1、Zhang LF, Hargens AR. Spaceflight-induced intracranial hypertension
and visual impairment: pathophysiology and countermeasures[ J].
Physiol Rev, 2018, 98(1): 59-87. DOI: 10.1152/physrev.00017.2016.Zhang LF, Hargens AR. Spaceflight-induced intracranial hypertension
and visual impairment: pathophysiology and countermeasures[ J].
Physiol Rev, 2018, 98(1): 59-87. DOI: 10.1152/physrev.00017.2016.
2、Ong J, Tarver W, Brunstetter T, et al. Spaceflight associated neuroocular syndrome: proposed pathogenesis, terrestrial analogues, and
emerging countermeasures[ J]. Br J Ophthalmol, 2023, 107(7): 895-
900. DOI: 10.1136/bjo-2022-322892.Ong J, Tarver W, Brunstetter T, et al. Spaceflight associated neuroocular syndrome: proposed pathogenesis, terrestrial analogues, and
emerging countermeasures[ J]. Br J Ophthalmol, 2023, 107(7): 895-
900. DOI: 10.1136/bjo-2022-322892.
3、NASA.Risk%20of%20Spaceflight%20Associated%20Neuro-ocular%20Syndrome%20(SANS)%0A%5BEB%2FOL%5D%202023-12-05%20https%3A%2F%2Fhumanresearchroadmap.nasa.gov%2Frisks%2F%0Arisk.aspx%3Fi%3D105.NASA.Risk%20of%20Spaceflight%20Associated%20Neuro-ocular%20Syndrome%20(SANS)%0A%5BEB%2FOL%5D%202023-12-05%20https%3A%2F%2Fhumanresearchroadmap.nasa.gov%2Frisks%2F%0Arisk.aspx%3Fi%3D105.
4、Mader TH, Gibson CR , Pass AF, et al. Optic disc edema, globe
flattening, choroidal folds, and hyperopic shifts observed in astronauts
after long-duration space flight[ J]. Ophthalmology, 2011, 118(10):
2058-2069. DOI: 10.1016/j.ophtha.2011.06.021.Mader TH, Gibson CR , Pass AF, et al. Optic disc edema, globe
flattening, choroidal folds, and hyperopic shifts observed in astronauts
after long-duration space flight[ J]. Ophthalmology, 2011, 118(10):
2058-2069. DOI: 10.1016/j.ophtha.2011.06.021.
5、Lee AG, Mader TH, Gibson CR, et al. Spaceflight associated neuroocular syndrome (SANS) and the neuro-ophthalmologic effects of
microgravity: a review and an update[ J]. NPJ Microgravity, 2020, 6: 7.
DOI: 10.1038/s41526-020-0097-9.Lee AG, Mader TH, Gibson CR, et al. Spaceflight associated neuroocular syndrome (SANS) and the neuro-ophthalmologic effects of
microgravity: a review and an update[ J]. NPJ Microgravity, 2020, 6: 7.
DOI: 10.1038/s41526-020-0097-9.
6、Lee AG, Mader TH, Gibson CR, et al. Space flight-associated neuro-ocular syndrome (SANS)[ J]. Eye, 2018, 32(7): 1164-1167. DOI:
10.1038/s41433-018-0070-y.Lee AG, Mader TH, Gibson CR, et al. Space flight-associated neuro-ocular syndrome (SANS)[ J]. Eye, 2018, 32(7): 1164-1167. DOI:
10.1038/s41433-018-0070-y.
7、Lentz SR. Homocysteine and vascular dysfunction[ J]. Life Sci, 1997,
61(13): 1205-1215. DOI: 10.1016/s0024-3205(97)00392-5.Lentz SR. Homocysteine and vascular dysfunction[ J]. Life Sci, 1997,
61(13): 1205-1215. DOI: 10.1016/s0024-3205(97)00392-5.
8、Lim MH, Cho YI, Jeong SK. Homocysteine and pulsatility index of
cerebral arteries[ J]. Stroke, 2009, 40(10): 3216-3220. DOI: 10.1161/
STROKEAHA.109.558403.Lim MH, Cho YI, Jeong SK. Homocysteine and pulsatility index of
cerebral arteries[ J]. Stroke, 2009, 40(10): 3216-3220. DOI: 10.1161/
STROKEAHA.109.558403.
