1、Cicinelli MV, Buchan JC, Nicholson M, et al. Cataracts[J]. Lancet, 2023, 401(10374): 377-389. DOI:10.1016/S0140-6736(22)01839-6.Cicinelli MV, Buchan JC, Nicholson M, et al. Cataracts[J]. Lancet, 2023, 401(10374): 377-389. DOI:10.1016/S0140-6736(22)01839-6.
2、Kempen JH, Sugar EA, Varma R, et al. Risk of cataract among subjects with acquired immune deficiency syndrome free of ocular opportunistic infections[J]. Ophthalmology, 2014, 121(12): 2317-2324. DOI:10.1016/j.ophtha.2014.06.014. Kempen JH, Sugar EA, Varma R, et al. Risk of cataract among subjects with acquired immune deficiency syndrome free of ocular opportunistic infections[J]. Ophthalmology, 2014, 121(12): 2317-2324. DOI:10.1016/j.ophtha.2014.06.014.
3、Hotta Y, Bassel A. Molecular size and circularity of DNA in cells of mammals and higher plants[J]. Proc Natl Acad Sci USA, 1965, 53(2): 356-362. DOI:10.1073/pnas.53.2.356.Hotta Y, Bassel A. Molecular size and circularity of DNA in cells of mammals and higher plants[J]. Proc Natl Acad Sci USA, 1965, 53(2): 356-362. DOI:10.1073/pnas.53.2.356.
4、Prada-Luengo I, Krogh A, Maretty L, et al. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads[J]. BMC Bioinformatics, 2019, 20(1): 663. DOI:10.1186/s12859-019-3160-3. Prada-Luengo I, Krogh A, Maretty L, et al. Sensitive detection of circular DNAs at single-nucleotide resolution using guided realignment of partially aligned reads[J]. BMC Bioinformatics, 2019, 20(1): 663. DOI:10.1186/s12859-019-3160-3.
5、Qiu GH. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation[J]. Mutat Res Mutat Res, 2015, 764: 108-117. DOI:10.1016/j.mrrev.2015.04.001.Qiu GH. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation[J]. Mutat Res Mutat Res, 2015, 764: 108-117. DOI:10.1016/j.mrrev.2015.04.001.
6、Qiu GH, Zheng X, Fu M, et al. The decreased exclusion of nuclear eccDNA: From molecular and subcellular levels to human aging and age-related diseases[J]. Ageing Res Rev, 2021, 67: 101306. DOI:10.1016/j.arr.2021.101306. Qiu GH, Zheng X, Fu M, et al. The decreased exclusion of nuclear eccDNA: From molecular and subcellular levels to human aging and age-related diseases[J]. Ageing Res Rev, 2021, 67: 101306. DOI:10.1016/j.arr.2021.101306.
7、Karami Fath M, Akbari Oryani M, Ramezani A, et al. Extra chromosomal DNA in different cancers: Individual genome with important biological functions[J]. Crit Rev Oncol Hematol, 2021, 166: 103477. DOI:10.1016/j.critrevonc.2021.103477. Karami Fath M, Akbari Oryani M, Ramezani A, et al. Extra chromosomal DNA in different cancers: Individual genome with important biological functions[J]. Crit Rev Oncol Hematol, 2021, 166: 103477. DOI:10.1016/j.critrevonc.2021.103477.
8、Zhao X, Shi L, Ruan S, et al. CircleBase: an integrated resource and analysis platform for human eccDNAs[J]. Nucleic Acids Res, 2022, 50(D1): D72-D82. DOI:10.1093/nar/gkab1104. Zhao X, Shi L, Ruan S, et al. CircleBase: an integrated resource and analysis platform for human eccDNAs[J]. Nucleic Acids Res, 2022, 50(D1): D72-D82. DOI:10.1093/nar/gkab1104.
9、van Leen E, Brückner L, Henssen AG. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy[J]. Nat Genet, 2022, 54(2): 107-114. DOI:10.1038/s41588-021-01000-z. van Leen E, Brückner L, Henssen AG. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy[J]. Nat Genet, 2022, 54(2): 107-114. DOI:10.1038/s41588-021-01000-z.
10、Wen K, Zhang L, Cai Y, et al. Identification and characterization of extrachromosomal circular DNA in patients with high myopia and cataract[J]. Epigenetics, 2023, 18(1): 2192324. DOI:10.1080/15592294.2023.2192324. Wen K, Zhang L, Cai Y, et al. Identification and characterization of extrachromosomal circular DNA in patients with high myopia and cataract[J]. Epigenetics, 2023, 18(1): 2192324. DOI:10.1080/15592294.2023.2192324.
11、Lv W, Pan X, Han P, et al. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs[J]. Clin Transl Med, 2022, 12(4): e817. DOI:10.1002/ctm2.817. Lv W, Pan X, Han P, et al. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs[J]. Clin Transl Med, 2022, 12(4): e817. DOI:10.1002/ctm2.817.
