Objective: With the help of artificial intelligence (AI) based fundus screening remote referral telemedicine system,it enables us to explore the remote screening mode of patient-community-hospital, and promote the two-way referral and ophthalmic graded diagnosis. This investigation provides certain practice experiences for prefecture-level medical institutions to carry out AI screening for fundus diseases. Methods: Ophthalmologic examination was performed on 4,886 patients in primary medical institutions through AI-aided remote screening, and the final fundus diagnosis conclusion was formed after AI preliminary judgment and manual review. Through the Medical Consortium and specialty alliance model, the results of the AI diagnosis system and the audit results of superior physicians for 4 886 patients in primary care institutions were compared and analyzed, and the credibility and feasibility of the AI diagnosis system application in the screening of common ophthalmic diseases were discussed. Results: The sensitivity and specificity of AI detection of diabetic retinopathy were 94.70% and 96.06%, respectively. In the diabetic macular edema classification, the sensitivity and specificity were 96.43% and 96.55%, respectively. In the age-related macular degeneration classification, the sensitivity and specificity were 77.55% and 95.74%, respectively. Meanwhile, it also plays a role in screening common fundus diseases such as pathological myopia, cataract and glaucoma. Conclusion: The AI-aided remote screening system has high sensitivity and specificity for most of fundus diseases, indicating it is promising for fundus diseases screening in primary medical institutions. It is conducive for primary hospitals or community hospitals to carry out the initial diagnosis of fundus diseases, as well as the implementation of graded diagnosis and treatment of ophthalmology, which has reference and promotion significance.