1、Betzler BK, Chen H, Cheng CY, et al. Large language models and their impact in ophthalmology[J]. Lancet Digit Health, 2023, 5(12): e917-e924. DOI: 10.1016/S2589-7500(23)00201-7. Betzler BK, Chen H, Cheng CY, et al. Large language models and their impact in ophthalmology[J]. Lancet Digit Health, 2023, 5(12): e917-e924. DOI: 10.1016/S2589-7500(23)00201-7.
2、Benet D, Pellicer-Valero OJ. Artificial intelligence: the unstoppable revolution in ophthalmology[J]. Surv Ophthalmol, 2022, 67(1): 252-270. DOI: 10.1016/j.survophthal.2021.03.003. Benet D, Pellicer-Valero OJ. Artificial intelligence: the unstoppable revolution in ophthalmology[J]. Surv Ophthalmol, 2022, 67(1): 252-270. DOI: 10.1016/j.survophthal.2021.03.003.
3、冯媛媛, 王婷, 肖钧, 等. 人工智能在白内障手术治疗和教学中的应用与展望[J]. 眼科学报, 2022, 37(3): 178-184. DOI:10.3978/j.issn.1000-4432.2022.03.10Feng YY, Wang T, Xiao J, et al. Application and prospect of artificial intelligence in the treatment and teaching of cataract surgery[J]. Eye Sci, 2022, 37(3): 178-184.DOI:10.3978/j.issn.1000-4432.2022.03.10
4、World Health Organization. Ethics and governance of artificial intelligence for health: large multi-modal models. WHO guidance[M]. World Health Organization, 2024.World Health Organization. Ethics and governance of artificial intelligence for health: large multi-modal models. WHO guidance[M]. World Health Organization, 2024.
5、 Thirunavukarasu AJ, Ting DSJ, Elangovan K, et al. Large language models in medicine[J]. Nat Med, 2023, 29(8): 1930-1940. DOI: 10.1038/s41591-023-02448-8. Thirunavukarasu AJ, Ting DSJ, Elangovan K, et al. Large language models in medicine[J]. Nat Med, 2023, 29(8): 1930-1940. DOI: 10.1038/s41591-023-02448-8.
6、Tan TF, Thirunavukarasu AJ, Campbell JP, et al. Generative artificial intelligence through ChatGPT and other large language models in ophthalmology: clinical applications and challenges[J]. Ophthalmol Sci, 2023, 3(4): 100394. DOI: 10.1016/j.xops.2023.100394. Tan TF, Thirunavukarasu AJ, Campbell JP, et al. Generative artificial intelligence through ChatGPT and other large language models in ophthalmology: clinical applications and challenges[J]. Ophthalmol Sci, 2023, 3(4): 100394. DOI: 10.1016/j.xops.2023.100394.
7、Hoffmann J, Borgeaud S, Mensch A, et al. Training compute-optimal large language models[J]. arXiv preprint arXiv:2203.15556, 2022. https://arxiv.org/abs/2203.15556Hoffmann J, Borgeaud S, Mensch A, et al. Training compute-optimal large language models[J]. arXiv preprint arXiv:2203.15556, 2022. https://arxiv.org/abs/2203.15556
8、Chang Y, Wang X, Wang J, et al. A survey on evaluation of large language models[J]. ACM transactions on intelligent systems and technology, 2024, 15(3): 1-45.Chang Y, Wang X, Wang J, et al. A survey on evaluation of large language models[J]. ACM transactions on intelligent systems and technology, 2024, 15(3): 1-45.
9、Shanahan M. Talking about large language models[J]. Commun ACM, 2024, 67(2): 68-79. DOI: 10.1145/3624724.Shanahan M. Talking about large language models[J]. Commun ACM, 2024, 67(2): 68-79. DOI: 10.1145/3624724.
10、Cascella M, Semeraro F, Montomoli J, et al. The breakthrough of large language models release for medical applications: 1-year timeline and perspectives[J]. J Med Syst, 2024, 48(1): 22. DOI: 10.1007/s10916-024-02045-3. Cascella M, Semeraro F, Montomoli J, et al. The breakthrough of large language models release for medical applications: 1-year timeline and perspectives[J]. J Med Syst, 2024, 48(1): 22. DOI: 10.1007/s10916-024-02045-3.
