1、Agrahari V, Choonara YE, Mosharraf M, et al. The role of artificial intelligence and machine learning in accelerating the discovery and development of nanomedicine[J]. Pharm Res, 2024, 41(12): 2289-2297. DOI:10.1007/s11095-024-03798-9. Agrahari V, Choonara YE, Mosharraf M, et al. The role of artificial intelligence and machine learning in accelerating the discovery and development of nanomedicine[J]. Pharm Res, 2024, 41(12): 2289-2297. DOI:10.1007/s11095-024-03798-9.
2、Othman D, Kaleem A. The intraoperative role of artificial intelligence within general surgery: a systematic review[J]. Cureus, 2024, 16(11): e73006. DOI:10.7759/cureus.73006. Othman D, Kaleem A. The intraoperative role of artificial intelligence within general surgery: a systematic review[J]. Cureus, 2024, 16(11): e73006. DOI:10.7759/cureus.73006.
3、Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. DOI:10.1161/CIRCULATIONAHA.115.001593.Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. DOI:10.1161/CIRCULATIONAHA.115.001593.
4、Jiang Y, Yang M, Wang S, et al. Emerging role of deep learning-based artificial intelligence in tumor pathology[J]. Cancer Commun, 2020, 40(4): 154-166. DOI:10.1002/cac2.12012. Jiang Y, Yang M, Wang S, et al. Emerging role of deep learning-based artificial intelligence in tumor pathology[J]. Cancer Commun, 2020, 40(4): 154-166. DOI:10.1002/cac2.12012.
5、Leandro I, Lorenzo B, Aleksandar M, et al. OCT-based deep-learning models for the identification of retinal key signs[J]. Sci Rep, 2023, 13(1): 14628. DOI:10.1038/s41598-023-41362-4.Leandro I, Lorenzo B, Aleksandar M, et al. OCT-based deep-learning models for the identification of retinal key signs[J]. Sci Rep, 2023, 13(1): 14628. DOI:10.1038/s41598-023-41362-4.
6、Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI:10.1001/jama.2016.17216.Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI:10.1001/jama.2016.17216.
7、Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations[J]. Prog Retin Eye Res, 2019, 72: 100759. DOI:10.1016/j.preteyeres.2019.04.003. Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations[J]. Prog Retin Eye Res, 2019, 72: 100759. DOI:10.1016/j.preteyeres.2019.04.003.
8、Zhang YY, Zhao H, Lin JY, et al. Artificial intelligence to detect meibomian gland dysfunction from in-vivo laser confocal microscopy[J]. Front Med, 2021, 8: 774344. DOI:10.3389/fmed.2021.774344. Zhang YY, Zhao H, Lin JY, et al. Artificial intelligence to detect meibomian gland dysfunction from in-vivo laser confocal microscopy[J]. Front Med, 2021, 8: 774344. DOI:10.3389/fmed.2021.774344.
9、Deng J, Qin Y. Current status, hotspots, and prospects of artificial intelligence in ophthalmology: a bibliometric analysis (2003-2023)[J]. Ophthalmic Epidemiol, 2024: 1-14. DOI:10.1080/09286586.2024.2373956. Deng J, Qin Y. Current status, hotspots, and prospects of artificial intelligence in ophthalmology: a bibliometric analysis (2003-2023)[J]. Ophthalmic Epidemiol, 2024: 1-14. DOI:10.1080/09286586.2024.2373956.
10、Quaranta-Leoni FM, Fiorino MG, Serricchio F, et al. Management of proximal lacrimal obstructions: a rationale[J]. Acta Ophthalmol, 2021, 99(4): e569-e575. DOI:10.1111/aos.14632. Quaranta-Leoni FM, Fiorino MG, Serricchio F, et al. Management of proximal lacrimal obstructions: a rationale[J]. Acta Ophthalmol, 2021, 99(4): e569-e575. DOI:10.1111/aos.14632.
11、Kim JS, Al-Lozi A, Leyngold IM. Malignant orbital tumors: current approach to diagnosis and management[J]. Curr Ophthalmol Rep, 2021, 9(1): 16-24. DOI:10.1007/s40135-020-00262-w.Kim JS, Al-Lozi A, Leyngold IM. Malignant orbital tumors: current approach to diagnosis and management[J]. Curr Ophthalmol Rep, 2021, 9(1): 16-24. DOI:10.1007/s40135-020-00262-w.
12、Kim YH, Graham AD, Li W, et al. Human lacrimal production rate and wetted length of modified schirmer’s tear test strips[J]. Transl Vis Sci Technol, 2019, 8(3): 40. DOI:10.1167/tvst.8.3.40. Kim YH, Graham AD, Li W, et al. Human lacrimal production rate and wetted length of modified schirmer’s tear test strips[J]. Transl Vis Sci Technol, 2019, 8(3): 40. DOI:10.1167/tvst.8.3.40.
