随着人工智能(artificial intelligence,AI)技术的快速发展,基于深度学习(deep learning,DL)和机器学习的AI技术在医学领域上的应用受到了广泛的关注。AI在眼科的应用也逐渐向更全面更深入的层次发展,通过角膜断层扫描、光学相干断层扫描、裂隙灯图像等技术,AI在对角膜病变、结膜病变、白内障、青光眼等眼部疾病的诊断和治疗方面都表现出了良好的性能。然而AI在眼科的应用方面也存在一些诸如结果可解释性的欠缺、数据集标准化的缺乏、数据集质量的不齐、模型适用性的不足和伦理问题等挑战。在5G和远程医疗飞速发展的时代,眼科AI同时也有许多新的机遇。本文综述了AI在前段眼科疾病中的应用、临床实施的潜在挑战和前景,为AI在眼科领域的进一步发展提供参考信息。
人工智能(artificial intelligence,AI)在白内障手术中的应用越来越广泛,二者结合对于白内障手术的术前诊断和分级管理、术中人工晶状体选择、位置预测及术后管理(视力预测、并发症预测及随访)、手术培训和教学方面均起到巨大的促进作用。诚然,AI在与白内障手术相关的管理、分析和研究中还面临着许多问题,但其广泛的应用前景不可忽视。现对AI在白内障手术治疗和教学中的应用做以总结,并对其未来的发展做出展望。
近年来,眼科人工智能(artificial intelligence,AI)迅猛发展,眼底影像因易获取及其丰富的生物信息成为研究热点,眼底影像的AI分析在眼底影像分析中的应用不断深入、拓展。目前,关于糖尿病性视网膜病变(diabetic retinopathy,DR)、年龄相关性黄斑变性(age-related macular degeneration,AMD)、青光眼等常见眼底疾病的临床筛查、诊断和预测已有较多AI研究,相关成果已逐步应用于临床实践。除眼科疾病以外,探究眼底特征与全身各种疾病之间的关系并据此研发AI诊断系统已经成为当下的又一热门研究领域。AI应用于眼底影像分析将改善医疗资源紧缺、诊断效率低下的情况,为多种疾病的筛查和诊断开辟“新赛道”。未来眼底影像AI分析的研究应着眼于多种眼底疾病的智能性、全面性诊断,对复杂性疾病进行综合性的辅助诊断;注重整合标准化、高质量的数据资源,提高算法性能、设计贴合临床的研究方案。
目的:评估新一代基于人工智能(artificial intelligence,AI)的人工晶状体(intraocular lens,IOL)计算公式的准确性。方法:本研究为回顾性研究,纳入因白内障行晶状体超声乳化联合IOL植入术的262例患者262眼。在术前,通过IOLMaster700获取角膜曲率、角膜白到白、中央角膜厚度、前房深度、晶状体厚度以及眼轴长度。使用第三代公式(SRK/T、Holladay 1和Hoffer Q)、Barrett UniversalⅡ(BUⅡ)、新一代AI公式(Kane、Pearl-DGS、Hill-RBF 3.0、Hoffer QST和Jin-AI)对术后屈光状态进行计算,并与术后实际的屈光状态进行比较。在将预测误差(prediction error,PE)归零后,分析了各公式的标准差(standard deviation,SD)、绝对误差均值(mean absolute error,MAE)、绝对误差中位数(median absolute error,MedAE)以及PE在±0.25、±0.50、±1.00、±2.00 D范围内的百分比。结果:基于AI的IOL屈光力计算公式的SD、MAE和MedAE的范围分别为0.37 D(Kane和Jin-AI)至0.39 D(Hoffer QST)、0.28 D(Hill-RBF 3.0和Jin-AI)至0.31 D(Hoffer QST)以及0.21 D(Hill-RBF3.0和Jin-AI)至0.24 D(HofferQST);均低于第三代公式(SD:0.43 D~0.45 D;MAE:0.34 D;MedAE:0.25 D~0.28 D)。在所有公式中,Jin-AI公式预测误差在±0.50 D的比例最高,为84.73%,Kane(84.35%)和BUⅡ(83.97%)公式次之。结论:在IOL屈光力预测上,与传统第三代公式相比,新一代基于AI的公式表现出更高的准确性,可以使更多的患者在术后获得预期的屈光状态。