11、Wong M, Lim ZW, Pushpanathan K, et al. Review of emerging trends and projection of future developments in large language models research in ophthalmology[J]. Br J Ophthalmol, 2024, 108(10): 1362-1370. DOI: 10.1136/bjo-2023-324734.Wong M, Lim ZW, Pushpanathan K, et al. Review of emerging trends and projection of future developments in large language models research in ophthalmology[J]. Br J Ophthalmol, 2024, 108(10): 1362-1370. DOI: 10.1136/bjo-2023-324734.
12、 Masalkhi M, Ong J, Waisberg E, et al. ChatGPT to document ocular infectious diseases[J]. Eye (Lond), 2024, 38(5): 826-828. DOI: 10.1038/s41433-023-02823-2. Masalkhi M, Ong J, Waisberg E, et al. ChatGPT to document ocular infectious diseases[J]. Eye (Lond), 2024, 38(5): 826-828. DOI: 10.1038/s41433-023-02823-2.
13、Waisberg E, Ong J, Zaman N, et al. GPT-4 for triaging ophthalmic symptoms[J]. Eye (Lond), 2023, 37(18): 3874-3875. DOI: 10.1038/s41433-023-02595-9.Waisberg E, Ong J, Zaman N, et al. GPT-4 for triaging ophthalmic symptoms[J]. Eye (Lond), 2023, 37(18): 3874-3875. DOI: 10.1038/s41433-023-02595-9.
14、Zandi R, Fahey JD, Drakopoulos M, et al. Exploring diagnostic precision and triage proficiency: a comparative study of GPT-4 and bard in addressing common ophthalmic complaints[J]. Bioengineering (Basel), 2024, 11(2): 120. DOI: 10.3390/bioengineering11020120. Zandi R, Fahey JD, Drakopoulos M, et al. Exploring diagnostic precision and triage proficiency: a comparative study of GPT-4 and bard in addressing common ophthalmic complaints[J]. Bioengineering (Basel), 2024, 11(2): 120. DOI: 10.3390/bioengineering11020120.
15、Cohen SA, Brant A, Fisher AC, et al. Dr. google vs. dr. ChatGPT: exploring the use of artificial intelligence in ophthalmology by comparing the accuracy, safety, and readability of responses to frequently asked patient questions regarding cataracts and cataract surgery[J]. Semin Ophthalmol, 2024, 39(6): 472-479. DOI: 10.1080/08820538.2024.2326058. Cohen SA, Brant A, Fisher AC, et al. Dr. google vs. dr. ChatGPT: exploring the use of artificial intelligence in ophthalmology by comparing the accuracy, safety, and readability of responses to frequently asked patient questions regarding cataracts and cataract surgery[J]. Semin Ophthalmol, 2024, 39(6): 472-479. DOI: 10.1080/08820538.2024.2326058.
16、 Shah R, Edgar DF, Khatoon A, et al. Referrals from community optometrists to the hospital eye service in Scotland and England[J]. Eye (Lond), 2022, 36(9): 1754-1760. DOI: 10.1038/s41433-021-01728-2. Shah R, Edgar DF, Khatoon A, et al. Referrals from community optometrists to the hospital eye service in Scotland and England[J]. Eye (Lond), 2022, 36(9): 1754-1760. DOI: 10.1038/s41433-021-01728-2.
17、Sharma S, Pajai S, Prasad R, et al. A critical review of ChatGPT as a potential substitute for diabetes educators[J]. Cureus, 2023, 15(5): e38380. DOI: 10.7759/cureus.38380. Sharma S, Pajai S, Prasad R, et al. A critical review of ChatGPT as a potential substitute for diabetes educators[J]. Cureus, 2023, 15(5): e38380. DOI: 10.7759/cureus.38380.
18、Jeblick K, Schachtner B, Dexl J, et al. ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports[J]. Eur Radiol, 2024, 34(5): 2817-2825. DOI: 10.1007/s00330-023-10213-1. Jeblick K, Schachtner B, Dexl J, et al. ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports[J]. Eur Radiol, 2024, 34(5): 2817-2825. DOI: 10.1007/s00330-023-10213-1.