13、Wulu%20JA%2C%20Spiegel%20JH.%20Is%20a%20schirmer%E2%80%99s%20test%20necessary%20before%20blepharoplasty%3F%5BJ%5D.%20Laryngoscope%2C%202019%2C%20129(5)%3A%201021-1022.%20DOI%3A10.1002%2Flary.27446.Wulu%20JA%2C%20Spiegel%20JH.%20Is%20a%20schirmer%E2%80%99s%20test%20necessary%20before%20blepharoplasty%3F%5BJ%5D.%20Laryngoscope%2C%202019%2C%20129(5)%3A%201021-1022.%20DOI%3A10.1002%2Flary.27446.
14、Nakamura J, Kamao T, Mitani A, et al. Accuracy of the lacrimal syringing test in relation to dacryocystography and dacryoendoscopy[J]. Clin Ophthalmol, 2023, 17: 1277-1285. DOI:10.2147/OPTH.S409662.Nakamura J, Kamao T, Mitani A, et al. Accuracy of the lacrimal syringing test in relation to dacryocystography and dacryoendoscopy[J]. Clin Ophthalmol, 2023, 17: 1277-1285. DOI:10.2147/OPTH.S409662.
15、Maliborski%20A%2C%20R%C3%B3%C5%BCycki%20R.%20Diagnostic%20imaging%20of%20the%20nasolacrimal%20drainage%20system.%20Part%20I.%20Radiological%20anatomy%20of%20lacrimal%20pathways.%20Physiology%20of%20tear%20secretion%20and%20tear%20outflow%5BJ%5D.%20Med%20Sci%20Monit%2C%202014%2C%2020%3A%20628-638.%20DOI%3A10.12659%2FMSM.890098.%20Maliborski%20A%2C%20R%C3%B3%C5%BCycki%20R.%20Diagnostic%20imaging%20of%20the%20nasolacrimal%20drainage%20system.%20Part%20I.%20Radiological%20anatomy%20of%20lacrimal%20pathways.%20Physiology%20of%20tear%20secretion%20and%20tear%20outflow%5BJ%5D.%20Med%20Sci%20Monit%2C%202014%2C%2020%3A%20628-638.%20DOI%3A10.12659%2FMSM.890098.%20
16、Park DH, Connor KM, Lambris JD. The challenges and promise of complement therapeutics for ocular diseases[J]. Front Immunol, 2019, 10: 1007. DOI:10.3389/fimmu.2019.01007. Park DH, Connor KM, Lambris JD. The challenges and promise of complement therapeutics for ocular diseases[J]. Front Immunol, 2019, 10: 1007. DOI:10.3389/fimmu.2019.01007.
17、Takayanagi H, Hayashi R. Status and prospects for the development of regenerative therapies for corneal and ocular diseases[J]. Regen Ther, 2024, 26: 819-825. DOI:10.1016/j.reth.2024.09.001.Takayanagi H, Hayashi R. Status and prospects for the development of regenerative therapies for corneal and ocular diseases[J]. Regen Ther, 2024, 26: 819-825. DOI:10.1016/j.reth.2024.09.001.
18、Su TY, Ho WT, Lu CY, et al. Correlations among ocular surface temperature difference value, the tear meniscus height, Schirmer’s test and fluorescein tear film break up time[J]. Br J Ophthalmol, 2015, 99(4): 482-487. DOI:10.1136/bjophthalmol-2014-305183.Su TY, Ho WT, Lu CY, et al. Correlations among ocular surface temperature difference value, the tear meniscus height, Schirmer’s test and fluorescein tear film break up time[J]. Br J Ophthalmol, 2015, 99(4): 482-487. DOI:10.1136/bjophthalmol-2014-305183.
19、Imamura H, Tabuchi H, Nagasato D, et al. Automatic screening of tear meniscus from lacrimal duct obstructions using anterior segment optical coherence tomography images by deep learning[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(6): 1569-1577. DOI:10.1007/s00417-021-05078-3. Imamura H, Tabuchi H, Nagasato D, et al. Automatic screening of tear meniscus from lacrimal duct obstructions using anterior segment optical coherence tomography images by deep learning[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(6): 1569-1577. DOI:10.1007/s00417-021-05078-3.
20、Song X, Li L, Han F, et al. Noninvasive machine learning screening model for dacryocystitis based on ocular surface indicators[J]. J Craniofac Surg, 2022, 33(1): e23-e28. DOI:10.1097/SCS.0000000000007863.Song X, Li L, Han F, et al. Noninvasive machine learning screening model for dacryocystitis based on ocular surface indicators[J]. J Craniofac Surg, 2022, 33(1): e23-e28. DOI:10.1097/SCS.0000000000007863.
