1、Gulmez%20M%2C%20Tekce%20A%2C%20Kam%C4%B1s%20U.%20Comparison%20of%20refractive%20outcomes%20%0Aand%20high-order%20aberrations%20after%20small%20incision%20lenticule%20extraction%20and%20%0Awavefront-guided%20femtosecond-assisted%20laser%20in%20situ%20keratomileusis%20for%20%0Acorrecting%20high%20myopia%20and%20myopic%20astigmatism%5B%20J%5D.%20Int%20Ophthalmol%2C%20%0A2020%2C%2040(12)%3A%203481-3489.%20DOI%3A%2010.1007%2Fs10792-020-01534-x.Gulmez%20M%2C%20Tekce%20A%2C%20Kam%C4%B1s%20U.%20Comparison%20of%20refractive%20outcomes%20%0Aand%20high-order%20aberrations%20after%20small%20incision%20lenticule%20extraction%20and%20%0Awavefront-guided%20femtosecond-assisted%20laser%20in%20situ%20keratomileusis%20for%20%0Acorrecting%20high%20myopia%20and%20myopic%20astigmatism%5B%20J%5D.%20Int%20Ophthalmol%2C%20%0A2020%2C%2040(12)%3A%203481-3489.%20DOI%3A%2010.1007%2Fs10792-020-01534-x.
2、Alvani A, Hashemi H, Pakravan M, et al. Corneal ectasia following
photorefractive keratectomy: a confocal microscopic case report and
literature review[ J]. Arq Bras Oftalmol, 2023, 87(6): e20210296. DOI:
10.5935/0004-2749.2021-0296.Alvani A, Hashemi H, Pakravan M, et al. Corneal ectasia following
photorefractive keratectomy: a confocal microscopic case report and
literature review[ J]. Arq Bras Oftalmol, 2023, 87(6): e20210296. DOI:
10.5935/0004-2749.2021-0296.
3、Elsheikh A, Alhasso D, Rama P. Assessment of the epithelium's contribution to corneal biomechanics[ J]. Exp Eye Res, 2008, 86(2): 445-451. DOI: 10.1016/j.exer.2007.12.002.Elsheikh A, Alhasso D, Rama P. Assessment of the epithelium's contribution to corneal biomechanics[ J]. Exp Eye Res, 2008, 86(2): 445-451. DOI: 10.1016/j.exer.2007.12.002.
4、Dawson%20DG%2C%20Grossniklaus%20HE%2C%20McCarey%20BE%2C%20et%20al.%20Biomechanical%20%0Aand%20wound%20healing%20characteristics%20of%20corneas%20after%20excimer%20laser%20%0Akeratorefractive%20surgery%3A%20is%20there%20a%20difference%20between%20advanced%20surface%20%0Aablation%20and%20sub-Bowman's%20keratomileusis%3F%5B%20J%5D.%20J%20Refract%20Surg%2C%202008%2C%20%0A24(1)%3A%20S90-S96.%20DOI%3A%2010.3928%2F1081597X-20080101-16.Dawson%20DG%2C%20Grossniklaus%20HE%2C%20McCarey%20BE%2C%20et%20al.%20Biomechanical%20%0Aand%20wound%20healing%20characteristics%20of%20corneas%20after%20excimer%20laser%20%0Akeratorefractive%20surgery%3A%20is%20there%20a%20difference%20between%20advanced%20surface%20%0Aablation%20and%20sub-Bowman's%20keratomileusis%3F%5B%20J%5D.%20J%20Refract%20Surg%2C%202008%2C%20%0A24(1)%3A%20S90-S96.%20DOI%3A%2010.3928%2F1081597X-20080101-16.
5、Torres-Netto EA, Hafezi F, Spiru B, et al. Contribution of Bowman
layer to corneal biomechanics[ J]. J Cataract Refract Surg, 2021, 47(7):
927-932. DOI: 10.1097/j.jcrs.0000000000000543.Torres-Netto EA, Hafezi F, Spiru B, et al. Contribution of Bowman
layer to corneal biomechanics[ J]. J Cataract Refract Surg, 2021, 47(7):
927-932. DOI: 10.1097/j.jcrs.0000000000000543.
6、Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and
biomaterials[ J]. Annu Rev Biomed Eng, 2011, 13: 269-295. DOI:
10.1146/annurev-bioeng-070909-105243.Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and
biomaterials[ J]. Annu Rev Biomed Eng, 2011, 13: 269-295. DOI:
10.1146/annurev-bioeng-070909-105243.
