1、Teoh LJ, Solebo AL, Rahi JS, et al. Temporal trends in the epidemiology of childhood severe visual impairment and blindness in the UK[ J/OL]. Br J Ophthalmol, 2021, Epub ahead of print.Teoh LJ, Solebo AL, Rahi JS, et al. Temporal trends in the epidemiology of childhood severe visual impairment and blindness in the UK[ J/OL]. Br J Ophthalmol, 2021, Epub ahead of print.
2、Reid JE, Eaton E. Artificial intelligence for pediatric ophthalmology[ J]. Curr Opin Ophthalmol, 2019, 30(5): 337-346.Reid JE, Eaton E. Artificial intelligence for pediatric ophthalmology[ J]. Curr Opin Ophthalmol, 2019, 30(5): 337-346.
3、Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective[ J]. Prog Retin Eye Res, 2021, 82: 100900.Li JO, Liu H, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective[ J]. Prog Retin Eye Res, 2021, 82: 100900.
4、Dutt S, Sivaraman A, Savoy F, et al. Insights into the growing popularity of artificial intelligence in ophthalmology[ J]. Indian J Ophthalmol, 2020, 68(7): 1339-1346.Dutt S, Sivaraman A, Savoy F, et al. Insights into the growing popularity of artificial intelligence in ophthalmology[ J]. Indian J Ophthalmol, 2020, 68(7): 1339-1346.
5、Hanif AM, Beqiri S, Keane PA, et al. Applications of interpretability in deep learning models for ophthalmology[ J]. Curr Opin Ophthalmol, 2021, 32(5): 452-458.Hanif AM, Beqiri S, Keane PA, et al. Applications of interpretability in deep learning models for ophthalmology[ J]. Curr Opin Ophthalmol, 2021, 32(5): 452-458.
6、Giger ML. Machine learning in medical imaging[ J]. J Am Coll Radiol, 2018, 15(3 Pt B): 512-520.Giger ML. Machine learning in medical imaging[ J]. J Am Coll Radiol, 2018, 15(3 Pt B): 512-520.
7、Liu H, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs[ J]. JAMA Ophthalmol, 2019, 137(12): 1353-1360.Liu H, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs[ J]. JAMA Ophthalmol, 2019, 137(12): 1353-1360.
8、Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age related macular degeneration from color fundus photography[ J]. Ophthalmology, 2018, 125(9): 1410-1420.Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age related macular degeneration from color fundus photography[ J]. Ophthalmology, 2018, 125(9): 1410-1420.
9、Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations[ J]. Prog Retin Eye Res, 2019, 72: 100759.Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: the technical and clinical considerations[ J]. Prog Retin Eye Res, 2019, 72: 100759.
10、Sen P, Wu WC, Chandra P, et al. Retinopathy of prematurity treatment: Asian perspectives[ J]. Eye (Lond), 2020, 34(4): 632-642.Sen P, Wu WC, Chandra P, et al. Retinopathy of prematurity treatment: Asian perspectives[ J]. Eye (Lond), 2020, 34(4): 632-642.
11、Wu T, Zhang L, Tong Y, et al. Retinopathy of prematurity among very low-birth-weight infants in China: incidence and perinatal risk factors[ J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 757-763.Wu T, Zhang L, Tong Y, et al. Retinopathy of prematurity among very low-birth-weight infants in China: incidence and perinatal risk factors[ J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 757-763.
12、Vartanian RJ, Besirli CG, Barks JD, et al. Trends in the screening and treatment of retinopathy of prematurity[ J]. Pediatrics, 2017, 139(1): e20161978.Vartanian RJ, Besirli CG, Barks JD, et al. Trends in the screening and treatment of retinopathy of prematurity[ J]. Pediatrics, 2017, 139(1): e20161978.
13、Campbell JP, Kim SJ, Brown JM, et al. Evaluation of a deep learning-derived quantitative retinopathy of prematurity severity scale[ J]. Ophthalmology, 2021, 128(7): 1070-1076.Campbell JP, Kim SJ, Brown JM, et al. Evaluation of a deep learning-derived quantitative retinopathy of prematurity severity scale[ J]. Ophthalmology, 2021, 128(7): 1070-1076.
