2017, 159: 103-110.
DOI: 10.1016/j.envres.2017.07.027.Provost EB, Int Panis L, Saenen ND, et al. Recent versus chronic
fine particulate air pollution exposure as determinant of the retinal
microvasculature in school children[ J]. Environ Res, 2017, 159: 103-110.
DOI: 10.1016/j.envres.2017.07.027.
33、Lee H, Hwang-Bo H, Ji SY, et al. Diesel particulate matter2.5 promotes
epithelial-mesenchymal transition of human retinal pigment epithelial
cells via generation of reactive oxygen species[ J]. Environ Pollut, 2020,
262: 114301. DOI: 10.1016/j.envpol.2020.114301.Lee H, Hwang-Bo H, Ji SY, et al. Diesel particulate matter2.5 promotes
epithelial-mesenchymal transition of human retinal pigment epithelial
cells via generation of reactive oxygen species[ J]. Environ Pollut, 2020,
262: 114301. DOI: 10.1016/j.envpol.2020.114301.
34、Gayraud L, Mortamais M, Schweitzer C, et al. Association of long-term
exposure to ambient air pollution with retinal neurodegeneration: the
prospective Alienor study[ J]. Environ Res, 2023, 232: 116364. DOI:
10.1016/j.envres.2023.116364.Gayraud L, Mortamais M, Schweitzer C, et al. Association of long-term
exposure to ambient air pollution with retinal neurodegeneration: the
prospective Alienor study[ J]. Environ Res, 2023, 232: 116364. DOI:
10.1016/j.envres.2023.116364.
35、Zhu XM, Wang Q, Xing WW, et al. PM2.5 induces autophagy-mediated
cell death via NOS2 signaling in human bronchial epithelium cells[ J]. Int
J Biol Sci, 2018, 14(5): 557-564. DOI: 10.7150/ijbs.24546.Zhu XM, Wang Q, Xing WW, et al. PM2.5 induces autophagy-mediated
cell death via NOS2 signaling in human bronchial epithelium cells[ J]. Int
J Biol Sci, 2018, 14(5): 557-564. DOI: 10.7150/ijbs.24546.
36、Deng X, Feng N, Zheng M, et al. PM2.5 exposure-induced autophagy is
mediated by lncRNA loc146880 which also promotes the migration and
invasion of lung cancer cells[ J]. Biochim Biophys Acta Gen Subj, 2017,
1861(2): 112-125. DOI: 10.1016/j.bbagen.2016.11.009.Deng X, Feng N, Zheng M, et al. PM2.5 exposure-induced autophagy is
mediated by lncRNA loc146880 which also promotes the migration and
invasion of lung cancer cells[ J]. Biochim Biophys Acta Gen Subj, 2017,
1861(2): 112-125. DOI: 10.1016/j.bbagen.2016.11.009.
37、Gao Y, Fan X, Gu W, et al. Hyperoside relieves particulate matterinduced lung injury by inhibiting AMPK/mTOR-mediated autophagy deregulation[ J]. Pharmacol Res, 2021, 167: 105561. DOI: 10.1016/
j.phrs.2021.105561.Gao Y, Fan X, Gu W, et al. Hyperoside relieves particulate matterinduced lung injury by inhibiting AMPK/mTOR-mediated autophagy deregulation[ J]. Pharmacol Res, 2021, 167: 105561. DOI: 10.1016/
j.phrs.2021.105561.
38、Qiu Y, Zheng Z, Kim H, et al. Inhalation exposure to PM2.5 counteracts
hepatic steatosis in mice fed high-fat diet by stimulating hepatic
autophagy[ J]. Sci Rep, 2017, 7(1): 16286. DOI: 10.1038/s41598-017-
16490-3.Qiu Y, Zheng Z, Kim H, et al. Inhalation exposure to PM2.5 counteracts
hepatic steatosis in mice fed high-fat diet by stimulating hepatic
autophagy[ J]. Sci Rep, 2017, 7(1): 16286. DOI: 10.1038/s41598-017-
16490-3.