7、Komninou MA, Seiler TG, Enzmann V. Corneal biomechanics and
diagnostics: a review[ J]. Int Ophthalmol, 2024, 44(1): 132. DOI:
10.1007/s10792-024-03057-1.Komninou MA, Seiler TG, Enzmann V. Corneal biomechanics and
diagnostics: a review[ J]. Int Ophthalmol, 2024, 44(1): 132. DOI:
10.1007/s10792-024-03057-1.
8、Klyce SD. 12. Endothelial pump and barrier function[ J]. Exp Eye Res,
2020, 198: 108068. DOI: 10.1016/j.exer.2020.108068.Klyce SD. 12. Endothelial pump and barrier function[ J]. Exp Eye Res,
2020, 198: 108068. DOI: 10.1016/j.exer.2020.108068.
9、Posarelli M, Romano D, Tucci D, et al. Ocular-surface regeneration
therapies for eye disorders: the state of the art[ J]. BioTech (Basel),
2023, 12(2): 48. DOI: 10.3390/biotech12020048.Posarelli M, Romano D, Tucci D, et al. Ocular-surface regeneration
therapies for eye disorders: the state of the art[ J]. BioTech (Basel),
2023, 12(2): 48. DOI: 10.3390/biotech12020048.
10、Khong EWC, Chan HHL, Watson SL, et al. Pregnancy and the eye[ J].
Curr Opin Ophthalmol, 2021, 32(6): 527-535. DOI: 10.1097/
ICU.0000000000000778.Khong EWC, Chan HHL, Watson SL, et al. Pregnancy and the eye[ J].
Curr Opin Ophthalmol, 2021, 32(6): 527-535. DOI: 10.1097/
ICU.0000000000000778.
11、Komáromy AM, Koehl KL, Park SA. Looking into the future: gene and
cell therapies for glaucoma[ J]. Vet Ophthalmol, 2021,24(Suppl 1): 16-
33. DOI: 10.1111/vop.12858.Komáromy AM, Koehl KL, Park SA. Looking into the future: gene and
cell therapies for glaucoma[ J]. Vet Ophthalmol, 2021,24(Suppl 1): 16-
33. DOI: 10.1111/vop.12858.
12、Liu MX, Zhu KY, Li DL, et al. Corneal biomechanical characteristics
in myopes and emmetropes measured by corvis ST: ametaanalysis[ J]. Am J Ophthalmol, 2024, 264: 154-161. DOI: 10.1016/
j.ajo.2024.03.024.Liu MX, Zhu KY, Li DL, et al. Corneal biomechanical characteristics
in myopes and emmetropes measured by corvis ST: ametaanalysis[ J]. Am J Ophthalmol, 2024, 264: 154-161. DOI: 10.1016/
j.ajo.2024.03.024.
13、Elhusseiny AM, Scarcelli G, Saeedi OJ. Corneal biomechanical
measures for glaucoma: aclinical approach[ J]. Bioengineering, 2023,
10(10): 1108. DOI: 10.3390/bioengineering10101108.Elhusseiny AM, Scarcelli G, Saeedi OJ. Corneal biomechanical
measures for glaucoma: aclinical approach[ J]. Bioengineering, 2023,
10(10): 1108. DOI: 10.3390/bioengineering10101108.
14、Han F, Li M, Wei P, et al. Effect of biomechanical properties on
myopia: a study of new corneal biomechanical parameters[ J]. BMC
Ophthalmol, 2020, 20(1): 459. DOI: 10.1186/s12886-020-01729-x.Han F, Li M, Wei P, et al. Effect of biomechanical properties on
myopia: a study of new corneal biomechanical parameters[ J]. BMC
Ophthalmol, 2020, 20(1): 459. DOI: 10.1186/s12886-020-01729-x.
15、Abahussin M, Hayes S, Knox Cartwright NE, et al. 3D collagen
orientation study of the human cornea using X-ray diffraction and
femtosecond laser technology[ J]. Invest Ophthalmol Vis Sci, 2009,
50(11): 5159-5164. DOI: 10.1167/iovs.09-3669.Abahussin M, Hayes S, Knox Cartwright NE, et al. 3D collagen
orientation study of the human cornea using X-ray diffraction and
femtosecond laser technology[ J]. Invest Ophthalmol Vis Sci, 2009,
50(11): 5159-5164. DOI: 10.1167/iovs.09-3669.