19、Waisberg E, Ong J, Masalkhi M, et al. Chat Generative Pretrained Transformer to optimize accessibility for cataract surgery postoperative management[J]. Pan Am J Ophthalmol, 2023, 5(1): 46. DOI: 10.4103/pajo.pajo_51_23 Waisberg E, Ong J, Masalkhi M, et al. Chat Generative Pretrained Transformer to optimize accessibility for cataract surgery postoperative management[J]. Pan Am J Ophthalmol, 2023, 5(1): 46. DOI: 10.4103/pajo.pajo_51_23
20、Chowdhury%20M%2C%20Lim%20E%2C%20Higham%20A%2C%20et%20al.%20Can%20large%20language%20models%20safely%20address%20patient%20questions%20following%20cataract%20surgery%3F%5BC%5D%2F%2FProceedings%20of%20the%205th%20Clinical%20Natural%20Language%20Processing%20Workshop.%20Toronto%2C%20Canada.%20Stroudsburg%2C%20PA%2C%20USA%3A%20ACL%2C%202023%3A%20131-137.%20DOI%3A%2010.18653%2Fv1%2F2023.clinicalnlp-1.17.%20Chowdhury%20M%2C%20Lim%20E%2C%20Higham%20A%2C%20et%20al.%20Can%20large%20language%20models%20safely%20address%20patient%20questions%20following%20cataract%20surgery%3F%5BC%5D%2F%2FProceedings%20of%20the%205th%20Clinical%20Natural%20Language%20Processing%20Workshop.%20Toronto%2C%20Canada.%20Stroudsburg%2C%20PA%2C%20USA%3A%20ACL%2C%202023%3A%20131-137.%20DOI%3A%2010.18653%2Fv1%2F2023.clinicalnlp-1.17.%20
21、Hager P, Jungmann F, Holland R, et al. Evaluation and mitigation of the limitations of large language models in clinical decision-making[J]. Nat Med, 2024, 30(9): 2613-2622. DOI: 10.1038/s41591-024-03097-1. Hager P, Jungmann F, Holland R, et al. Evaluation and mitigation of the limitations of large language models in clinical decision-making[J]. Nat Med, 2024, 30(9): 2613-2622. DOI: 10.1038/s41591-024-03097-1.
22、Karabacak M, Margetis K. Embracing large language models for medical applications: opportunities and challenges[J]. Cureus, 2023, 15(5): e39305. DOI: 10.7759/cureus.39305. Karabacak M, Margetis K. Embracing large language models for medical applications: opportunities and challenges[J]. Cureus, 2023, 15(5): e39305. DOI: 10.7759/cureus.39305.
23、Hu%20X%2C%20Ran%20AR%2C%20Nguyen%20TX%2C%20et%20al.%20What%20can%20GPT-4%20do%20for%20diagnosing%20rare%20eye%20diseases%3FA%20pilot%20study%5BJ%5D.%20Ophthalmol%20Ther%2C%202023%2C%2012(6)%3A%203395-3402.%20DOI%3A%2010.1007%2Fs40123-023-00789-8.Hu%20X%2C%20Ran%20AR%2C%20Nguyen%20TX%2C%20et%20al.%20What%20can%20GPT-4%20do%20for%20diagnosing%20rare%20eye%20diseases%3FA%20pilot%20study%5BJ%5D.%20Ophthalmol%20Ther%2C%202023%2C%2012(6)%3A%203395-3402.%20DOI%3A%2010.1007%2Fs40123-023-00789-8.
24、Delsoz M, Madadi Y, Raja H, et al. Performance of ChatGPT in diagnosis of corneal eye diseases[J]. Cornea, 2024, 43(5): 664-670. DOI: 10.1097/ICO.0000000000003492.Delsoz M, Madadi Y, Raja H, et al. Performance of ChatGPT in diagnosis of corneal eye diseases[J]. Cornea, 2024, 43(5): 664-670. DOI: 10.1097/ICO.0000000000003492.