39、Yang X, Zhao T, Feng L, et al. PM2.5-induced ADRB2 hypermethylation
contributed to cardiac dysfunction through cardiomyocytes apoptosis via
PI3K/Akt pathway[ J]. Environ Int, 2019, 127: 601-614. DOI: 10.1016/
j.envint.2019.03.057.Yang X, Zhao T, Feng L, et al. PM2.5-induced ADRB2 hypermethylation
contributed to cardiac dysfunction through cardiomyocytes apoptosis via
PI3K/Akt pathway[ J]. Environ Int, 2019, 127: 601-614. DOI: 10.1016/
j.envint.2019.03.057.
40、Wang Q, Gan X, Li F, et al. PM2.5 exposure induces more serious
apoptosis of cardiomyocytes mediated by Caspase3 through JNK/P53
pathway in hyperlipidemic rats[ J]. Int J Biol Sci, 2019, 15(1): 24-33.
DOI: 10.7150/ijbs.28633.Wang Q, Gan X, Li F, et al. PM2.5 exposure induces more serious
apoptosis of cardiomyocytes mediated by Caspase3 through JNK/P53
pathway in hyperlipidemic rats[ J]. Int J Biol Sci, 2019, 15(1): 24-33.
DOI: 10.7150/ijbs.28633.
41、Yuan X, Wang Y, Li L, et al. PM2.5 induces embryonic growth retardation:
potential involvement of ROS-MAPKs-apoptosis and G0/G1 arrest
pathways[ J]. Environ Toxicol, 2016, 31(12): 2028-2044. DOI: 10.1002/
tox.22203.Yuan X, Wang Y, Li L, et al. PM2.5 induces embryonic growth retardation:
potential involvement of ROS-MAPKs-apoptosis and G0/G1 arrest
pathways[ J]. Environ Toxicol, 2016, 31(12): 2028-2044. DOI: 10.1002/
tox.22203.
42、Dou C, Zhang J, Qi C. Cooking oil fume-derived PM2.5 induces apoptosis
in A549 cells and MAPK/NF-кB/STAT1 pathway activation[ J].
Environ Sci Pollut Res Int, 2018, 25(10): 9940-9948. DOI: 10.1007/
s11356-018-1262-5.Dou C, Zhang J, Qi C. Cooking oil fume-derived PM2.5 induces apoptosis
in A549 cells and MAPK/NF-кB/STAT1 pathway activation[ J].
Environ Sci Pollut Res Int, 2018, 25(10): 9940-9948. DOI: 10.1007/
s11356-018-1262-5.
43、Duan S, Wang N, Huang L, et al. NLRP3 inflammasome activation is
associated with PM2.5-induced cardiac functional and pathological injury
in mice[ J]. Environ Toxicol, 2019, 34(11): 1246-1254. DOI: 10.1002/
tox.22825.Duan S, Wang N, Huang L, et al. NLRP3 inflammasome activation is
associated with PM2.5-induced cardiac functional and pathological injury
in mice[ J]. Environ Toxicol, 2019, 34(11): 1246-1254. DOI: 10.1002/
tox.22825.
44、Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[ J].
Signal Transduct Target Ther, 2021, 6(1): 128. DOI: 10.1038/s41392-
021-00507-5.Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[ J].
Signal Transduct Target Ther, 2021, 6(1): 128. DOI: 10.1038/s41392-
021-00507-5.
45、Shen C, Liu J, Zhu F, et al. The effects of cooking oil fumes-derived
PM2.5 on blood vessel formation through ROS-mediated NLRP3
inflammasome pathway in human umbilical vein endothelial
cells[ J]. Ecotoxicol Environ Saf, 2019, 174: 690-698. DOI: 10.1016/
j.ecoenv.2019.03.028.Shen C, Liu J, Zhu F, et al. The effects of cooking oil fumes-derived
PM2.5 on blood vessel formation through ROS-mediated NLRP3
inflammasome pathway in human umbilical vein endothelial
cells[ J]. Ecotoxicol Environ Saf, 2019, 174: 690-698. DOI: 10.1016/
j.ecoenv.2019.03.028.