14、Huang YP, Basanta H, Kang EY, et al. Automated detection of early-stage ROP using a deep convolutional neural network[ J]. Br J Ophthalmol, 2021, 105(8): 1099-1103.Huang YP, Basanta H, Kang EY, et al. Automated detection of early-stage ROP using a deep convolutional neural network[ J]. Br J Ophthalmol, 2021, 105(8): 1099-1103.
15、Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks[ J]. EBioMedicine, 2018, 35: 361-368.Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks[ J]. EBioMedicine, 2018, 35: 361-368.
16、Peng Y, Zhu W, Chen Z, et al. Automatic staging for retinopathy of prematurity with deep feature fusion and ordinal classification strategy[ J]. IEEE Trans Med Imaging, 2021, 40(7): 1750-1762.Peng Y, Zhu W, Chen Z, et al. Automatic staging for retinopathy of prematurity with deep feature fusion and ordinal classification strategy[ J]. IEEE Trans Med Imaging, 2021, 40(7): 1750-1762.
17、Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the "i-ROP" system and image features associated with expert diagnosis[ J]. Transl Vis Sci Technol, 2015, 4(6): 5.Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the "i-ROP" system and image features associated with expert diagnosis[ J]. Transl Vis Sci Technol, 2015, 4(6): 5.
18、Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[ J]. JAMA Ophthalmol, 2018, 136(7): 803-810.Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[ J]. JAMA Ophthalmol, 2018, 136(7): 803-810.
19、Yildiz VM, Tian P, Yildiz I, et al. Plus disease in retinopathy of prematurity: convolutional neural network performance using a combined neural network and feature extraction approach[ J]. Transl Vis Sci Technol, 2020, 9(2): 10.Yildiz VM, Tian P, Yildiz I, et al. Plus disease in retinopathy of prematurity: convolutional neural network performance using a combined neural network and feature extraction approach[ J]. Transl Vis Sci Technol, 2020, 9(2): 10.
20、Tan Z, Simkin S, Lai C, et al. Deep learning algorithm for automated diagnosis of retinopathy of prematurity plus disease[ J]. Transl Vis Sci Technol, 2019, 8(6): 23.Tan Z, Simkin S, Lai C, et al. Deep learning algorithm for automated diagnosis of retinopathy of prematurity plus disease[ J]. Transl Vis Sci Technol, 2019, 8(6): 23.
21、Tong Y, Lu W, Deng QQ, et al. Automated identification of retinopathy of prematurity by image-based deep learning[ J]. Eye Vis (Lond), 2020, 7: 40.Tong Y, Lu W, Deng QQ, et al. Automated identification of retinopathy of prematurity by image-based deep learning[ J]. Eye Vis (Lond), 2020, 7: 40.
22、Redd TK , Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity[ J/OL]. Br J Ophthalmol, 2018, Epub ahead of print.Redd TK , Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity[ J/OL]. Br J Ophthalmol, 2018, Epub ahead of print.
23、Taylor S, Brown JM, Gupta K, et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning[ J]. JAMA Ophthalmol, 2019, 137(9): 1022-1028.Taylor S, Brown JM, Gupta K, et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning[ J]. JAMA Ophthalmol, 2019, 137(9): 1022-1028.
24、Bellsmith KN, Brown J, Kim SJ, et al. Aggressive posterior retinopathy of prematurity: clinical and quantitative imaging features in a large north American cohort[ J]. Ophthalmology, 2020, 127(8): 1105-1112.Bellsmith KN, Brown J, Kim SJ, et al. Aggressive posterior retinopathy of prematurity: clinical and quantitative imaging features in a large north American cohort[ J]. Ophthalmology, 2020, 127(8): 1105-1112.
25、Gupta K, Campbell JP, Taylor S, et al. A quantitative severity scale for retinopathy of prematurity using deep learning to monitor disease regression after treatment[ J/OL]. JAMA Ophthalmol, 2019, Epub ahead of print.Gupta K, Campbell JP, Taylor S, et al. A quantitative severity scale for retinopathy of prematurity using deep learning to monitor disease regression after treatment[ J/OL]. JAMA Ophthalmol, 2019, Epub ahead of print.