21、 Benou A, Veksler R, Friedman A, et al. Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences[J]. Med Image Anal, 2017, 42: 145-159. DOI:10.1016/j.media.2017.07.006. Benou A, Veksler R, Friedman A, et al. Ensemble of expert deep neural networks for spatio-temporal denoising of contrast-enhanced MRI sequences[J]. Med Image Anal, 2017, 42: 145-159. DOI:10.1016/j.media.2017.07.006.
22、Plassard AJ, Davis LT, Newton AT, et al. Learning implicit brain MRI manifolds with deep learning[C]//Medical Imaging 2018: Image Processing. February 10-15, 2018. Houston, USA. SPIE, 2018: 10.1117/12.2293515. DOI:10.1117/12.2293515. Plassard AJ, Davis LT, Newton AT, et al. Learning implicit brain MRI manifolds with deep learning[C]//Medical Imaging 2018: Image Processing. February 10-15, 2018. Houston, USA. SPIE, 2018: 10.1117/12.2293515. DOI:10.1117/12.2293515.
23、Chaudhari AS, Fang Z, Kogan F, et al. Super-resolution musculoskeletal MRI using deep learning[J]. Magn Reson Med, 2018, 80(5): 2139-2154. DOI:10.1002/mrm.27178. Chaudhari AS, Fang Z, Kogan F, et al. Super-resolution musculoskeletal MRI using deep learning[J]. Magn Reson Med, 2018, 80(5): 2139-2154. DOI:10.1002/mrm.27178.
24、Liu C, Wu X, Yu X, et al. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction[J]. Biomed Eng Online, 2018, 17(1): 114. DOI:10.1186/s12938-018-0546-9.Liu C, Wu X, Yu X, et al. Fusing multi-scale information in convolution network for MR image super-resolution reconstruction[J]. Biomed Eng Online, 2018, 17(1): 114. DOI:10.1186/s12938-018-0546-9.
25、Hou R, Zhou D, Nie R, et al. Brain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical model[J]. Med Biol Eng Comput, 2019, 57(4): 887-900. DOI:10.1007/s11517-018-1935-8. Hou R, Zhou D, Nie R, et al. Brain CT and MRI medical image fusion using convolutional neural networks and a dual-channel spiking cortical model[J]. Med Biol Eng Comput, 2019, 57(4): 887-900. DOI:10.1007/s11517-018-1935-8.
26、Noble JA. Ultrasound image segmentation and tissue characterization[J]. Proc Inst Mech Eng H, 2010, 224(2): 307-316. DOI:10.1243/09544119JEIM604. Noble JA. Ultrasound image segmentation and tissue characterization[J]. Proc Inst Mech Eng H, 2010, 224(2): 307-316. DOI:10.1243/09544119JEIM604.
27、Hamwood J, Schmutz B, Collins MJ, et al. A deep learning method for automatic segmentation of the bony orbit in MRI and CT images[J]. Sci Rep, 2021, 11(1): 13693. DOI:10.1038/s41598-021-93227-3.Hamwood J, Schmutz B, Collins MJ, et al. A deep learning method for automatic segmentation of the bony orbit in MRI and CT images[J]. Sci Rep, 2021, 11(1): 13693. DOI:10.1038/s41598-021-93227-3.
28、Fu R, Leader JK, Pradeep T, et al. Automated delineation of orbital abscess depicted on CT scan using deep learning[J]. Med Phys, 2021, 48(7): 3721-3729. DOI:10.1002/mp.14907. Fu R, Leader JK, Pradeep T, et al. Automated delineation of orbital abscess depicted on CT scan using deep learning[J]. Med Phys, 2021, 48(7): 3721-3729. DOI:10.1002/mp.14907.
29、Brown JM, Peter Campbell J, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810. DOI:10.1001/jamaophthalmol.2018.1934. Brown JM, Peter Campbell J, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810. DOI:10.1001/jamaophthalmol.2018.1934.
30、Kim S, Lee H, Roh HG, et al. Using artificial intelligence to diagnose lacrimal passage obstructions based on dacryocystography images[J]. J Craniofac Surg, 2024. DOI:10.1097/SCS.0000000000010829. Kim S, Lee H, Roh HG, et al. Using artificial intelligence to diagnose lacrimal passage obstructions based on dacryocystography images[J]. J Craniofac Surg, 2024. DOI:10.1097/SCS.0000000000010829.
31、Han F, Liao S, Song X, et al. Explainable prediction of dacryocystitis from noninvasive ocular indicators using deep stacked network and the shapley additive explanations approach[J]. J Craniofac Surg, 2022, 33(4): e350-e355. DOI:10.1097/SCS.0000000000008059. Han F, Liao S, Song X, et al. Explainable prediction of dacryocystitis from noninvasive ocular indicators using deep stacked network and the shapley additive explanations approach[J]. J Craniofac Surg, 2022, 33(4): e350-e355. DOI:10.1097/SCS.0000000000008059.