9、Chambers JC, Obeid OA, Kooner JS. Physiological increments in
plasma homocysteine induce vascular endothelial dysfunction in
normal human subjects[ J]. Arterioscler Thromb Vasc Biol, 1999,
19(12): 2922-2927. DOI: 10.1161/01.atv.19.12.2922.Chambers JC, Obeid OA, Kooner JS. Physiological increments in
plasma homocysteine induce vascular endothelial dysfunction in
normal human subjects[ J]. Arterioscler Thromb Vasc Biol, 1999,
19(12): 2922-2927. DOI: 10.1161/01.atv.19.12.2922.
10、Zwart SR, Gibson CR, Mader TH, et al. Vision changes after spaceflight
are related to alterations in folate- and vitamin B-12-dependent onecarbon metabolism[ J]. J Nutr, 2012, 142(3): 427-431. DOI: 10.3945/
jn.111.154245.Zwart SR, Gibson CR, Mader TH, et al. Vision changes after spaceflight
are related to alterations in folate- and vitamin B-12-dependent onecarbon metabolism[ J]. J Nutr, 2012, 142(3): 427-431. DOI: 10.3945/
jn.111.154245.
11、Roberts DR, Albrecht MH, Collins HR, et al. Effects of spaceflight on
astronaut brain structure as indicated on MRI[ J]. N Engl J Med, 2017,
377(18): 1746-1753. DOI: 10.1056/NEJMoa1705129.Roberts DR, Albrecht MH, Collins HR, et al. Effects of spaceflight on
astronaut brain structure as indicated on MRI[ J]. N Engl J Med, 2017,
377(18): 1746-1753. DOI: 10.1056/NEJMoa1705129.
12、Brunstetter T. Introduction to Spaceflight Associated Neuro-ocular
Syndrome (SANS) and its Risk to NASA Astronauts[EB/OL].
2017-10-06 https://ntrs.nasa.gov/api/citations/20170009173/
downloads/20170009173.pdfBrunstetter T. Introduction to Spaceflight Associated Neuro-ocular
Syndrome (SANS) and its Risk to NASA Astronauts[EB/OL].
2017-10-06 https://ntrs.nasa.gov/api/citations/20170009173/
downloads/20170009173.pdf
13、Mathieu E, Gupta N, Ahari A, et al. Evidence for cerebrospinal
fluid entry into the optic nerve via a glymphatic pathway[ J]. Invest
Ophthalmol Vis Sci, 2017, 58(11): 4784-4791. DOI: 10.1167/iovs.17-
22290.Mathieu E, Gupta N, Ahari A, et al. Evidence for cerebrospinal
fluid entry into the optic nerve via a glymphatic pathway[ J]. Invest
Ophthalmol Vis Sci, 2017, 58(11): 4784-4791. DOI: 10.1167/iovs.17-
22290.
14、Wang%20X.%20Studies%20of%20Na%2B-K%2B-2Cl%E2%88%92-Cotransporter1%20Function%20In%20Central%20%0ANerves%20System%20in%20Health%20and%20Disease%20%5BD%5D.%20New%20York%2C%20NY%3A%20University%20of%20%0ARochester%3B%202017.Wang%20X.%20Studies%20of%20Na%2B-K%2B-2Cl%E2%88%92-Cotransporter1%20Function%20In%20Central%20%0ANerves%20System%20in%20Health%20and%20Disease%20%5BD%5D.%20New%20York%2C%20NY%3A%20University%20of%20%0ARochester%3B%202017.
15、Jacobsen%20HH%2C%20Ringstad%20G%2C%20J%C3%B8rstad%20%C3%98K%2C%20et%20al.%20The%20human%20visual%20%0Apathway%20communicates%20directly%20with%20the%20subarachnoid%20space%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202019%2C%2060(7)%3A%202773-2780.%20DOI%3A%2010.1167%2Fiovs.19-%0A26997.Jacobsen%20HH%2C%20Ringstad%20G%2C%20J%C3%B8rstad%20%C3%98K%2C%20et%20al.%20The%20human%20visual%20%0Apathway%20communicates%20directly%20with%20the%20subarachnoid%20space%5B%20J%5D.%20Invest%20%0AOphthalmol%20Vis%20Sci%2C%202019%2C%2060(7)%3A%202773-2780.%20DOI%3A%2010.1167%2Fiovs.19-%0A26997.
