Objective: To explore the feasibility of developing a deep learning algorithm for detecting coronary heart diseases based on fundus color photography and artificial intelligence (AI). Methods: A total of 2 117 fundus color photographs were taken from 530 patients in Guangdong Provincial People’s Hospital from 2013 to 2014,including 909 fundus color photographs from 217 patients with coronary heart disease (CHD). According to whether the patient had coronary heart disease or not, the Inception-V3 depth convolution neural network was used to train the deep learning model, and then the validation data were used to judge the accuracy of the model. The accuracy, consistency rate, sensitivity and specificity of the deep convolution network model and the area under the working characteristic curve (AUC) were calculated. Results: Among the 2 117 fundus color photographs, 1 903 were used for model training, and 214 were used to test the accuracy of the model. In the test dataset, the accuracy of the algorithm was 98.1%, the consistency rate was 98.6%, the sensitivity was 100.0%, and the specificity was 96.7%. The AUC was 0.988 (95% CI, 0.974–1.000). Conclusion: The combination of fundus color photography and artificial intelligence can achieve the accurate diagnosis of the coronary heart disease, and the model has high sensitivity and specificity. However, future studies are warranted to validate our model and exclude the possibility of over-fitting.