32、Ali MJ, Singh S. Optical coherence tomography and the proximal lacrimal drainage system: a major review[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(11): 3197-3208. DOI:10.1007/s00417-021-05175-3. Ali MJ, Singh S. Optical coherence tomography and the proximal lacrimal drainage system: a major review[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(11): 3197-3208. DOI:10.1007/s00417-021-05175-3.
33、Cai Y, Zhang X, Cao J, et al. Application of artificial intelligence in oculoplastics[J]. Clin Dermatol, 2024, 42(3): 259-267. DOI:10.1016/j.clindermatol.2023.12.019. Cai Y, Zhang X, Cao J, et al. Application of artificial intelligence in oculoplastics[J]. Clin Dermatol, 2024, 42(3): 259-267. DOI:10.1016/j.clindermatol.2023.12.019.
34、Park DI, Lew H, Lee SY. Tear meniscus measurement in nasolacrimal duct obstruction patients with Fourier-domain optical coherence tomography: novel three-point capture method[J]. Acta Ophthalmol, 2012, 90(8): 783-787. DOI:10.1111/j.1755-3768.2011.02183.x. Park DI, Lew H, Lee SY. Tear meniscus measurement in nasolacrimal duct obstruction patients with Fourier-domain optical coherence tomography: novel three-point capture method[J]. Acta Ophthalmol, 2012, 90(8): 783-787. DOI:10.1111/j.1755-3768.2011.02183.x.
35、Wang X, Fan X, Wu Y, et al. Rear 4-Min Schirmer test, a modified indicator of Schirmer test in diagnosing dry eye[J]. Sci Rep, 2022, 12(1): 6272. DOI:10.1038/s41598-022-09791-9. Wang X, Fan X, Wu Y, et al. Rear 4-Min Schirmer test, a modified indicator of Schirmer test in diagnosing dry eye[J]. Sci Rep, 2022, 12(1): 6272. DOI:10.1038/s41598-022-09791-9.
36、Wang Z, Dong Y, Sui X, et al. An artificial intelligence-assisted microfluidic colorimetric wearable sensor system for monitoring of key tear biomarkers[J]. NPJ Flex Electron, 2024, 8: 35. DOI:10.1038/s41528-024-00321-3. Wang Z, Dong Y, Sui X, et al. An artificial intelligence-assisted microfluidic colorimetric wearable sensor system for monitoring of key tear biomarkers[J]. NPJ Flex Electron, 2024, 8: 35. DOI:10.1038/s41528-024-00321-3.
37、Han SB, Yang HK, Hyon JY, et al. Association of dry eye disease with psychiatric or neurological disorders in elderly patients[J]. Clin Interv Aging, 2017, 12: 785-792. DOI:10.2147/CIA.S137580.Han SB, Yang HK, Hyon JY, et al. Association of dry eye disease with psychiatric or neurological disorders in elderly patients[J]. Clin Interv Aging, 2017, 12: 785-792. DOI:10.2147/CIA.S137580.
38、Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II epidemiology report[J]. Ocul Surf, 2017, 15(3): 334-365. DOI:10.1016/j.jtos.2017.05.003.Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II epidemiology report[J]. Ocul Surf, 2017, 15(3): 334-365. DOI:10.1016/j.jtos.2017.05.003.
39、Yamanishi R, Uchino M, Uchino Y, et al. Changes in distribution of dry eye diagnostic status among visual display terminal workers according to the revised criteria of the Asia dry eye society[J]. Cornea, 2020, 39(5): 578-583. DOI:10.1097/ICO.0000000000002218. Yamanishi R, Uchino M, Uchino Y, et al. Changes in distribution of dry eye diagnostic status among visual display terminal workers according to the revised criteria of the Asia dry eye society[J]. Cornea, 2020, 39(5): 578-583. DOI:10.1097/ICO.0000000000002218.
40、Nichols KK, Nichols JJ, Lynn Mitchell G. The lack of association between signs and symptoms in patients with dry eye disease[J]. Cornea, 2004, 23(8): 762-770. DOI:10.1097/01.ico.0000133997.07144.9e. Nichols KK, Nichols JJ, Lynn Mitchell G. The lack of association between signs and symptoms in patients with dry eye disease[J]. Cornea, 2004, 23(8): 762-770. DOI:10.1097/01.ico.0000133997.07144.9e.
41、Ong ES, Felix ER, Levitt RC, et al. Epidemiology of discordance between symptoms and signs of dry eye[J]. Br J Ophthalmol, 2018, 102(5): 674-679. DOI:10.1136/bjophthalmol-2017-310633. Ong ES, Felix ER, Levitt RC, et al. Epidemiology of discordance between symptoms and signs of dry eye[J]. Br J Ophthalmol, 2018, 102(5): 674-679. DOI:10.1136/bjophthalmol-2017-310633.