16、Yin X, Zhang S, Lee JH, et al. Compartmentalized ocular lymphatic
system mediates eye-brain immunity.Nature. Published online February
28, 2024. doi:10.1038/s41586-024-07130-8.Yin X, Zhang S, Lee JH, et al. Compartmentalized ocular lymphatic
system mediates eye-brain immunity.Nature. Published online February
28, 2024. doi:10.1038/s41586-024-07130-8.
17、Wostyn P, Mader TH, Gibson CR, et al. The perivascular space of the
central retinal artery as a potential major cerebrospinal fluid inflow
route: implications for optic disc edema in astronauts[ J]. Eye, 2020,
34(4): 779-780. DOI: 10.1038/s41433-019-0594-9.Wostyn P, Mader TH, Gibson CR, et al. The perivascular space of the
central retinal artery as a potential major cerebrospinal fluid inflow
route: implications for optic disc edema in astronauts[ J]. Eye, 2020,
34(4): 779-780. DOI: 10.1038/s41433-019-0594-9.
18、Galdamez LA, Brunstetter TJ, Lee AG, et al. Origins of cerebral
edema: implications for spaceflight-associated neuro-ocular
syndrome[ J]. J Neuroophthalmol, 2020, 40(1): 84-91. DOI: 10.1097/
WNO.0000000000000852.Galdamez LA, Brunstetter TJ, Lee AG, et al. Origins of cerebral
edema: implications for spaceflight-associated neuro-ocular
syndrome[ J]. J Neuroophthalmol, 2020, 40(1): 84-91. DOI: 10.1097/
WNO.0000000000000852.
19、Reilly MA, Katz SE, Roberts CJ. Orbital fat swelling: a biomechanical
theory and supporting model for spaceflight-associated neuro-ocular
syndrome (SANS)[ J]. Front Bioeng Biotechnol, 2023, 11: 1095948. DOI: 10.3389/fbioe.2023.1095948.Reilly MA, Katz SE, Roberts CJ. Orbital fat swelling: a biomechanical
theory and supporting model for spaceflight-associated neuro-ocular
syndrome (SANS)[ J]. Front Bioeng Biotechnol, 2023, 11: 1095948. DOI: 10.3389/fbioe.2023.1095948.
20、齐乃明, 张文辉, 高九州, 等. 空间微重力环境地面模拟试验方
法综述[ J]. 航天控制, 2011, 29(3): 95-100. DOI: 10.16804/j.cnki.
issn1006-3242.2011.03.019.
Qi NM, Zhang WH, Gao JZ, et al. The primary discussion for
the ground simulation system of spatial microgravity[ J]. Aerosp
Contr, 2011, 29(3): 95-100. DOI: 10.16804/j.cnki.issn1006-
3242.2011.03.019.齐乃明, 张文辉, 高九州, 等. 空间微重力环境地面模拟试验方
法综述[ J]. 航天控制, 2011, 29(3): 95-100. DOI: 10.16804/j.cnki.
issn1006-3242.2011.03.019.
Qi NM, Zhang WH, Gao JZ, et al. The primary discussion for
the ground simulation system of spatial microgravity[ J]. Aerosp
Contr, 2011, 29(3): 95-100. DOI: 10.16804/j.cnki.issn1006-
3242.2011.03.019.
21、Hargens AR , Vico L. Long-duration bed rest as an analog to
microgravity[ J]. J Appl Physiol, 2016, 120(8): 891-903. DOI:
10.1152/japplphysiol.00935.2015.Hargens AR , Vico L. Long-duration bed rest as an analog to
microgravity[ J]. J Appl Physiol, 2016, 120(8): 891-903. DOI:
10.1152/japplphysiol.00935.2015.