46、Chu C, Zhang H, Cui S, et al. Ambient PM2.5 caused depressivelike responses through Nrf2/NLRP3 signaling pathway modulating
inflammation[ J]. J Hazard Mater, 2019, 369: 180-190. DOI: 10.1016/
j.jhazmat.2019.02.026.Chu C, Zhang H, Cui S, et al. Ambient PM2.5 caused depressivelike responses through Nrf2/NLRP3 signaling pathway modulating
inflammation[ J]. J Hazard Mater, 2019, 369: 180-190. DOI: 10.1016/
j.jhazmat.2019.02.026.
47、Wang BR, Shi JQ, Ge NN, et al. PM2.5 exposure aggravates oligomeric
amyloid beta-induced neuronal injur y and promotes NLRP3
inflammasome activation in an in vitro model of Alzheimer's disease[ J].
J Neuroinflammation, 2018, 15(1): 132. DOI: 10.1186/s12974-018-
1178-5.Wang BR, Shi JQ, Ge NN, et al. PM2.5 exposure aggravates oligomeric
amyloid beta-induced neuronal injur y and promotes NLRP3
inflammasome activation in an in vitro model of Alzheimer's disease[ J].
J Neuroinflammation, 2018, 15(1): 132. DOI: 10.1186/s12974-018-
1178-5.
48、Knop E, Knop N, Zhivov A, et al. The lid wiper and muco-cutaneous
junction anatomy of the human eyelid margins: an in vivo confocal and
histological study[ J]. J Anat, 2011, 218(4): 449-461. DOI: 10.1111/
j.1469-7580.2011.01355.x.Knop E, Knop N, Zhivov A, et al. The lid wiper and muco-cutaneous
junction anatomy of the human eyelid margins: an in vivo confocal and
histological study[ J]. J Anat, 2011, 218(4): 449-461. DOI: 10.1111/
j.1469-7580.2011.01355.x.
49、Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of
stem cells and their differentiated progeny in the human ocular surface[ J].
J Cell Biol, 1999, 145(4): 769-782. DOI: 10.1083/jcb. 145.4.769.Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of
stem cells and their differentiated progeny in the human ocular surface[ J].
J Cell Biol, 1999, 145(4): 769-782. DOI: 10.1083/jcb. 145.4.769.
50、Bielory L, Delgado L, Katelaris CH, et al. ICON: diagnosis and
management of allergic conjunctivitis[ J]. Ann Allergy Asthma Immunol,
2020, 124(2): 118-134. DOI: 10.1016/j.anai.2019.11.014.Bielory L, Delgado L, Katelaris CH, et al. ICON: diagnosis and
management of allergic conjunctivitis[ J]. Ann Allergy Asthma Immunol,
2020, 124(2): 118-134. DOI: 10.1016/j.anai.2019.11.014.
51、Wang W, Zhang W, Ge H, et al. Association between air pollution
and emergency room visits for eye diseases and effect modification
by temperature in Beijing, China[ J]. Environ Sci Pollut Res Int, 2022,
29(15): 22613-22622. DOI: 10.1007/s11356-021-17304-w.Wang W, Zhang W, Ge H, et al. Association between air pollution
and emergency room visits for eye diseases and effect modification
by temperature in Beijing, China[ J]. Environ Sci Pollut Res Int, 2022,
29(15): 22613-22622. DOI: 10.1007/s11356-021-17304-w.
