综述

人工智能在眼底病中的应用

Application of artificial intelligence in ocular fundus diseases

:200-207
 
人工智能是对人类智能的模拟和拓展。基于深度学习的人工智能可以很好地利用图像的内在特征,如轮廓、框架等,来分析图像。研究人员通常利用图像来诊断眼底病,因此将人工智能应用于眼底检查是有意义的。在眼科领域,人工智能通过分析光学相干断层扫描图像、眼底照片和超宽视野图像,已经在检测多种眼底疾病上取得了类似医生的性能。它也已经被广泛应用于疾病进展预测。然而,人工智能在眼科的应用也存在一些潜在的挑战,黑盒问题是其中之一。研究人员致力于开发更多的可解释的深度学习系统,并确认其临床可行性。人工智能在最流行的眼底病中的最新应用、可能遇到的挑战以及未来的道路将一一阐述。
Artificial intelligence (AI) is about simulating and expanding human intelligence. AI based on deep learning (DL) can analyze images well by using their inherent features, such as outlines, frames and so on. As researchers generally diagnoses ocular fundus diseases by images, it makes sense to apply AI to fundus examination. In ophthalmology, AI has achieved doctor-like performance in detecting multiple ocular fundus diseases through optical coherence tomography (OCT) images, fundus photographs, and ultra-wide-field (UWF) images. It has also been widely used in disease progression prediction. Nonetheless, there are also some potential challenges with AI application in ophthalmology, one of which is the black-box problem. Researchers are devoted to developing more interpretable deep learning systems (DLS) and confirming their clinical feasibility. This review describes a summary of the state-of-the-art AI application in the most popular ocular fundus diseases, potential challenges and the path forward.
综述

眼科人工智能在远程医疗中的应用

Application of ophthalmic artificial intelligence in telemedicine

:238-244
 
当下,我国眼科的发展存在失衡现象,大城市与农村及偏远地区在眼科相关诊疗设施水平、诊疗技术等方面存在巨大差异,仍需探寻新的智能诊疗模式以解决失衡问题。由于眼球是唯一可以直接观察人体血管和神经的器官,眼部可反映其他脏器的健康状态,部分眼科检查的医学图像可对眼部疾病做出诊断等特点,眼科开展人工智能(artificial intelligence,AI)具有独到的优势。此外,人工智能可在一定程度上提高跨时间空间传递信息的精准度及效率。人工智能在眼科及远程信息传递的优势为解决眼科发展失衡状况提供了助力。本文从眼科人工智能在眼科远程医疗相关应用的角度,主要分析并总结当下我国人工智能在眼科相关疾病远程医疗中的发展程度、所具优势以及存在问题,并讨论眼科人工智能在远程医疗的应用展望。
At present, there is an imbalance in the development of ophthalmology in China. There are huge differences in the level of ophthalmology related facilities, diagnosis and treatment technologies between big cities and rural, remote areas. New intelligent diagnosis and treatment models are still needed to solve the imbalance. Since the eye is the only organ that can directly observe the blood vessels and nerves of the human body, the eye can reflect the health status of other organs and diagnosis of eye diseases based on medical images of some ophthalmic examinations can be made as well as other characteristics. Therefore, the development of artificial intelligence in ophthalmology has unique advantages. In addition, artificial intelligence can improve the accuracy and efficiency of information transmission across time and space to a certain extent. The advantages of artificial intelligence in ophthalmology and telematics are helping to solve the imbalance in ophthalmology development. From the perspective of the application of ophthalmic artificial intelligence in telemedicine, this paper mainly analyzes and summarizes the development degree, advantages and existing problems of artificial intelligence in the telemedicine of ophthalmic diseases in China, and discusses the prospect of the application of ophthalmic artificial intelligence in telemedicine.
Review Article

Application of artificial intelligence in ocular fundus diseases

Application of artificial intelligence in ocular fundus diseases

:1-7
 
Artificial intelligence (AI) is about simulating and expanding human intelligence. AI based on deep learning (DL) can analyze images well by using their inherent features, such as outlines, frames and so on. As researchers generally diagnoses ocular fundus diseases by images, it makes sense to apply AI to fundus examination. In ophthalmology, AI has achieved doctor-like performance in detecting multiple ocular fundus diseases through optical coherence tomography (OCT) images, fundus photographs, and ultra-wide-field (UWF) images. It has also been widely used in disease progression prediction. Nonetheless, there are also some potential challenges with AI application in ophthalmology, one of which is the black-box problem. Researchers are devoted to developing more interpretable deep learning systems (DLS) and confirming their clinical feasibility. This review describes a summary of the state-of-the-art AI application in the most popular ocular fundus diseases, potential challenges and the path forward.
Artificial intelligence (AI) is about simulating and expanding human intelligence. AI based on deep learning (DL) can analyze images well by using their inherent features, such as outlines, frames and so on. As researchers generally diagnoses ocular fundus diseases by images, it makes sense to apply AI to fundus examination. In ophthalmology, AI has achieved doctor-like performance in detecting multiple ocular fundus diseases through optical coherence tomography (OCT) images, fundus photographs, and ultra-wide-field (UWF) images. It has also been widely used in disease progression prediction. Nonetheless, there are also some potential challenges with AI application in ophthalmology, one of which is the black-box problem. Researchers are devoted to developing more interpretable deep learning systems (DLS) and confirming their clinical feasibility. This review describes a summary of the state-of-the-art AI application in the most popular ocular fundus diseases, potential challenges and the path forward.
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
出版者信息