22、Watenpaugh DE. Analogs of microgravity: head-down tilt and water
immersion[ J]. J Appl Physiol, 2016, 120(8): 904-914. DOI: 10.1152/
japplphysiol.00986.2015.Watenpaugh DE. Analogs of microgravity: head-down tilt and water
immersion[ J]. J Appl Physiol, 2016, 120(8): 904-914. DOI: 10.1152/
japplphysiol.00986.2015.
23、Marshall-Goebel K, Ambarki K, Eklund A, et al. Effects of shortterm exposure to head-down tilt on cerebral hemodynamics: a
prospective evaluation of a spaceflight analog using phase-contrast
MRI[ J]. J Appl Physiol, 2016, 120(12): 1466-1473. DOI: 10.1152/
japplphysiol.00841.2015.Marshall-Goebel K, Ambarki K, Eklund A, et al. Effects of shortterm exposure to head-down tilt on cerebral hemodynamics: a
prospective evaluation of a spaceflight analog using phase-contrast
MRI[ J]. J Appl Physiol, 2016, 120(12): 1466-1473. DOI: 10.1152/
japplphysiol.00841.2015.
24、Ong J, Lee AG, Moss HE. Head-down tilt bed rest studies as a terrestrial
analog for spaceflight associated neuro-ocular syndrome[ J]. Front
Neurol, 2021, 12: 648958. DOI: 10.3389/fneur.2021.648958.Ong J, Lee AG, Moss HE. Head-down tilt bed rest studies as a terrestrial
analog for spaceflight associated neuro-ocular syndrome[ J]. Front
Neurol, 2021, 12: 648958. DOI: 10.3389/fneur.2021.648958.
25、Laurie SS, Vizzeri G, Taibbi G, et al. Effects of short-term mild
hypercapnia during head-down tilt on intracranial pressure and ocular
structures in healthy human subjects[ J]. Physiol Rep, 2017, 5(11):
e13302. DOI: 10.14814/phy2.13302.Laurie SS, Vizzeri G, Taibbi G, et al. Effects of short-term mild
hypercapnia during head-down tilt on intracranial pressure and ocular
structures in healthy human subjects[ J]. Physiol Rep, 2017, 5(11):
e13302. DOI: 10.14814/phy2.13302.
26、Laurie SS, Lee SMC, Macias BR, et al. Optic disc edema and choroidal
engorgement in astronauts during spaceflight and individuals exposed
to bed rest[ J]. JAMA Ophthalmol, 2020, 138(2): 165-172. DOI:
10.1001/jamaophthalmol.2019.5261.Laurie SS, Lee SMC, Macias BR, et al. Optic disc edema and choroidal
engorgement in astronauts during spaceflight and individuals exposed
to bed rest[ J]. JAMA Ophthalmol, 2020, 138(2): 165-172. DOI:
10.1001/jamaophthalmol.2019.5261.
27、Taibbi G, Cromwell RL, Zanello SB, et al. Ocular outcomes comparison
between 14- and 70-day head-down-tilt bed rest[ J]. Invest Ophthalmol
Vis Sci, 2016, 57(2): 495-501. DOI: 10.1167/iovs.15-18530.Taibbi G, Cromwell RL, Zanello SB, et al. Ocular outcomes comparison
between 14- and 70-day head-down-tilt bed rest[ J]. Invest Ophthalmol
Vis Sci, 2016, 57(2): 495-501. DOI: 10.1167/iovs.15-18530.
28、Laurie SS, Macias BR, Dunn JT, et al. Optic disc edema after 30 days of
strict head-down tilt bed rest[ J]. Ophthalmology, 2019, 126(3): 467-
468. DOI: 10.1016/j.ophtha.2018.09.042.Laurie SS, Macias BR, Dunn JT, et al. Optic disc edema after 30 days of
strict head-down tilt bed rest[ J]. Ophthalmology, 2019, 126(3): 467-
468. DOI: 10.1016/j.ophtha.2018.09.042.
29、Sater SH, Conley Nativ idad G, Seiner A J, et al. MRI-based
quantification of posterior ocular globe flattening during 60
days of strict 6° head-down tilt bed rest with and without daily
centrifugation[ J]. J Appl Physiol, 2022, 133(6): 1349-1355. DOI:
10.1152/japplphysiol.00082.2022.Sater SH, Conley Nativ idad G, Seiner A J, et al. MRI-based
quantification of posterior ocular globe flattening during 60
days of strict 6° head-down tilt bed rest with and without daily
centrifugation[ J]. J Appl Physiol, 2022, 133(6): 1349-1355. DOI:
10.1152/japplphysiol.00082.2022.