52、Saxena R, Srivastava S, Trivedi D, et al. Impact of environmental pollution
on the eye[ J]. Acta Ophthalmol Scand, 2003, 81(5): 491-494. DOI:
10.1034/j.1600-0420.2003.00119.x.Saxena R, Srivastava S, Trivedi D, et al. Impact of environmental pollution
on the eye[ J]. Acta Ophthalmol Scand, 2003, 81(5): 491-494. DOI:
10.1034/j.1600-0420.2003.00119.x.
53、Novaes P, do Nascimento Saldiva PH, Kara-José N, et al. Ambient levels
of air pollution induce goblet-cell hyperplasia in human conjunctival
epithelium[ J]. Environ Health Perspect, 2007, 115(12): 1753-1756.
DOI: 10.1289/ehp.10363.Novaes P, do Nascimento Saldiva PH, Kara-José N, et al. Ambient levels
of air pollution induce goblet-cell hyperplasia in human conjunctival
epithelium[ J]. Environ Health Perspect, 2007, 115(12): 1753-1756.
DOI: 10.1289/ehp.10363.
54、Torricelli AAM, Matsuda M, Novaes P, et al. Effects of ambient levels of
traffic-derived air pollution on the ocular surface: analysis of symptoms,
conjunctival goblet cell count and mucin 5AC gene expression[ J].
Environ Res, 2014, 131: 59-63. DOI: 10.1016/j.envres.2014.02.014.Torricelli AAM, Matsuda M, Novaes P, et al. Effects of ambient levels of
traffic-derived air pollution on the ocular surface: analysis of symptoms,
conjunctival goblet cell count and mucin 5AC gene expression[ J].
Environ Res, 2014, 131: 59-63. DOI: 10.1016/j.envres.2014.02.014.
55、Tang YJ, Chang HH, Chiang CY, et al. A murine model of acute allergic
conjunctivitis induced by continuous exposure to particulate matter
2.5[ J]. Invest Ophthalmol Vis Sci, 2019, 60(6): 2118-2126. DOI:
10.1167/iovs.18-26214.Tang YJ, Chang HH, Chiang CY, et al. A murine model of acute allergic
conjunctivitis induced by continuous exposure to particulate matter
2.5[ J]. Invest Ophthalmol Vis Sci, 2019, 60(6): 2118-2126. DOI:
10.1167/iovs.18-26214.
56、Yang Q, Li K, Li D, et al. Effects of fine particulate matter on the ocular
surface: an in vitro and in vivo study[ J]. Biomed Pharmacother, 2019,
117: 109177. DOI: 10.1016/j.biopha.2019.109177.Yang Q, Li K, Li D, et al. Effects of fine particulate matter on the ocular
surface: an in vitro and in vivo study[ J]. Biomed Pharmacother, 2019,
117: 109177. DOI: 10.1016/j.biopha.2019.109177.
57、Hwang M, Han S, Seo JW, et al. Traffic-related particulate matter
aggravates ocular allergic inflammation by mediating dendritic cell
maturation[ J]. J Toxicol Environ Health A, 2021, 84(16): 661-673. DOI:
10.1080/15287394.2021.1922111.Hwang M, Han S, Seo JW, et al. Traffic-related particulate matter
aggravates ocular allergic inflammation by mediating dendritic cell
maturation[ J]. J Toxicol Environ Health A, 2021, 84(16): 661-673. DOI:
10.1080/15287394.2021.1922111.
58、Maurice DM. The structure and transparency of the cornea[ J]. J Physiol,
1957, 136(2): 263-286. DOI: 10.1113/jphysiol.1957.sp005758.Maurice DM. The structure and transparency of the cornea[ J]. J Physiol,
1957, 136(2): 263-286. DOI: 10.1113/jphysiol.1957.sp005758.
59、McCaa CS. The eye and visual nervous system: anatomy, physiology and
toxicology[ J]. Environ Health Perspect, 1982, 44: 1-8. DOI: 10.1289/
ehp.82441.McCaa CS. The eye and visual nervous system: anatomy, physiology and
toxicology[ J]. Environ Health Perspect, 1982, 44: 1-8. DOI: 10.1289/
ehp.82441.