42、Vehof J, Sillevis Smitt-Kamminga N, Nibourg SA, et al. Predictors of discordance between symptoms and signs in dry eye disease[J]. Ophthalmology, 2017, 124(3): 280-286. DOI:10.1016/j.ophtha.2016.11.008. Vehof J, Sillevis Smitt-Kamminga N, Nibourg SA, et al. Predictors of discordance between symptoms and signs in dry eye disease[J]. Ophthalmology, 2017, 124(3): 280-286. DOI:10.1016/j.ophtha.2016.11.008.
43、Han SB, Hyon JY, Woo SJ, et al. Prevalence of dry eye disease in an elderly Korean population[J]. Arch Ophthalmol, 2011, 129(5): 633-638. DOI:10.1001/archophthalmol.2011.78.Han SB, Hyon JY, Woo SJ, et al. Prevalence of dry eye disease in an elderly Korean population[J]. Arch Ophthalmol, 2011, 129(5): 633-638. DOI:10.1001/archophthalmol.2011.78.
44、Nichols KK, Lynn Mitchell G, Zadnik K. The repeatability of clinical measurements of dry eye[J]. Cornea, 2004, 23(3): 272-285. DOI:10.1097/00003226-200404000-00010. Nichols KK, Lynn Mitchell G, Zadnik K. The repeatability of clinical measurements of dry eye[J]. Cornea, 2004, 23(3): 272-285. DOI:10.1097/00003226-200404000-00010.
45、Shimizu E, Ishikawa T, Tanji M, et al. Artificial intelligence to estimate the tear film breakup time and diagnose dry eye disease[J]. Sci Rep, 2023, 13: 5822. DOI:10.1038/s41598-023-33021-5.Shimizu E, Ishikawa T, Tanji M, et al. Artificial intelligence to estimate the tear film breakup time and diagnose dry eye disease[J]. Sci Rep, 2023, 13: 5822. DOI:10.1038/s41598-023-33021-5.
46、Tsubota K, Yokoi N, Shimazaki J, et al. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia dry eye society[J]. Ocul Surf, 2017, 15(1): 65-76. DOI:10.1016/j.jtos.2016.09.003.Tsubota K, Yokoi N, Shimazaki J, et al. New perspectives on dry eye definition and diagnosis: a consensus report by the Asia dry eye society[J]. Ocul Surf, 2017, 15(1): 65-76. DOI:10.1016/j.jtos.2016.09.003.
47、Tsubota K, Yokoi N, Watanabe H, et al. A new perspective on dry eye classification: proposal by the Asia dry eye society[J]. Eye Contact Lens, 2020, 46 Suppl(1): S2-S13. DOI:10.1097/ICL.0000000000000643. Tsubota K, Yokoi N, Watanabe H, et al. A new perspective on dry eye classification: proposal by the Asia dry eye society[J]. Eye Contact Lens, 2020, 46 Suppl(1): S2-S13. DOI:10.1097/ICL.0000000000000643.
48、 Li YH, Li YL, Wei MY, et al. Innovation and challenges of artificial intelligence technology in personalized healthcare[J]. Sci Rep, 2024, 14(1): 18994. DOI:10.1038/s41598-024-70073-7. Li YH, Li YL, Wei MY, et al. Innovation and challenges of artificial intelligence technology in personalized healthcare[J]. Sci Rep, 2024, 14(1): 18994. DOI:10.1038/s41598-024-70073-7.
49、Chakravarty K, Antontsev V, Bundey Y, et al. Driving success in personalized medicine through AI-enabled computational modeling[J]. Drug Discov Today, 2021, 26(6): 1459-1465. DOI:10.1016/j.drudis.2021.02.007. Chakravarty K, Antontsev V, Bundey Y, et al. Driving success in personalized medicine through AI-enabled computational modeling[J]. Drug Discov Today, 2021, 26(6): 1459-1465. DOI:10.1016/j.drudis.2021.02.007.
50、Nowak%20R%2C%20Nowak-Gospodarowicz%20I%2C%20R%C4%99kas%20M%2C%20et%20al.%20Virtual%20reality%20and%20mixed%20reality-assisted%20endoscopic%20DCR%20in%20extremely%20complex%20lacrimal%20obstructions%5BJ%5D.%20Laryngoscope%2C%202024%2C%20134(8)%3A%203508-3515.%20DOI%3A10.1002%2Flary.31399.%20Nowak%20R%2C%20Nowak-Gospodarowicz%20I%2C%20R%C4%99kas%20M%2C%20et%20al.%20Virtual%20reality%20and%20mixed%20reality-assisted%20endoscopic%20DCR%20in%20extremely%20complex%20lacrimal%20obstructions%5BJ%5D.%20Laryngoscope%2C%202024%2C%20134(8)%3A%203508-3515.%20DOI%3A10.1002%2Flary.31399.%20
51、Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical decision-making[J]. JAMA Surg, 2020, 155(2): 148-158. DOI:10.1001/jamasurg.2019.4917.Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical decision-making[J]. JAMA Surg, 2020, 155(2): 148-158. DOI:10.1001/jamasurg.2019.4917.