30、Sundblad P, Orlov O, Angerer O. Standardization of bed rest studies in
the spaceflight context.[ J].J Appl Physiol (1985). 2016;121(1):348-
349. doi:10.1152/japplphysiol.00089.2016.Sundblad P, Orlov O, Angerer O. Standardization of bed rest studies in
the spaceflight context.[ J].J Appl Physiol (1985). 2016;121(1):348-
349. doi:10.1152/japplphysiol.00089.2016.
31、Lawley JS, Petersen LG, Howden EJ, et al. Effect of gravity and
microgravity on intracranial pressure[ J]. J Physiol, 2017, 595(6): 2115-
2127. DOI: 10.1113/JP273557.Lawley JS, Petersen LG, Howden EJ, et al. Effect of gravity and
microgravity on intracranial pressure[ J]. J Physiol, 2017, 595(6): 2115-
2127. DOI: 10.1113/JP273557.
32、Arbeille P, Avan P, Treffel L, et al. Jugular and portal vein volume,
middle cerebral vein velocity, and intracranial pressure in dry
immersion[ J]. Aerosp Med Hum Perform, 2017, 88(5): 457-462. DOI:
10.3357/AMHP.4762.2017.Arbeille P, Avan P, Treffel L, et al. Jugular and portal vein volume,
middle cerebral vein velocity, and intracranial pressure in dry
immersion[ J]. Aerosp Med Hum Perform, 2017, 88(5): 457-462. DOI:
10.3357/AMHP.4762.2017.
33、Stern C, Yücel YH, Eulenburg PZ, et al. Eye-brain axis in microgravity
and its implications for Spaceflight Associated Neuro-ocular
Syndrome[ J]. NPJ Microgravity, 2023, 9(1): 56. DOI: 10.1038/
s41526-023-00300-4.Stern C, Yücel YH, Eulenburg PZ, et al. Eye-brain axis in microgravity
and its implications for Spaceflight Associated Neuro-ocular
Syndrome[ J]. NPJ Microgravity, 2023, 9(1): 56. DOI: 10.1038/
s41526-023-00300-4.
34、Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure
as a model to study progression to acute hemorrhagic shock in
humans[ J]. J Appl Physiol, 2004, 96(4): 1249-1261. DOI: 10.1152/
japplphysiol.01155.2003.Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure
as a model to study progression to acute hemorrhagic shock in
humans[ J]. J Appl Physiol, 2004, 96(4): 1249-1261. DOI: 10.1152/
japplphysiol.01155.2003.
35、Petersen LG, Lawley JS, Lilja-Cyron A, et al. Lower body negative
pressure to safely reduce intracranial pressure[ J]. J Physiol, 2019,
597(1): 237-248. DOI: 10.1113/JP276557.Petersen LG, Lawley JS, Lilja-Cyron A, et al. Lower body negative
pressure to safely reduce intracranial pressure[ J]. J Physiol, 2019,
597(1): 237-248. DOI: 10.1113/JP276557.
36、Marshall-Goebel%20K%2C%20Terlevi%C4%87%20R%2C%20Gerlach%20DA%2C%20et%20al.%20Lower%20body%20negative%20%0Apressure%20reduces%20optic%20nerve%20sheath%20diameter%20during%20head-down%20%0Atilt%5B%20J%5D.%20J%20Appl%20Physiol%2C%202017%2C%20123(5)%3A%201139-1144.%20DOI%3A%2010.1152%2F%0Ajapplphysiol.00256.2017.Marshall-Goebel%20K%2C%20Terlevi%C4%87%20R%2C%20Gerlach%20DA%2C%20et%20al.%20Lower%20body%20negative%20%0Apressure%20reduces%20optic%20nerve%20sheath%20diameter%20during%20head-down%20%0Atilt%5B%20J%5D.%20J%20Appl%20Physiol%2C%202017%2C%20123(5)%3A%201139-1144.%20DOI%3A%2010.1152%2F%0Ajapplphysiol.00256.2017.