60、M%C3%B8lhave%20L%2C%20Pan%20Z%2C%20Kjaergaard%20SK%2C%20et%20al.%20Effects%20on%20human%20eyes%20caused%20%0Aby%20experimental%20exposures%20to%20office%20dust%20with%20and%20without%20addition%20of%20%0Aaldehydes%20or%20glucan%5B%20J%5D.%20Indoor%20Air%2C%202009%2C%2019(1)%3A%2068-74.%20DOI%3A%2010.1111%2F%0Aj.1600-0668.2008.00562.x.M%C3%B8lhave%20L%2C%20Pan%20Z%2C%20Kjaergaard%20SK%2C%20et%20al.%20Effects%20on%20human%20eyes%20caused%20%0Aby%20experimental%20exposures%20to%20office%20dust%20with%20and%20without%20addition%20of%20%0Aaldehydes%20or%20glucan%5B%20J%5D.%20Indoor%20Air%2C%202009%2C%2019(1)%3A%2068-74.%20DOI%3A%2010.1111%2F%0Aj.1600-0668.2008.00562.x.
61、Mittal S, Mittal A, Rengappa R . Ocular manifestations in bidi
industry workers: possible consequences of occupational exposure to
tobacco dust[ J]. Indian J Ophthalmol, 2008, 56(4): 319-322. DOI:
10.4103/0301-4738.41415.Mittal S, Mittal A, Rengappa R . Ocular manifestations in bidi
industry workers: possible consequences of occupational exposure to
tobacco dust[ J]. Indian J Ophthalmol, 2008, 56(4): 319-322. DOI:
10.4103/0301-4738.41415.
62、Hyun SW, Kim J, Park B, et al. Apricot kernel extract and amygdalin inhibit urban particulate matter-induced keratoconjunctivitis sicca[ J].
Molecules, 2019, 24(3): 650. DOI: 10.3390/molecules24030650.Hyun SW, Kim J, Park B, et al. Apricot kernel extract and amygdalin inhibit urban particulate matter-induced keratoconjunctivitis sicca[ J].
Molecules, 2019, 24(3): 650. DOI: 10.3390/molecules24030650.
63、Somayajulu M, Ekanayaka S, McClellan SA, et al. Airborne particulates
affect corneal homeostasis and immunity[ J]. Invest Ophthalmol Vis Sci,
2020, 61(4): 23. DOI: 10.1167/iovs.61.4.23.Somayajulu M, Ekanayaka S, McClellan SA, et al. Airborne particulates
affect corneal homeostasis and immunity[ J]. Invest Ophthalmol Vis Sci,
2020, 61(4): 23. DOI: 10.1167/iovs.61.4.23.
64、Ma C, Martins-Green M. Second-hand cigarette smoke inhibits wound
healing of the cornea by stimulating inflammation that delays corneal
reepithelialization[ J]. and, 2009, 17(3): 387-396. DOI: 10.1111/j.1524-
475X.2009.00478.x.Ma C, Martins-Green M. Second-hand cigarette smoke inhibits wound
healing of the cornea by stimulating inflammation that delays corneal
reepithelialization[ J]. and, 2009, 17(3): 387-396. DOI: 10.1111/j.1524-
475X.2009.00478.x.
65、Xiao C, Wu M, Liu J, et al. Acute tobacco smoke exposure exacerbates the
inflammatory response to corneal wounds in mice via the sympathetic
nervous system[ J]. Commun Biol, 2019, 2: 33. DOI: 10.1038/s42003-
018-0270-9.Xiao C, Wu M, Liu J, et al. Acute tobacco smoke exposure exacerbates the
inflammatory response to corneal wounds in mice via the sympathetic
nervous system[ J]. Commun Biol, 2019, 2: 33. DOI: 10.1038/s42003-
018-0270-9.