12、Uhumwangho OM, Ukponmwan CU, Okwara BU, et al. Prevalence and aetiology of visual impairment and blindness in persons with HIV/AIDS on highly active anti-retroviral therapy in Benin City, Nigeria[J]. West Afr J Med, 2023, 40(2): 155-160. Uhumwangho OM, Ukponmwan CU, Okwara BU, et al. Prevalence and aetiology of visual impairment and blindness in persons with HIV/AIDS on highly active anti-retroviral therapy in Benin City, Nigeria[J]. West Afr J Med, 2023, 40(2): 155-160.
13、 Sankarananthan R, Prasad S, Shekhar M, et al. Outcomes of cataract surgery in patients with Human Immunodeficiency Virus infection in a developing country[J]. Int Ophthalmol, 2023, 43(5): 1601-1609. DOI:10.1007/s10792-022-02559-0. Sankarananthan R, Prasad S, Shekhar M, et al. Outcomes of cataract surgery in patients with Human Immunodeficiency Virus infection in a developing country[J]. Int Ophthalmol, 2023, 43(5): 1601-1609. DOI:10.1007/s10792-022-02559-0.
14、Ismail I, Venter M, Ismail S, et al. Ocular manifestations of HIV infection at chris Hani baragwanath academic hospital, Johannesburg, South Africa[J]. S Afr Med J, 2023, 113(10): 20-24. DOI:10.7196/SAMJ.2023.v113i10.950. Ismail I, Venter M, Ismail S, et al. Ocular manifestations of HIV infection at chris Hani baragwanath academic hospital, Johannesburg, South Africa[J]. S Afr Med J, 2023, 113(10): 20-24. DOI:10.7196/SAMJ.2023.v113i10.950.
15、Jian-Yu E, Wang Z, Ssekasanvu J, et al. Visual impairment and eye diseases in HIV-infected people in the antiretroviral therapy (ART) era in rakai, Uganda[J]. Ophthalmic Epidemiol, 2021, 28(1): 63-69. DOI:10.1080/09286586.2020.1791908. Jian-Yu E, Wang Z, Ssekasanvu J, et al. Visual impairment and eye diseases in HIV-infected people in the antiretroviral therapy (ART) era in rakai, Uganda[J]. Ophthalmic Epidemiol, 2021, 28(1): 63-69. DOI:10.1080/09286586.2020.1791908.
16、Peters RPH, Kestelyn PG, Zierhut M, et al. The changing global epidemic of HIV and ocular disease[J]. Ocul Immunol Inflamm, 2020, 28(7): 1007-1014. DOI:10.1080/09273948.2020.1751214. Peters RPH, Kestelyn PG, Zierhut M, et al. The changing global epidemic of HIV and ocular disease[J]. Ocul Immunol Inflamm, 2020, 28(7): 1007-1014. DOI:10.1080/09273948.2020.1751214.
17、Rasmussen LD, Kessel L, Molander LD, et al. Risk of cataract surgery in HIV-infected individuals: a Danish Nationwide Population-based cohort study[J]. Clin Infect Dis, 2011, 53(11): 1156-1163. DOI:10.1093/cid/cir675. Rasmussen LD, Kessel L, Molander LD, et al. Risk of cataract surgery in HIV-infected individuals: a Danish Nationwide Population-based cohort study[J]. Clin Infect Dis, 2011, 53(11): 1156-1163. DOI:10.1093/cid/cir675.
18、Montaner%20JSG%2C%20C%C3%B4t%C3%A9%20HCF%2C%20Harris%20M%2C%20et%20al.%20Mitochondrial%20toxicity%20in%20the%20era%20of%20HAART%3A%20evaluating%20venous%20lactate%20and%20peripheral%20blood%20mitochondrial%20DNA%20in%20HIV-infected%20patients%20taking%20antiretroviral%20therapy%5BJ%5D.%20J%20Acquir%20Immune%20Defic%20Syndr%2C%202003%2C%2034(Suppl%201)%3A%20S85-S90.%20DOI%3A10.1097%2F00126334-200309011-00013.%20Montaner%20JSG%2C%20C%C3%B4t%C3%A9%20HCF%2C%20Harris%20M%2C%20et%20al.%20Mitochondrial%20toxicity%20in%20the%20era%20of%20HAART%3A%20evaluating%20venous%20lactate%20and%20peripheral%20blood%20mitochondrial%20DNA%20in%20HIV-infected%20patients%20taking%20antiretroviral%20therapy%5BJ%5D.%20J%20Acquir%20Immune%20Defic%20Syndr%2C%202003%2C%2034(Suppl%201)%3A%20S85-S90.%20DOI%3A10.1097%2F00126334-200309011-00013.%20
19、Zhang J, Sehl ME, Shih R, et al. Effects of highly active antiretroviral therapy initiation on epigenomic DNA methylation in persons living with HIV[J]. Front Bioinform, 2024, 4: 1357889. DOI:10.3389/fbinf.2024.1357889. Zhang J, Sehl ME, Shih R, et al. Effects of highly active antiretroviral therapy initiation on epigenomic DNA methylation in persons living with HIV[J]. Front Bioinform, 2024, 4: 1357889. DOI:10.3389/fbinf.2024.1357889.