25、Delsoz M, Raja H, Madadi Y, et al. The use of ChatGPT to assist in diagnosing glaucoma based on clinical case reports[J]. Ophthalmol Ther, 2023, 12(6): 3121-3132. DOI: 10.1007/s40123-023-00805-x.Delsoz M, Raja H, Madadi Y, et al. The use of ChatGPT to assist in diagnosing glaucoma based on clinical case reports[J]. Ophthalmol Ther, 2023, 12(6): 3121-3132. DOI: 10.1007/s40123-023-00805-x.
26、Liu X, Wu J, Shao A, et al. Uncovering language disparity of ChatGPT on retinal vascular disease classification: cross-sectional study[J]. J Med Internet Res, 2024, 26: e51926. DOI: 10.2196/51926. Liu X, Wu J, Shao A, et al. Uncovering language disparity of ChatGPT on retinal vascular disease classification: cross-sectional study[J]. J Med Internet Res, 2024, 26: e51926. DOI: 10.2196/51926.
27、 Madadi Y, Delsoz M, Lao PA, et al. ChatGPT assisting diagnosis of neuro-ophthalmology diseases based on case reports[J]. medRxiv, 2023: 2023.09.13.23295508. DOI: 10.1101/2023.09.13.23295508. Madadi Y, Delsoz M, Lao PA, et al. ChatGPT assisting diagnosis of neuro-ophthalmology diseases based on case reports[J]. medRxiv, 2023: 2023.09.13.23295508. DOI: 10.1101/2023.09.13.23295508.
28、Momenaei B, Wakabayashi T, Shahlaee A, et al. Appropriateness and readability of ChatGPT-4-generated responses for surgical treatment of retinal diseases[J]. Ophthalmol Retina, 2023, 7(10): 862-868. DOI: 10.1016/j.oret.2023.05.022. Momenaei B, Wakabayashi T, Shahlaee A, et al. Appropriateness and readability of ChatGPT-4-generated responses for surgical treatment of retinal diseases[J]. Ophthalmol Retina, 2023, 7(10): 862-868. DOI: 10.1016/j.oret.2023.05.022.
29、Panthier C, Gatinel D. Success of ChatGPT, an AI language model, in taking the French language version of the European Board of Ophthalmology examination: a novel approach to medical knowledge assessment[J]. J Fr Ophtalmol, 2023, 46(7): 706-711. DOI: 10.1016/j.jfo.2023.05.006. Panthier C, Gatinel D. Success of ChatGPT, an AI language model, in taking the French language version of the European Board of Ophthalmology examination: a novel approach to medical knowledge assessment[J]. J Fr Ophtalmol, 2023, 46(7): 706-711. DOI: 10.1016/j.jfo.2023.05.006.
30、Waisberg E, Ong J, Masalkhi M, et al. GPT-4 to document ophthalmic post-operative complications[J]. Eye (Lond), 2024, 38(3): 414-415. DOI: 10.1038/s41433-023-02731-5. Waisberg E, Ong J, Masalkhi M, et al. GPT-4 to document ophthalmic post-operative complications[J]. Eye (Lond), 2024, 38(3): 414-415. DOI: 10.1038/s41433-023-02731-5.
31、Singh S, Djalilian A, Ali MJ. ChatGPT and ophthalmology: exploring its potential with discharge summaries and operative notes[J]. Semin Ophthalmol, 2023, 38(5): 503-507. DOI: 10.1080/08820538.2023.2209166. Singh S, Djalilian A, Ali MJ. ChatGPT and ophthalmology: exploring its potential with discharge summaries and operative notes[J]. Semin Ophthalmol, 2023, 38(5): 503-507. DOI: 10.1080/08820538.2023.2209166.
32、 Channa R, Zafar SN, Canner JK, et al. Epidemiology of eye-related emergency department visits[J]. JAMA Ophthalmol, 2016, 134(3): 312-319. DOI: 10.1001/jamaophthalmol.2015.5778. Channa R, Zafar SN, Canner JK, et al. Epidemiology of eye-related emergency department visits[J]. JAMA Ophthalmol, 2016, 134(3): 312-319. DOI: 10.1001/jamaophthalmol.2015.5778.