66、Yu D, Cai W, Shen T, et al. PM2.5 exposure increases dry eye disease
risks through corneal epithelial inflammation and mitochondrial
dysfunctions[ J]. Cell Biol Toxicol, 2023, 39(6): 2615-2630. DOI:
10.1007/s10565-023-09791-z.Yu D, Cai W, Shen T, et al. PM2.5 exposure increases dry eye disease
risks through corneal epithelial inflammation and mitochondrial
dysfunctions[ J]. Cell Biol Toxicol, 2023, 39(6): 2615-2630. DOI:
10.1007/s10565-023-09791-z.
67、Niu L, Li L, Xing C, et al. Airborne particulate matter (PM2.5) triggers
cornea inflammation and pyroptosis via NLRP3 activation[ J]. Ecotoxicol
Environ Saf, 2021, 207: 111306. DOI: 10.1016/j.ecoenv.2020.111306.Niu L, Li L, Xing C, et al. Airborne particulate matter (PM2.5) triggers
cornea inflammation and pyroptosis via NLRP3 activation[ J]. Ecotoxicol
Environ Saf, 2021, 207: 111306. DOI: 10.1016/j.ecoenv.2020.111306.
68、Miao Q, Xu Y, Zhang H, et al. Cigarette smoke induces ROS mediated
autophagy impairment in human corneal epithelial cells[ J]. Environ
Pollut, 2019, 245: 389-397. DOI: 10.1016/j.envpol.2018.11.028.Miao Q, Xu Y, Zhang H, et al. Cigarette smoke induces ROS mediated
autophagy impairment in human corneal epithelial cells[ J]. Environ
Pollut, 2019, 245: 389-397. DOI: 10.1016/j.envpol.2018.11.028.
69、Shi K, Yin Q, Tang X, et al. Necroptosis contributes to airborne
particulate matter-induced ocular surface injury[ J]. Toxicology, 2022,
470: 153140. DOI: 10.1016/j.tox.2022.153140.Shi K, Yin Q, Tang X, et al. Necroptosis contributes to airborne
particulate matter-induced ocular surface injury[ J]. Toxicology, 2022,
470: 153140. DOI: 10.1016/j.tox.2022.153140.
70、Xiang P, Jia Y, Wang K, et al. Water extract of indoor dust induces tight
junction disruption in normal human corneal epithelial cells[ J]. Environ
Pollut, 2018, 243(Pt A): 301-307. DOI: 10.1016/j.envpol.2018.08.085.Xiang P, Jia Y, Wang K, et al. Water extract of indoor dust induces tight
junction disruption in normal human corneal epithelial cells[ J]. Environ
Pollut, 2018, 243(Pt A): 301-307. DOI: 10.1016/j.envpol.2018.08.085.
71、The definition and classification of dry eye disease: report of the
Definition and Classification Subcommittee of the International Dry
Eye WorkShop (2007)[ J]. Ocul Surf, 2007, 5(2): 75-92. DOI: 10.1016/
s1542-0124(12)70081-2.The definition and classification of dry eye disease: report of the
Definition and Classification Subcommittee of the International Dry
Eye WorkShop (2007)[ J]. Ocul Surf, 2007, 5(2): 75-92. DOI: 10.1016/
s1542-0124(12)70081-2.
72、Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal
autoimmune disease[ J]. Int Rev Immunol, 2013, 32(1): 19-41. DOI:
10.3109/08830185.2012.748052.Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal
autoimmune disease[ J]. Int Rev Immunol, 2013, 32(1): 19-41. DOI:
10.3109/08830185.2012.748052.
73、Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immunemediated ocular surface disorder[ J]. Arch Ophthalmol, 2012, 130(1):
90-100. DOI: 10.1001/archophthalmol.2011.364.Stevenson W, Chauhan SK, Dana R. Dry eye disease: an immunemediated ocular surface disorder[ J]. Arch Ophthalmol, 2012, 130(1):
90-100. DOI: 10.1001/archophthalmol.2011.364.