20、Wu S, Turner KM, Nguyen N, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression[J]. Nature, 2019, 575(7784): 699-703. DOI:10.1038/s41586-019-1763-5. Wu S, Turner KM, Nguyen N, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression[J]. Nature, 2019, 575(7784): 699-703. DOI:10.1038/s41586-019-1763-5.
21、Gresham D, Usaite R, Germann SM, et al. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus[J]. Proc Natl Acad Sci USA, 2010, 107(43): 18551-18556. DOI:10.1073/pnas.1014023107. Gresham D, Usaite R, Germann SM, et al. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus[J]. Proc Natl Acad Sci USA, 2010, 107(43): 18551-18556. DOI:10.1073/pnas.1014023107.
22、Hull RM, King M, Pizza G, et al. Transcription-induced formation of extrachromosomal DNA during yeast ageing[J]. PLoS Biol, 2019, 17(12): e3000471. DOI:10.1371/journal.pbio.3000471. Hull RM, King M, Pizza G, et al. Transcription-induced formation of extrachromosomal DNA during yeast ageing[J]. PLoS Biol, 2019, 17(12): e3000471. DOI:10.1371/journal.pbio.3000471.
23、Zhou Q, Chen L, Tang M, et al. Apelin/APJ system: a novel promising target for anti-aging intervention[J]. Clin Chim Acta, 2018, 487: 233-240. DOI:10.1016/j.cca.2018.10.011. Zhou Q, Chen L, Tang M, et al. Apelin/APJ system: a novel promising target for anti-aging intervention[J]. Clin Chim Acta, 2018, 487: 233-240. DOI:10.1016/j.cca.2018.10.011.
24、Wang X, Zhang L, Li P, et al. Apelin/APJ system in inflammation[J]. Int Immunopharmacol, 2022, 109: 108822. DOI:10.1016/j.intimp.2022.108822. Wang X, Zhang L, Li P, et al. Apelin/APJ system in inflammation[J]. Int Immunopharmacol, 2022, 109: 108822. DOI:10.1016/j.intimp.2022.108822.
25、 Li X, Gu C, Hu Q, et al. Protective effect of apelin-13 in lens epithelial cells via inhibiting oxidative stress-induced apoptosis[J]. BMC Ophthalmol, 2024, 24(1): 479. DOI:10.1186/s12886-024-03746-6. Li X, Gu C, Hu Q, et al. Protective effect of apelin-13 in lens epithelial cells via inhibiting oxidative stress-induced apoptosis[J]. BMC Ophthalmol, 2024, 24(1): 479. DOI:10.1186/s12886-024-03746-6.
26、Wang X, Lin Q, Liu S, et al. LncRNA-XR_002792574.1-mediated ceRNA network reveals potential biomarkers in myopia-induced retinal ganglion cell damage[J]. J Transl Med, 2023, 21(1): 785. DOI:10.1186/s12967-023-04662-x. Wang X, Lin Q, Liu S, et al. LncRNA-XR_002792574.1-mediated ceRNA network reveals potential biomarkers in myopia-induced retinal ganglion cell damage[J]. J Transl Med, 2023, 21(1): 785. DOI:10.1186/s12967-023-04662-x.
27、Zhou%20J%2C%20Rasmussen%20M%2C%20Ekstr%C3%B6m%20P.%20cGMP-PKG%20dependent%20transcriptome%20in%20normal%20and%20degenerating%20retinas%3A%20Novel%20insights%20into%20the%20retinitis%20pigmentosa%20pathology%5BJ%5D.%20Exp%20Eye%20Res%2C%202021%2C%20212%3A%20108752.%20DOI%3A10.1016%2Fj.exer.2021.108752.%20Zhou%20J%2C%20Rasmussen%20M%2C%20Ekstr%C3%B6m%20P.%20cGMP-PKG%20dependent%20transcriptome%20in%20normal%20and%20degenerating%20retinas%3A%20Novel%20insights%20into%20the%20retinitis%20pigmentosa%20pathology%5BJ%5D.%20Exp%20Eye%20Res%2C%202021%2C%20212%3A%20108752.%20DOI%3A10.1016%2Fj.exer.2021.108752.%20
28、Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, et al. cGMP-phosphodiesterase inhibition prevents hypoxia-induced cell death activation in porcine retinal explants[J]. PLoS One, 2016, 11(11): e0166717. DOI:10.1371/journal.pone.0166717.
Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, et al. cGMP-phosphodiesterase inhibition prevents hypoxia-induced cell death activation in porcine retinal explants[J]. PLoS One, 2016, 11(11): e0166717. DOI:10.1371/journal.pone.0166717.