33、Khan SA, Gunasekera C. “Comparative analysis of large language models against the NHS 111 online triaging for emergency ophthalmology”[J]. Eye, 2025: 1-8. DOI: 10.1038/s41433-025-03605-8. Khan SA, Gunasekera C. “Comparative analysis of large language models against the NHS 111 online triaging for emergency ophthalmology”[J]. Eye, 2025: 1-8. DOI: 10.1038/s41433-025-03605-8.
34、Preiksaitis C, Ashenburg N, Bunney G, et al. The role of large language models in transforming emergency medicine: scoping review[J]. JMIR Med Inform, 2024, 12: e53787. DOI: 10.2196/53787.Preiksaitis C, Ashenburg N, Bunney G, et al. The role of large language models in transforming emergency medicine: scoping review[J]. JMIR Med Inform, 2024, 12: e53787. DOI: 10.2196/53787.
35、Read-Brown S, Hribar MR, Reznick LG, et al. Time requirements for electronic health record use in an academic ophthalmology center[J]. JAMA Ophthalmol, 2017, 135(11): 1250-1257. DOI: 10.1001/jamaophthalmol.2017.4187.Read-Brown S, Hribar MR, Reznick LG, et al. Time requirements for electronic health record use in an academic ophthalmology center[J]. JAMA Ophthalmol, 2017, 135(11): 1250-1257. DOI: 10.1001/jamaophthalmol.2017.4187.
36、Quiroz JC, Laranjo L, Kocaballi AB, et al. Challenges of developing a digital scribe to reduce clinical documentation burden[J]. NPJ Digit Med, 2019, 2: 114. DOI: 10.1038/s41746-019-0190-1. Quiroz JC, Laranjo L, Kocaballi AB, et al. Challenges of developing a digital scribe to reduce clinical documentation burden[J]. NPJ Digit Med, 2019, 2: 114. DOI: 10.1038/s41746-019-0190-1.
37、Ghatnekar S, Faletsky A, Nambudiri VE. Digital scribe utility and barriers to implementation in clinical practice: a scoping review[J]. Health Technol (Berl), 2021, 11(4): 803-809. DOI: 10.1007/s12553-021-00568-0. Ghatnekar S, Faletsky A, Nambudiri VE. Digital scribe utility and barriers to implementation in clinical practice: a scoping review[J]. Health Technol (Berl), 2021, 11(4): 803-809. DOI: 10.1007/s12553-021-00568-0.
38、 Van Veen D, Van Uden C, Blankemeier L, et al. Adapted large language models can outperform medical experts in clinical text summarization[J]. Nat Med, 2024, 30(4): 1134-1142. DOI: 10.1038/s41591-024-02855-5. Van Veen D, Van Uden C, Blankemeier L, et al. Adapted large language models can outperform medical experts in clinical text summarization[J]. Nat Med, 2024, 30(4): 1134-1142. DOI: 10.1038/s41591-024-02855-5.
39、Tremoulet PD, Shah PD, Acosta AA, et al. Usability of electronic health record-generated discharge summaries: heuristic evaluation[J]. J Med Internet Res, 2021, 23(4): e25657. DOI: 10.2196/25657. Tremoulet PD, Shah PD, Acosta AA, et al. Usability of electronic health record-generated discharge summaries: heuristic evaluation[J]. J Med Internet Res, 2021, 23(4): e25657. DOI: 10.2196/25657.
40、Decker H, Trang K, Ramirez J, et al. Large language model-based chatbot vs surgeon-generated informed consent documentation for common procedures[J]. JAMA Netw Open, 2023, 6(10): e2336997. DOI: 10.1001/jamanetworkopen.2023.36997.Decker H, Trang K, Ramirez J, et al. Large language model-based chatbot vs surgeon-generated informed consent documentation for common procedures[J]. JAMA Netw Open, 2023, 6(10): e2336997. DOI: 10.1001/jamanetworkopen.2023.36997.
41、Waisberg E, Ong J, Masalkhi M, et al. GPT-4 and ophthalmology operative notes[J]. Ann Biomed Eng, 2023, 51(11): 2353-2355. DOI: 10.1007/s10439-023-03263-5. Waisberg E, Ong J, Masalkhi M, et al. GPT-4 and ophthalmology operative notes[J]. Ann Biomed Eng, 2023, 51(11): 2353-2355. DOI: 10.1007/s10439-023-03263-5.