37、Harris KM, Petersen LG, Weber T. Reviving lower body negative
pressure as a countermeasure to prevent pathological vascular and
ocular changes in microgravity[ J]. NPJ Microgravity, 2020, 6(1): 38.
DOI: 10.1038/s41526-020-00127-3.Harris KM, Petersen LG, Weber T. Reviving lower body negative
pressure as a countermeasure to prevent pathological vascular and
ocular changes in microgravity[ J]. NPJ Microgravity, 2020, 6(1): 38.
DOI: 10.1038/s41526-020-00127-3.
38、Hearon CM Jr, Dias KA, Babu G, et al. Effect of nightly lower body
negative pressure on choroid engorgement in a model of spaceflightassociated neuro-ocular syndrome: a randomized crossover
trial[ J]. JAMA Ophthalmol, 2022, 140(1): 59-65. DOI: 10.1001/
jamaophthalmol.2021.5200.Hearon CM Jr, Dias KA, Babu G, et al. Effect of nightly lower body
negative pressure on choroid engorgement in a model of spaceflightassociated neuro-ocular syndrome: a randomized crossover
trial[ J]. JAMA Ophthalmol, 2022, 140(1): 59-65. DOI: 10.1001/
jamaophthalmol.2021.5200.
39、Charles JB, Lathers CM. Summary of lower body negative pressure
experiments during space flight[ J]. J Clin Pharmacol, 1994, 34(6):
571-583. DOI: 10.1002/j.1552-4604.1994.tb02009.x.Charles JB, Lathers CM. Summary of lower body negative pressure
experiments during space flight[ J]. J Clin Pharmacol, 1994, 34(6):
571-583. DOI: 10.1002/j.1552-4604.1994.tb02009.x.
40、Yarmanova EN, Kozlovskaya IB, Khimoroda NN, et al. Evolution of
Russian microgravity countermeasures[ J]. Aerosp Med Hum Perform,
2015, 86(12 Suppl): A32-A37. DOI: 10.3357/AMHP.EC05.2015.Yarmanova EN, Kozlovskaya IB, Khimoroda NN, et al. Evolution of
Russian microgravity countermeasures[ J]. Aerosp Med Hum Perform,
2015, 86(12 Suppl): A32-A37. DOI: 10.3357/AMHP.EC05.2015.
41、Ashari N, Hargens AR. The mobile lower body negative pressure
gravity suit for long-duration spaceflight[ J]. Front Physiol, 2020, 11:
977. DOI: 10.3389/fphys.2020.00977.Ashari N, Hargens AR. The mobile lower body negative pressure
gravity suit for long-duration spaceflight[ J]. Front Physiol, 2020, 11:
977. DOI: 10.3389/fphys.2020.00977.
42、Kermorgant M, Sadegh A, Geeraerts T, et al. Effects of venoconstrictive
thigh cuffs on dry immersion-induced ophthalmological changes[ J].
Front Physiol, 2021, 12: 692361. DOI: 10.3389/fphys.2021.692361.Kermorgant M, Sadegh A, Geeraerts T, et al. Effects of venoconstrictive
thigh cuffs on dry immersion-induced ophthalmological changes[ J].
Front Physiol, 2021, 12: 692361. DOI: 10.3389/fphys.2021.692361.
43、Scott JM, Tucker WJ, Martin D, et al. Association of exercise and
swimming goggles with modulation of cerebro-ocular hemodynamics
and pressures in a model of spaceflight-associated neuro-ocular
syndrome[ J]. JAMA Ophthalmol, 2019, 137(6): 652-659. DOI:
10.1001/jamaophthalmol.2019.0459.Scott JM, Tucker WJ, Martin D, et al. Association of exercise and
swimming goggles with modulation of cerebro-ocular hemodynamics
and pressures in a model of spaceflight-associated neuro-ocular
syndrome[ J]. JAMA Ophthalmol, 2019, 137(6): 652-659. DOI:
10.1001/jamaophthalmol.2019.0459.