人工智能(artificial intelligence,AI)为解决中国患者“看病难”问题提供了可行方案。眼科AI已实现为患者提供筛查、远程诊断及治疗建议等方面的服务,能显著减轻医疗资源不足的压力和患者的经济负担。而AI的应用过程中,给医疗管理带来的挑战应引起重视。本文从医疗管理的角度,总结分析AI在眼科医疗过程中,尤其是交接环节中出现的主要问题,提出对策与建议,并讨论AI在眼科医疗的应用展望。
人工智能是对人类智能的模拟和拓展。基于深度学习的人工智能可以很好地利用图像的内在特征,如轮廓、框架等,来分析图像。研究人员通常利用图像来诊断眼底病,因此将人工智能应用于眼底检查是有意义的。在眼科领域,人工智能通过分析光学相干断层扫描图像、眼底照片和超宽视野图像,已经在检测多种眼底疾病上取得了类似医生的性能。它也已经被广泛应用于疾病进展预测。然而,人工智能在眼科的应用也存在一些潜在的挑战,黑盒问题是其中之一。研究人员致力于开发更多的可解释的深度学习系统,并确认其临床可行性。人工智能在最流行的眼底病中的最新应用、可能遇到的挑战以及未来的道路将一一阐述。
近年来随着人口老龄化的发展、人群用眼方式的改变,现有的眼科医疗资源正越来越难以满足日渐增长的医疗需求,亟需新型的诊疗模式予以补足。眼科人工智能作为眼科领域的新兴元素,在眼病的筛查诊断中发展迅速,主要表现为“眼部图像数据+人工智能”的模式。近年来,随着该模式在白内障、青光眼、糖尿病性视网膜病变(diabetic retinopathy,DR)等常见病中研究的深入,相关技术日渐成熟,表现出了较大的应用优势与应用前景,部分技术甚至成功转化并被逐渐应用于临床。眼科诊疗向智慧医学模式的过渡,有望缓解日益增长的医疗需求与紧缺的医疗资源之间的矛盾,从而提高整体的医疗服务水平。
近年来随着医疗领域数字化、信息化建设的加速推进,人工智能的应用越来越广泛,在眼科医学方面尤为突出。婴幼儿处于视觉系统发育的关键时期,此时发生的眼病往往会造成不可逆的视功能损伤,带来沉重的家庭和社会负担。然而,由于婴幼儿群体的特殊性以及小儿眼科医生的短缺,开展大规模小儿眼病筛查工作十分困难。最新研究表明:人工智能在先天性白内障、先天性青光眼、斜视、早产儿视网膜病变以及视功能评估等领域已经得到相关应用,在多种婴幼儿眼病的早期筛查、诊断分期、治疗建议等方面都有令人瞩目的表现,有效解决了许多临床难点与痛点。但目前婴幼儿眼科人工智能仍然不如成年人眼科发展充分,亟须进一步的探索和研发。
全身疾病通过一定途径累及眼球,产生眼部病变,这些眼部病变的严重程度与全身疾病的进展密切相关。人工智能(artificial intelligence,AI)通过识别眼部病变,可以实现对全身疾病的评估,从而实现全身疾病早期诊断。检测巩膜黄染程度可评估黄疸;检测眼球后动脉血流动力学可评估肝硬化;检测视盘水肿,黄斑变性可评估慢性肾病(chronic kidney disease,CKD)进展;检测眼底血管损伤可评估糖尿病、高血压、动脉粥样硬化。临床医生可以通过眼部影像评估全身疾病的风险,其准确度依赖于临床医生的经验水平,而AI识别眼部病变评估全身疾病的准确度可与临床医生相媲美,在联合多种检测指标后,AI模型的特异性与敏感度均可得到显著提升,因此,充分利用AI可实现全身疾病的早诊早治。
随着人工智能(artificial intelligence,AI)技术的快速发展,其在医疗领域的应用正带来革命性的变化。白内障作为全球范围内最常见的可逆性视力障碍之一,在管理和治疗方面依然存在着医疗资源不足、诊断精度低、转诊效率低等诸多实际问题。因此,利用AI技术强大的计算分析和智能决策能力,优化传统医疗实践方式,对于保障人们的视觉健康至关重要。该文探讨AI技术在推动白内障分级诊疗新模式方面的应用,包括白内障图像自动分析与识别、远程医疗和转诊支持等,这些应用能够为白内障患者、社会以及政府带来多方面的显著益处和重要影响,有助于提高白内障诊断和治疗效率,缓解医疗资源不均衡问题,优化医疗资源的配置和管理,推动社会健康进步。然而,AI技术的实际应用也面临风险和挑战,应当充分重视和保护患者数据隐私和安全,建立严格的监管和监督机制,并持续加强技术创新,全面评估AI算法的鲁棒性、公平性和可解释性,以进一步提高AI系统的准确度和可信度。