42、Chen X, Zhang W, Zhao Z, et al. ICGA-GPT: report generation and question answering for indocyanine green angiography images[J]. Br J Ophthalmol, 2024, 108(10): 1450-1456. DOI: 10.1136/bjo-2023-324446. Chen X, Zhang W, Zhao Z, et al. ICGA-GPT: report generation and question answering for indocyanine green angiography images[J]. Br J Ophthalmol, 2024, 108(10): 1450-1456. DOI: 10.1136/bjo-2023-324446.
43、Lawson MA. Artificial intelligence in surgical documentation: a critical review of the role of large language models[J]. Ann Biomed Eng, 2023, 51(12): 2641-2642. DOI: 10.1007/s10439-023-03282-2. Lawson MA. Artificial intelligence in surgical documentation: a critical review of the role of large language models[J]. Ann Biomed Eng, 2023, 51(12): 2641-2642. DOI: 10.1007/s10439-023-03282-2.
44、Al Nazi Z, Peng W. Large language models in healthcare and medical domain: a review[J]. Informatics, 2024, 11(3): 57. DOI: 10.3390/informatics11030057.Al Nazi Z, Peng W. Large language models in healthcare and medical domain: a review[J]. Informatics, 2024, 11(3): 57. DOI: 10.3390/informatics11030057.
45、Yang Z, Wang D, Zhou F, et al. Understanding natural language: Potential application of large language models to ophthalmology[J]. Asia Pac J Ophthalmol (Phila), 2024, 13(4): 100085. DOI: 10.1016/j.apjo.2024.100085. Yang Z, Wang D, Zhou F, et al. Understanding natural language: Potential application of large language models to ophthalmology[J]. Asia Pac J Ophthalmol (Phila), 2024, 13(4): 100085. DOI: 10.1016/j.apjo.2024.100085.
46、Luo MJ, Pang J, Bi S, et al. Development and evaluation of a retrieval-augmented large language model framework for ophthalmology[J]. JAMA Ophthalmol, 2024, 142(9): 798-805. DOI: 10.1001/jamaophthalmol.2024.2513.Luo MJ, Pang J, Bi S, et al. Development and evaluation of a retrieval-augmented large language model framework for ophthalmology[J]. JAMA Ophthalmol, 2024, 142(9): 798-805. DOI: 10.1001/jamaophthalmol.2024.2513.
47、 Chen C, Feng X, Li Y, et al. Integration of large language models and federated learning[EB/OL]. 2023: 2307.08925. https://arxiv.org/abs/2307.08925v3. Chen C, Feng X, Li Y, et al. Integration of large language models and federated learning[EB/OL]. 2023: 2307.08925. https://arxiv.org/abs/2307.08925v3.
48、Fowler T, Pullen S, Birkett L. Performance of ChatGPT and Bard on the official part 1 FRCOphth practice questions[J]. Br J Ophthalmol, 2024, 108(10): 1379-1383. DOI: 10.1136/bjo-2023-324091. Fowler T, Pullen S, Birkett L. Performance of ChatGPT and Bard on the official part 1 FRCOphth practice questions[J]. Br J Ophthalmol, 2024, 108(10): 1379-1383. DOI: 10.1136/bjo-2023-324091.
49、Mehandru N, Miao BY, Almaraz ER, et al. Evaluating large language models as agents in the clinic[J]. NPJ Digit Med, 2024, 7(1): 84. DOI: 10.1038/s41746-024-01083-y. Mehandru N, Miao BY, Almaraz ER, et al. Evaluating large language models as agents in the clinic[J]. NPJ Digit Med, 2024, 7(1): 84. DOI: 10.1038/s41746-024-01083-y.
50、 Bernstein IA, Zhang YV, Govil D, et al. Comparison of ophthalmologist and large language model chatbot responses to online patient eye care questions[J]. JAMA Netw Open, 2023, 6(8): e2330320. DOI: 10.1001/jamanetworkopen.2023.30320. Bernstein IA, Zhang YV, Govil D, et al. Comparison of ophthalmologist and large language model chatbot responses to online patient eye care questions[J]. JAMA Netw Open, 2023, 6(8): e2330320. DOI: 10.1001/jamanetworkopen.2023.30320.