26、Wang J, Ji J, Zhang M, et al. Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening[ J]. JAMA Netw Open, 2021, 4(5): e218758.Wang J, Ji J, Zhang M, et al. Automated explainable multidimensional deep learning platform of retinal images for retinopathy of prematurity screening[ J]. JAMA Netw Open, 2021, 4(5): e218758.
27、Lin D, Chen J, Lin Z, et al. A practical model for the identification of congenital cataracts using machine learning[ J]. EBioMedicine, 2020, 51: 102621.Lin D, Chen J, Lin Z, et al. A practical model for the identification of congenital cataracts using machine learning[ J]. EBioMedicine, 2020, 51: 102621.
28、Bremond-Gignac D, Daruich A, Robert MP, et al. Recent developments in the management of congenital cataract[ J]. Ann Transl Med, 2020, 8(22): 1545.Bremond-Gignac D, Daruich A, Robert MP, et al. Recent developments in the management of congenital cataract[ J]. Ann Transl Med, 2020, 8(22): 1545.
29、Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[ J]. Nat Biomed Eng, 2017, 24: 1.Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[ J]. Nat Biomed Eng, 2017, 24: 1.
30、Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[ J]. EClinicalMedicine, 2019, 9: 52-59.Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial[ J]. EClinicalMedicine, 2019, 9: 52-59.
31、Infant Aphakia Treatment Study Group; Lambert SR, Lynn MJ, et al. Comparison of contact lens and intraocular lens correction of monocular aphakia during infancy: a randomized clinical trial of HOTV optotype acuity at age 4.5 years and clinical findings at age 5 years[ J]. JAMA Ophthalmol, 2014, 132(6): 676-682.Infant Aphakia Treatment Study Group; Lambert SR, Lynn MJ, et al. Comparison of contact lens and intraocular lens correction of monocular aphakia during infancy: a randomized clinical trial of HOTV optotype acuity at age 4.5 years and clinical findings at age 5 years[ J]. JAMA Ophthalmol, 2014, 132(6): 676-682.
32、Sramka M, Slovak M, Tuckova J, et al. Improving clinical refractive results of cataract surgery by machine learning[ J]. PeerJ, 2019, 7: e7202.Sramka M, Slovak M, Tuckova J, et al. Improving clinical refractive results of cataract surgery by machine learning[ J]. PeerJ, 2019, 7: e7202.
33、Lin D, Liu Z, Chen J, et al. Practical pattern of surgical timing of childhood cataract in China: A cross-sectional database study[ J]. Int J Surg, 2019, 62: 56-61.Lin D, Liu Z, Chen J, et al. Practical pattern of surgical timing of childhood cataract in China: A cross-sectional database study[ J]. Int J Surg, 2019, 62: 56-61.
34、Bothun ED, Wilson ME, Traboulsi EI, et al. Outcomes of unilateral cataracts in infants and toddlers 7 to 24 months of age: toddler aphakia and pseudophakia study (TAPS)[ J]. Ophthalmology, 2019, 126(8): 1189-1195.Bothun ED, Wilson ME, Traboulsi EI, et al. Outcomes of unilateral cataracts in infants and toddlers 7 to 24 months of age: toddler aphakia and pseudophakia study (TAPS)[ J]. Ophthalmology, 2019, 126(8): 1189-1195.
35、Zhang K, Liu X, Jiang J, et al. Prediction of postoperative complications of pediatric cataract patients using data mining[ J]. J Transl Med, 2019, 17(1): 2.Zhang K, Liu X, Jiang J, et al. Prediction of postoperative complications of pediatric cataract patients using data mining[ J]. J Transl Med, 2019, 17(1): 2.
36、Long E, Chen J, Wu X, et al. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing[ J]. NPJ Digit Med, 2020, 3: 112.Long E, Chen J, Wu X, et al. Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing[ J]. NPJ Digit Med, 2020, 3: 112.
37、Loh AR, Chiang MF. Pediatric vision screening[ J]. Pediatr Rev, 2018, 39(5): 225-234.Loh AR, Chiang MF. Pediatric vision screening[ J]. Pediatr Rev, 2018, 39(5): 225-234.