52、YixinQu, BingyingLin, ShuilingLi, et al. Effect of multichannel convolutional neural network-based model on the repair and aesthetic effect of eye plastic surgery patients[J]. Comput Math Methods Med, 2022, 2022: 5315146. DOI:10.1155/2022/5315146. YixinQu, BingyingLin, ShuilingLi, et al. Effect of multichannel convolutional neural network-based model on the repair and aesthetic effect of eye plastic surgery patients[J]. Comput Math Methods Med, 2022, 2022: 5315146. DOI:10.1155/2022/5315146.
53、Varghese C, Harrison EM, O’Grady G, et al. Artificial intelligence in surgery[J]. Nat Med, 2024, 30(5): 1257-1268. DOI:10.1038/s41591-024-02970-3. Varghese C, Harrison EM, O’Grady G, et al. Artificial intelligence in surgery[J]. Nat Med, 2024, 30(5): 1257-1268. DOI:10.1038/s41591-024-02970-3.
54、van Leeuwen KG, Schalekamp S, Rutten MJCM, et al. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence[J]. Eur Radiol, 2021, 31(6): 3797-3804. DOI:10.1007/s00330-021-07892-z.van Leeuwen KG, Schalekamp S, Rutten MJCM, et al. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence[J]. Eur Radiol, 2021, 31(6): 3797-3804. DOI:10.1007/s00330-021-07892-z.
55、Alabi RO, Elmusrati M, Leivo I, et al. Artificial intelligence-driven radiomics in head and neck cancer: current status and future prospects[J]. Int J Med Inform, 2024, 188: 105464. DOI:10.1016/j.ijmedinf.2024.105464. Alabi RO, Elmusrati M, Leivo I, et al. Artificial intelligence-driven radiomics in head and neck cancer: current status and future prospects[J]. Int J Med Inform, 2024, 188: 105464. DOI:10.1016/j.ijmedinf.2024.105464.
56、Li Y, El Habib Daho M, Conze PH, et al. A review of deep learning-based information fusion techniques for multimodal medical image classification[J]. Comput Biol Med, 2024, 177: 108635. DOI:10.1016/j.compbiomed.2024.108635.Li Y, El Habib Daho M, Conze PH, et al. A review of deep learning-based information fusion techniques for multimodal medical image classification[J]. Comput Biol Med, 2024, 177: 108635. DOI:10.1016/j.compbiomed.2024.108635.
57、Kang D, Wu H, Yuan L, et al. A beginner’s guide to artificial intelligence for ophthalmologists[J]. Ophthalmol Ther, 2024, 13(7): 1841-1855. DOI:10.1007/s40123-024-00958-3. Kang D, Wu H, Yuan L, et al. A beginner’s guide to artificial intelligence for ophthalmologists[J]. Ophthalmol Ther, 2024, 13(7): 1841-1855. DOI:10.1007/s40123-024-00958-3.
58、Mohsen F, Ali H, El Hajj N, et al. Artificial intelligence-based methods for fusion of electronic health records and imaging data[J]. Sci Rep, 2022, 12(1): 17981. DOI:10.1038/s41598-022-22514-4. Mohsen F, Ali H, El Hajj N, et al. Artificial intelligence-based methods for fusion of electronic health records and imaging data[J]. Sci Rep, 2022, 12(1): 17981. DOI:10.1038/s41598-022-22514-4.
59、Wang L, Alexander CA. Big data analytics in medical engineering and healthcare: methods, advances and challenges[J]. J Med Eng Technol, 2020, 44(6): 267-283. DOI:10.1080/03091902.2020.1769758. Wang L, Alexander CA. Big data analytics in medical engineering and healthcare: methods, advances and challenges[J]. J Med Eng Technol, 2020, 44(6): 267-283. DOI:10.1080/03091902.2020.1769758.
60、Diwakar M, Singh P, Ravi V. Medical data analysis meets artificial intelligence (AI) and Internet of medical things (IoMT)[J]. Bioengineering, 2023, 10(12): 1370. DOI:10.3390/bioengineering10121370.Diwakar M, Singh P, Ravi V. Medical data analysis meets artificial intelligence (AI) and Internet of medical things (IoMT)[J]. Bioengineering, 2023, 10(12): 1370. DOI:10.3390/bioengineering10121370.
61、Manickam P, Mariappan SA, Murugesan SM, et al. Artificial intelligence (AI) and Internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare[J]. Biosensors, 2022, 12(8): 562. DOI:10.3390/bios12080562.Manickam P, Mariappan SA, Murugesan SM, et al. Artificial intelligence (AI) and Internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare[J]. Biosensors, 2022, 12(8): 562. DOI:10.3390/bios12080562.