51、Rasmussen MLR, Larsen AC, Subhi Y, et al. Artificial intelligence-based ChatGPT chatbot responses for patient and parent questions on vernal keratoconjunctivitis[J]. Graefes Arch Clin Exp Ophthalmol, 2023, 261(10): 3041-3043. DOI: 10.1007/s00417-023-06078-1. Rasmussen MLR, Larsen AC, Subhi Y, et al. Artificial intelligence-based ChatGPT chatbot responses for patient and parent questions on vernal keratoconjunctivitis[J]. Graefes Arch Clin Exp Ophthalmol, 2023, 261(10): 3041-3043. DOI: 10.1007/s00417-023-06078-1.
52、 Bubeck S, Chandrasekaran V, Eldan R, et al. Sparks of artificial general intelligence: early experiments with GPT-4[EB/OL]. 2023: 2303.12712. https://arxiv.org/abs/2303.12712v5. Bubeck S, Chandrasekaran V, Eldan R, et al. Sparks of artificial general intelligence: early experiments with GPT-4[EB/OL]. 2023: 2303.12712. https://arxiv.org/abs/2303.12712v5.
53、Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]//International conference on machine learning. PMLR, 2021: 8748-8763.Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]//International conference on machine learning. PMLR, 2021: 8748-8763.
54、Stade EC, Stirman SW, Ungar LH, et al. Large language models could change the future of behavioral healthcare: a proposal for responsible development and evaluation[J]. NPJ Ment Health Res, 2024, 3(1): 12. DOI: 10.1038/s44184-024-00056-z. Stade EC, Stirman SW, Ungar LH, et al. Large language models could change the future of behavioral healthcare: a proposal for responsible development and evaluation[J]. NPJ Ment Health Res, 2024, 3(1): 12. DOI: 10.1038/s44184-024-00056-z.
55、Sevgi M, Antaki F, Keane PA. Medical education with large language models in ophthalmology: custom instructions and enhanced retrieval capabilities[J]. Br J Ophthalmol, 2024, 108(10): 1354-1361. DOI: 10.1136/bjo-2023-325046. Sevgi M, Antaki F, Keane PA. Medical education with large language models in ophthalmology: custom instructions and enhanced retrieval capabilities[J]. Br J Ophthalmol, 2024, 108(10): 1354-1361. DOI: 10.1136/bjo-2023-325046.
56、Han JH. Artificial intelligence in eye disease: recent developments, applications, and surveys[J]. Diagnostics (Basel), 2022, 12(8): 1927. DOI: 10.3390/diagnostics12081927. Han JH. Artificial intelligence in eye disease: recent developments, applications, and surveys[J]. Diagnostics (Basel), 2022, 12(8): 1927. DOI: 10.3390/diagnostics12081927.
57、Keskinbora K, Güven F. Artificial intelligence and ophthalmology[J]. Turk J Ophthalmol, 2020, 50(1): 37-43. DOI: 10.4274/tjo.galenos.2020.78989. Keskinbora K, Güven F. Artificial intelligence and ophthalmology[J]. Turk J Ophthalmol, 2020, 50(1): 37-43. DOI: 10.4274/tjo.galenos.2020.78989.
58、Chen D, Ran AR, Tan TF, et al. Applications of artificial intelligence and deep learning in glaucoma[J]. Asia Pac J Ophthalmol (Phila), 2023, 12(1): 80-93. DOI: 10.1097/APO.0000000000000596. Chen D, Ran AR, Tan TF, et al. Applications of artificial intelligence and deep learning in glaucoma[J]. Asia Pac J Ophthalmol (Phila), 2023, 12(1): 80-93. DOI: 10.1097/APO.0000000000000596.
59、Zhang Z, Wang Y, Zhang H, et al. Artificial intelligence-assisted diagnosis of ocular surface diseases[J]. Front Cell Dev Biol, 2023, 11: 1133680. DOI: 10.3389/fcell.2023.1133680. Zhang Z, Wang Y, Zhang H, et al. Artificial intelligence-assisted diagnosis of ocular surface diseases[J]. Front Cell Dev Biol, 2023, 11: 1133680. DOI: 10.3389/fcell.2023.1133680.