38、Pueyo V, Pérez-Roche T, Prieto E, et al. Development of a system based on artificial intelligence to identify visual problems in children: study protocol of the TrackAI project[ J]. BMJ Open, 2020, 10(2): e033139.
Pueyo V, Pérez-Roche T, Prieto E, et al. Development of a system based on artificial intelligence to identify visual problems in children: study protocol of the TrackAI project[ J]. BMJ Open, 2020, 10(2): e033139.
39、Hatt SR, Leske DA, Casta?eda YS, et al. Association of strabismus with functional vision and eye-related quality of life in children[ J]. JAMA Ophthalmol, 2020, 138(5): 528-535.Hatt SR, Leske DA, Casta?eda YS, et al. Association of strabismus with functional vision and eye-related quality of life in children[ J]. JAMA Ophthalmol, 2020, 138(5): 528-535.
40、Hull S, Tailor V, Balduzzi S, et al. Tests for detecting strabismus in children aged 1 to 6 years in the community[ J]. Cochrane Database Syst Rev, 2017, 11: CD011221.Hull S, Tailor V, Balduzzi S, et al. Tests for detecting strabismus in children aged 1 to 6 years in the community[ J]. Cochrane Database Syst Rev, 2017, 11: CD011221.
41、Zheng C, Yao Q, Lu J, et al. Detection of referable horizontal strabismus in children's primary gaze photographs using deep learning[ J]. Transl Vis Sci Technol, 2021, 10(1): 33.Zheng C, Yao Q, Lu J, et al. Detection of referable horizontal strabismus in children's primary gaze photographs using deep learning[ J]. Transl Vis Sci Technol, 2021, 10(1): 33.
42、Stacey AW, Bowman R, Foster A, et al. Incidence of retinoblastoma has increased: results from 40 European countries[ J]. Ophthalmology, 2021, 128(9): 1369-1371.Stacey AW, Bowman R, Foster A, et al. Incidence of retinoblastoma has increased: results from 40 European countries[ J]. Ophthalmology, 2021, 128(9): 1369-1371.
43、Dimaras H, Kimani K, Dimba EA, et al. Retinoblastoma[ J]. Lancet, 2012, 379(9824): 1436-1446.Dimaras H, Kimani K, Dimba EA, et al. Retinoblastoma[ J]. Lancet, 2012, 379(9824): 1436-1446.
44、Global Retinoblastoma Study Group; Fabian ID, Abdallah E, et al. Global retinoblastoma presentation and analysis by national income level[ J]. JAMA Oncol, 2020, 6(5): 685-695.Global Retinoblastoma Study Group; Fabian ID, Abdallah E, et al. Global retinoblastoma presentation and analysis by national income level[ J]. JAMA Oncol, 2020, 6(5): 685-695.
45、Jansen RW, de Bloeme CM, Brisse HJ, et al. MR imaging features to differentiate retinoblastoma from Coats' disease and persistent fetal vasculature[ J]. Cancers (Basel), 2020, 12(12): 3592.Jansen RW, de Bloeme CM, Brisse HJ, et al. MR imaging features to differentiate retinoblastoma from Coats' disease and persistent fetal vasculature[ J]. Cancers (Basel), 2020, 12(12): 3592.
46、Ciller C, De Zanet S, Kamnitsas K , et al. Multi-channel MRI segmentation of eye structures and tumors using patient-specific features[ J]. PLoS One, 2017, 12(3): e0173900.Ciller C, De Zanet S, Kamnitsas K , et al. Multi-channel MRI segmentation of eye structures and tumors using patient-specific features[ J]. PLoS One, 2017, 12(3): e0173900.
47、Strijbis VIJ, de Bloeme CM, Jansen RW, et al. Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma[ J]. Sci Rep, 2021, 11(1): 14590.Strijbis VIJ, de Bloeme CM, Jansen RW, et al. Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma[ J]. Sci Rep, 2021, 11(1): 14590.
48、Goyal P, Padhi TR, Das T, et al. Outcome of universal newborn eye screening with wide-field digital retinal image acquisition system: a pilot study[ J]. Eye (Lond), 2018, 32(1): 67-73.Goyal P, Padhi TR, Das T, et al. Outcome of universal newborn eye screening with wide-field digital retinal image acquisition system: a pilot study[ J]. Eye (Lond), 2018, 32(1): 67-73.