62、Wu Y, Hu K, Chen DZ, et al. AI-enhanced virtual reality in medicine[C]//Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. ACM, 2025: 8326-8334. DOI:10.24963/ijcai.2024/920.Wu Y, Hu K, Chen DZ, et al. AI-enhanced virtual reality in medicine[C]//Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. ACM, 2025: 8326-8334. DOI:10.24963/ijcai.2024/920.
63、Moro%20C%2C%20%C5%A0tromberga%20Z%2C%20Raikos%20A%2C%20et%20al.%20The%20effectiveness%20of%20virtual%20and%20augmented%20reality%20in%20health%20sciences%20and%20medical%20anatomy%5BJ%5D.%20Anat%20Sci%20Educ%2C%202017%2C%2010(6)%3A%20549-559.%20DOI%3A10.1002%2Fase.1696.Moro%20C%2C%20%C5%A0tromberga%20Z%2C%20Raikos%20A%2C%20et%20al.%20The%20effectiveness%20of%20virtual%20and%20augmented%20reality%20in%20health%20sciences%20and%20medical%20anatomy%5BJ%5D.%20Anat%20Sci%20Educ%2C%202017%2C%2010(6)%3A%20549-559.%20DOI%3A10.1002%2Fase.1696.
64、Barteit%20S%2C%20Lanfermann%20L%2C%20B%C3%A4rnighausen%20T%2C%20et%20al.%20Augmented%2C%20mixed%2C%20and%20virtual%20reality-based%20head-mounted%20devices%20for%20medical%20education%3A%20systematic%20review%5BJ%5D.%20JMIR%20Serious%20Games%2C%202021%2C%209(3)%3A%20e29080.%20DOI%3A10.2196%2F29080.%20Barteit%20S%2C%20Lanfermann%20L%2C%20B%C3%A4rnighausen%20T%2C%20et%20al.%20Augmented%2C%20mixed%2C%20and%20virtual%20reality-based%20head-mounted%20devices%20for%20medical%20education%3A%20systematic%20review%5BJ%5D.%20JMIR%20Serious%20Games%2C%202021%2C%209(3)%3A%20e29080.%20DOI%3A10.2196%2F29080.%20
65、Fazlollahi AM, Bakhaidar M, Alsayegh A, et al. Effect of artificial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students: a randomized clinical trial[J]. JAMA Netw Open, 2022, 5(2): e2149008. DOI:10.1001/jamanetworkopen.2021.49008.Fazlollahi AM, Bakhaidar M, Alsayegh A, et al. Effect of artificial intelligence tutoring vs expert instruction on learning simulated surgical skills among medical students: a randomized clinical trial[J]. JAMA Netw Open, 2022, 5(2): e2149008. DOI:10.1001/jamanetworkopen.2021.49008.
66、Lu X, Zhou X, Song B, et al. Framework nucleic acids combined with 3D hybridization chain reaction amplifiers for monitoring multiple human tear cytokines[J]. Adv Mater, 2024, 36(26): e2400622. DOI:10.1002/adma.202400622.Lu X, Zhou X, Song B, et al. Framework nucleic acids combined with 3D hybridization chain reaction amplifiers for monitoring multiple human tear cytokines[J]. Adv Mater, 2024, 36(26): e2400622. DOI:10.1002/adma.202400622.
67、Irkham I, Ibrahim AU, Nwekwo CW, et al. Current technologies for detection of COVID-19: biosensors, artificial intelligence and Internet of medical things (IoMT): review[J]. Sensors, 2022, 23(1): 426. DOI:10.3390/s23010426. Irkham I, Ibrahim AU, Nwekwo CW, et al. Current technologies for detection of COVID-19: biosensors, artificial intelligence and Internet of medical things (IoMT): review[J]. Sensors, 2022, 23(1): 426. DOI:10.3390/s23010426.
68、Ghaffar Nia N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction[J]. Discov Artif Intell, 2023, 3(1): 5. DOI:10.1007/s44163-023-00049-5.Ghaffar Nia N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction[J]. Discov Artif Intell, 2023, 3(1): 5. DOI:10.1007/s44163-023-00049-5.
69、Badidi E. Edge AI for early detection of chronic diseases and the spread of infectious diseases: opportunities, challenges, and future directions[J]. Future Internet, 2023, 15(11): 370. DOI:10.3390/fi15110370.Badidi E. Edge AI for early detection of chronic diseases and the spread of infectious diseases: opportunities, challenges, and future directions[J]. Future Internet, 2023, 15(11): 370. DOI:10.3390/fi15110370.
70、Graves JS, Montalban X. Biosensors to monitor MS activity[J]. Mult Scler, 2020, 26(5): 605-608. DOI:10.1177/1352458519888178. Graves JS, Montalban X. Biosensors to monitor MS activity[J]. Mult Scler, 2020, 26(5): 605-608. DOI:10.1177/1352458519888178.