74、Papas EB. The global prevalence of dry eye disease: a Bayesian view[ J].
Ophthalmic Physiol Opt, 2021, 41(6): 1254-1266. DOI: 10.1111/
opo.12888.Papas EB. The global prevalence of dry eye disease: a Bayesian view[ J].
Ophthalmic Physiol Opt, 2021, 41(6): 1254-1266. DOI: 10.1111/
opo.12888.
75、Labbé A, Wang YX, Jie Y, et al. Dry eye disease, dry eye symptoms and
depression: the Beijing Eye Study[ J]. Br J Ophthalmol, 2013, 97(11):
1399-1403. DOI: 10.1136/bjophthalmol-2013-303838.Labbé A, Wang YX, Jie Y, et al. Dry eye disease, dry eye symptoms and
depression: the Beijing Eye Study[ J]. Br J Ophthalmol, 2013, 97(11):
1399-1403. DOI: 10.1136/bjophthalmol-2013-303838.
76、Li M, Gong L, Chapin WJ, et al. Assessment of vision-related quality of life in dry eye patients[ J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5722-
5727. DOI: 10.1167/iovs.11-9094.Li M, Gong L, Chapin WJ, et al. Assessment of vision-related quality of life in dry eye patients[ J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5722-
5727. DOI: 10.1167/iovs.11-9094.
77、Kim Y, Choi YH, Kim MK, et al. Different adverse effects of air pollutants
on dry eye disease: ozone, PM2.5, and PM10[ J]. Environ Pollut, 2020,
265(Pt B): 115039. DOI: 10.1016/j.envpol.2020.115039.Kim Y, Choi YH, Kim MK, et al. Different adverse effects of air pollutants
on dry eye disease: ozone, PM2.5, and PM10[ J]. Environ Pollut, 2020,
265(Pt B): 115039. DOI: 10.1016/j.envpol.2020.115039.
78、Yu D, Deng Q, Wang J, et al. Air Pollutants are associated with Dry
Eye Disease in Urban Ophthalmic Outpatients: a Prevalence Study in
China[ J]. J Transl Med, 2019, 17(1): 46. DOI: 10.1186/s12967-019-
1794-6.Yu D, Deng Q, Wang J, et al. Air Pollutants are associated with Dry
Eye Disease in Urban Ophthalmic Outpatients: a Prevalence Study in
China[ J]. J Transl Med, 2019, 17(1): 46. DOI: 10.1186/s12967-019-
1794-6.
79、Tan G, Li J, Yang Q, et al. Air pollutant particulate matter 2.5 induces dry
eye syndrome in mice[ J]. Sci Rep, 2018, 8(1): 17828. DOI: 10.1038/
s41598-018-36181-x.Tan G, Li J, Yang Q, et al. Air pollutant particulate matter 2.5 induces dry
eye syndrome in mice[ J]. Sci Rep, 2018, 8(1): 17828. DOI: 10.1038/
s41598-018-36181-x.
80、Andersen MH, Becker JC, Straten PT. Regulators of apoptosis: suitable
targets for immune therapy of cancer[ J]. Nat Rev Drug Discov, 2005,
4(5): 399-409. DOI: 10.1038/nrd1717.Andersen MH, Becker JC, Straten PT. Regulators of apoptosis: suitable
targets for immune therapy of cancer[ J]. Nat Rev Drug Discov, 2005,
4(5): 399-409. DOI: 10.1038/nrd1717.
81、Mu N, Wang H, Chen D, et al. A novel rat model of dry eye induced by
aerosol exposure of particulate matter[ J]. Invest Ophthalmol Vis Sci,
2022, 63(1): 39. DOI: 10.1167/iovs.63.1.39.Mu N, Wang H, Chen D, et al. A novel rat model of dry eye induced by
aerosol exposure of particulate matter[ J]. Invest Ophthalmol Vis Sci,
2022, 63(1): 39. DOI: 10.1167/iovs.63.1.39.