49、Wang B, Xiao L, Liu Y, et al. Application of a deep convolutional neural network in the diagnosis of neonatal ocular fundus hemorrhage[ J]. Biosci Rep, 2018, 38(6): BSR20180497.Wang B, Xiao L, Liu Y, et al. Application of a deep convolutional neural network in the diagnosis of neonatal ocular fundus hemorrhage[ J]. Biosci Rep, 2018, 38(6): BSR20180497.
50、Hughes LA, May K, Talbot JF, et al. Incidence, distribution, and duration of birth-related retinal hemorrhages: a prospective study[ J]. J AAPOS, 2006, 10(2): 102-106.Hughes LA, May K, Talbot JF, et al. Incidence, distribution, and duration of birth-related retinal hemorrhages: a prospective study[ J]. J AAPOS, 2006, 10(2): 102-106.
51、Mao J, Luo Y, Chen K , et al. New grading criterion for retinal haemorrhages in term newborns based on deep convolutional neural networks[ J]. Clin Exp Ophthalmol, 2020, 48(2): 220-229.Mao J, Luo Y, Chen K , et al. New grading criterion for retinal haemorrhages in term newborns based on deep convolutional neural networks[ J]. Clin Exp Ophthalmol, 2020, 48(2): 220-229.
52、Xie Y, Sun L, Chen Y, et al. Ocular toxocariasis presenting as leukocoria[ J]. Lancet Infect Dis, 2022, 22(3): 426.Xie Y, Sun L, Chen Y, et al. Ocular toxocariasis presenting as leukocoria[ J]. Lancet Infect Dis, 2022, 22(3): 426.
53、Munson MC, Plewman DL, Baumer KM, et al. Autonomous early detection of eye disease in childhood photographs[ J]. Sci Adv, 2019, 5(10): eaax6363.Munson MC, Plewman DL, Baumer KM, et al. Autonomous early detection of eye disease in childhood photographs[ J]. Sci Adv, 2019, 5(10): eaax6363.
54、Zhang X, Shi YY. Prediction of myopic shift in paediatric pseudophakia using a neural network: a preliminary study[ J]. Chin J Ophthalmol, 2007, 43(11): 987-995.Zhang X, Shi YY. Prediction of myopic shift in paediatric pseudophakia using a neural network: a preliminary study[ J]. Chin J Ophthalmol, 2007, 43(11): 987-995.
55、Vogelsang L, Gilad-Gutnick S, Ehrenberg E, et al. Potential downside of high initial visual acuity[ J]. Proc Natl Acad Sci U S A, 2018, 115(44): 11333-11338.Vogelsang L, Gilad-Gutnick S, Ehrenberg E, et al. Potential downside of high initial visual acuity[ J]. Proc Natl Acad Sci U S A, 2018, 115(44): 11333-11338.
56、Grady CL, Mondloch CJ, Lewis TL, et al. Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network[ J]. Neuropsychologia, 2014, 57: 122-139.Grady CL, Mondloch CJ, Lewis TL, et al. Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network[ J]. Neuropsychologia, 2014, 57: 122-139.
57、Deshmukh AV, Badakere A, Sheth J, et al. Pivoting to teleconsultation for paediatric ophthalmology and strabismus: Our experience during COVID-19 times[ J]. Indian J Ophthalmol, 2020, 68(7): 1387-1391.Deshmukh AV, Badakere A, Sheth J, et al. Pivoting to teleconsultation for paediatric ophthalmology and strabismus: Our experience during COVID-19 times[ J]. Indian J Ophthalmol, 2020, 68(7): 1387-1391.
58、Guo Z, Ma N, Wu Y, et al. The safety and feasibility of the screening for retinopathy of prematurity assisted by telemedicine network during COVID-19 pandemic in Wuhan, China[ J]. BMC Ophthalmol, 2021, 21(1): 258.Guo Z, Ma N, Wu Y, et al. The safety and feasibility of the screening for retinopathy of prematurity assisted by telemedicine network during COVID-19 pandemic in Wuhan, China[ J]. BMC Ophthalmol, 2021, 21(1): 258.