71、Zaslavsky J, Bannigan P, Allen C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence[J]. Expert Opin Drug Deliv, 2023, 20(2): 241-257. DOI:10.1080/17425247.2023.2167978. Zaslavsky J, Bannigan P, Allen C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence[J]. Expert Opin Drug Deliv, 2023, 20(2): 241-257. DOI:10.1080/17425247.2023.2167978.
72、Hayat H, Nukala A, Nyamira A, et al. A concise review: the synergy between artificial intelligence and biomedical nanomaterials that empowers nanomedicine[J]. Biomed Mater, 2021, 16(5): Biomedicalmaterials(Bristol+England)vol.16+510.1088/1748-605X/ac15b2.5Aug.2021+. DOI:10.1088/1748-605X/ac15b2.Hayat H, Nukala A, Nyamira A, et al. A concise review: the synergy between artificial intelligence and biomedical nanomaterials that empowers nanomedicine[J]. Biomed Mater, 2021, 16(5): Biomedicalmaterials(Bristol+England)vol.16+510.1088/1748-605X/ac15b2.5Aug.2021+. DOI:10.1088/1748-605X/ac15b2.
73、Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533): 1289-1292. DOI:10.1126/science.1062711.Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533): 1289-1292. DOI:10.1126/science.1062711.
74、Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J]. Nat Biotechnol, 2005, 23(10): 1294-1301. DOI:10.1038/nbt1138.Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J]. Nat Biotechnol, 2005, 23(10): 1294-1301. DOI:10.1038/nbt1138.
75、Lu Z, Liu T, Zhou X, et al. Rapid and quantitative detection of tear MMP-9 for dry eye patients using a novel silicon nanowire-based biosensor[J]. Biosens Bioelectron, 2022, 214: 114498. DOI:10.1016/j.bios.2022.114498. Lu Z, Liu T, Zhou X, et al. Rapid and quantitative detection of tear MMP-9 for dry eye patients using a novel silicon nanowire-based biosensor[J]. Biosens Bioelectron, 2022, 214: 114498. DOI:10.1016/j.bios.2022.114498.
76、Wang S, He X, Jian Z, et al. Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review[J]. Eye Vis, 2024, 11(1): 38. DOI:10.1186/s40662-024-00405-1. Wang S, He X, Jian Z, et al. Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: a review[J]. Eye Vis, 2024, 11(1): 38. DOI:10.1186/s40662-024-00405-1.
77、Li Z, Wang L, Wu X, et al. Artificial intelligence in ophthalmology: The path to the real-world clinic[J]. Cell Rep Med, 2023, 4(7): 101095. DOI:10.1016/j.xcrm.2023.101095. Li Z, Wang L, Wu X, et al. Artificial intelligence in ophthalmology: The path to the real-world clinic[J]. Cell Rep Med, 2023, 4(7): 101095. DOI:10.1016/j.xcrm.2023.101095.
78、Patel AU, Gu Q, Esper R, et al. The crucial role of interdisciplinary conferences in advancing explainable AI in healthcare[J]. BioMedInformatics, 2024, 4(2): 1363-1383. DOI:10.3390/biomedinformatics4020075. Patel AU, Gu Q, Esper R, et al. The crucial role of interdisciplinary conferences in advancing explainable AI in healthcare[J]. BioMedInformatics, 2024, 4(2): 1363-1383. DOI:10.3390/biomedinformatics4020075.
79、Tseng RMWW, Rim TH, Shantsila E, et al. Validation of a deep-learning-based retinal biomarker (Reti-CVD) in the prediction of cardiovascular disease: data from UK Biobank[J]. BMC Med, 2023, 21(1): 28. DOI:10.1186/s12916-022-02684-8.Tseng RMWW, Rim TH, Shantsila E, et al. Validation of a deep-learning-based retinal biomarker (Reti-CVD) in the prediction of cardiovascular disease: data from UK Biobank[J]. BMC Med, 2023, 21(1): 28. DOI:10.1186/s12916-022-02684-8.
80、Bertagnolli MM. Advancing health through artificial intelligence/machine learning: The critical importance of multidisciplinary collaboration[J]. PNAS Nexus, 2023, 2(12): pgad356. DOI:10.1093/pnasnexus/pgad356.Bertagnolli MM. Advancing health through artificial intelligence/machine learning: The critical importance of multidisciplinary collaboration[J]. PNAS Nexus, 2023, 2(12): pgad356. DOI:10.1093/pnasnexus/pgad356.
81、Stogiannos N, Gillan C, Precht H, et al. A multidisciplinary team and multiagency approach for AI implementation: a commentary for medical imaging and radiotherapy key stakeholders[J]. J Med Imaging Radiat Sci, 2024, 55(4): 101717. DOI:10.1016/j.jmir.2024.101717. Stogiannos N, Gillan C, Precht H, et al. A multidisciplinary team and multiagency approach for AI implementation: a commentary for medical imaging and radiotherapy key stakeholders[J]. J Med Imaging Radiat Sci, 2024, 55(4): 101717. DOI:10.1016/j.jmir.2024.101717.