82、Knop E, Knop N, Millar T, et al. The international workshop on
meibomian gland dysfunction: report of the subcommittee on anatomy,
physiology, and pathophysiology of the meibomian gland[ J]. Invest
Ophthalmol Vis Sci, 2011, 52(4): 1938-1978. DOI: 10.1167/iovs.10-
6997c.Knop E, Knop N, Millar T, et al. The international workshop on
meibomian gland dysfunction: report of the subcommittee on anatomy,
physiology, and pathophysiology of the meibomian gland[ J]. Invest
Ophthalmol Vis Sci, 2011, 52(4): 1938-1978. DOI: 10.1167/iovs.10-
6997c.
83、Obata H. Anatomy and histopathology of human meibomian
gland[ J]. Cornea, 2002, 21(7 Suppl): S70-S74. DOI: 10.1097/01.
ico.0000263122.45898.09.Obata H. Anatomy and histopathology of human meibomian
gland[ J]. Cornea, 2002, 21(7 Suppl): S70-S74. DOI: 10.1097/01.
ico.0000263122.45898.09.
84、Foulks GN, Nichols KK , Bron AJ, et al. Improving awareness,
identification, and management of meibomian gland dysfunction[ J].
Ophthalmology, 2012, 119(10 Suppl): S1-S12. DOI: 10.1016/
j.ophtha.2012.06.064.Foulks GN, Nichols KK , Bron AJ, et al. Improving awareness,
identification, and management of meibomian gland dysfunction[ J].
Ophthalmology, 2012, 119(10 Suppl): S1-S12. DOI: 10.1016/
j.ophtha.2012.06.064.
85、Chhadva P, Goldhardt R, Galor A. Meibomian gland disease: the role
of gland dysfunction in dry eye disease[ J]. Ophthalmology, 2017,
124(11S): S20-S26. DOI: 10.1016/j.ophtha.2017.05.031.Chhadva P, Goldhardt R, Galor A. Meibomian gland disease: the role
of gland dysfunction in dry eye disease[ J]. Ophthalmology, 2017,
124(11S): S20-S26. DOI: 10.1016/j.ophtha.2017.05.031.
86、Hassanzadeh S, Varmaghani M, Zarei-Ghanavati S, et al. Global
prevalence of meibomian gland dysfunction: a systematic review and
meta-analysis[ J]. Ocul Immunol Inflamm, 2021, 29(1): 66-75. DOI:
10.1080/09273948.2020.1755441.Hassanzadeh S, Varmaghani M, Zarei-Ghanavati S, et al. Global
prevalence of meibomian gland dysfunction: a systematic review and
meta-analysis[ J]. Ocul Immunol Inflamm, 2021, 29(1): 66-75. DOI:
10.1080/09273948.2020.1755441.
87、Asiedu K, Dzasimatu S, Kyei S. Impact of meibomian gland dysfunction
on quality of life and mental health in a clinical sample in Ghana: a crosssectional study[ J]. BMJ Open, 2022, 12(9): e061758. DOI: 10.1136/
bmjopen-2022-061758.Asiedu K, Dzasimatu S, Kyei S. Impact of meibomian gland dysfunction
on quality of life and mental health in a clinical sample in Ghana: a crosssectional study[ J]. BMJ Open, 2022, 12(9): e061758. DOI: 10.1136/
bmjopen-2022-061758.
88、Mizoguchi S, Iwanishi H, Arita R, et al. Ocular surface inflammation
impairs structure and function of meibomian gland[ J]. Exp Eye Res,
2017, 163: 78-84. DOI: 10.1016/j.exer.2017.06.011.Mizoguchi S, Iwanishi H, Arita R, et al. Ocular surface inflammation
impairs structure and function of meibomian gland[ J]. Exp Eye Res,
2017, 163: 78-84. DOI: 10.1016/j.exer.2017.06.011.