16、Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[ J]. J Cataract Refract Surg, 2005,
31(1): 156-162. DOI: 10.1016/j.jcrs.2004.10.044.Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[ J]. J Cataract Refract Surg, 2005,
31(1): 156-162. DOI: 10.1016/j.jcrs.2004.10.044.
17、Damgaard IB, Reffat M, Hjortdal J. Review of corneal biomechanical
properties following LASIK and SMILE for myopia and myopic
astigmatism[ J]. Open Ophthalmol J, 2018, 12: 164-174. DOI:
10.2174/1874364101812010164.Damgaard IB, Reffat M, Hjortdal J. Review of corneal biomechanical
properties following LASIK and SMILE for myopia and myopic
astigmatism[ J]. Open Ophthalmol J, 2018, 12: 164-174. DOI:
10.2174/1874364101812010164.
18、Lan G, Twa MD, Song C, et al. In vivo corneal elastography: a topical
review of challenges and opportunities[ J]. Comput Struct Biotechnol J,
2023, 21: 2664-2687. DOI: 10.1016/j.csbj.2023.04.009.Lan G, Twa MD, Song C, et al. In vivo corneal elastography: a topical
review of challenges and opportunities[ J]. Comput Struct Biotechnol J,
2023, 21: 2664-2687. DOI: 10.1016/j.csbj.2023.04.009.
19、Luz%20A%2C%20Faria-Correia%20F%2C%20Salom%C3%A3o%20MQ%2C%20etal.%20Corneal%20biomechanics%3A%20%0Awhere%20are%20we%3F%5B%20J%5D.%20J%20Curr%20Ophthalmol%2C%202016%2C%2028(3)%3A%2097-98.%20DOI%3A%20%0A10.1016%2Fj.joco.2016.07.004.Luz%20A%2C%20Faria-Correia%20F%2C%20Salom%C3%A3o%20MQ%2C%20etal.%20Corneal%20biomechanics%3A%20%0Awhere%20are%20we%3F%5B%20J%5D.%20J%20Curr%20Ophthalmol%2C%202016%2C%2028(3)%3A%2097-98.%20DOI%3A%20%0A10.1016%2Fj.joco.2016.07.004.
20、Hallahan KM, Roy AS, Ambrosio R Jr, et al. Discriminant value
of custom ocular response analyzer waveform derivatives in
keratoconus[ J]. Ophthalmology, 2014, 121(2): 459-468. DOI:
10.1016/j.ophtha.2013.09.013.Hallahan KM, Roy AS, Ambrosio R Jr, et al. Discriminant value
of custom ocular response analyzer waveform derivatives in
keratoconus[ J]. Ophthalmology, 2014, 121(2): 459-468. DOI:
10.1016/j.ophtha.2013.09.013.
21、Roberts CJ. Concepts and misconceptions in corneal biomechanics[ J].
J Cataract Refract Surg, 2014, 40(6): 862-869. DOI: 10.1016/
j.jcrs.2014.04.019.Roberts CJ. Concepts and misconceptions in corneal biomechanics[ J].
J Cataract Refract Surg, 2014, 40(6): 862-869. DOI: 10.1016/
j.jcrs.2014.04.019.
22、Lu NJ, Hafezi F, Rozema JJ, et al. Repeatability of a Scheimpflug
tonometer to measure biomechanical parameters before and after
myopic refractive surgery[ J]. J Cataract Refract Surg, 2022, 48(9):
1057-1062. DOI: 10.1097/j.jcrs.0000000000000909.Lu NJ, Hafezi F, Rozema JJ, et al. Repeatability of a Scheimpflug
tonometer to measure biomechanical parameters before and after
myopic refractive surgery[ J]. J Cataract Refract Surg, 2022, 48(9):
1057-1062. DOI: 10.1097/j.jcrs.0000000000000909.
23、Vinciguerra R , Ambrósio R Jr, Elsheikh A , et al. Detection of
keratoconus with a new biomechanical index[ J]. J Refract Surg, 2016,
32(12): 803-810. DOI: 10.3928/1081597X-20160629-01.Vinciguerra R , Ambrósio R Jr, Elsheikh A , et al. Detection of
keratoconus with a new biomechanical index[ J]. J Refract Surg, 2016,
32(12): 803-810. DOI: 10.3928/1081597X-20160629-01.
24、Pillunat KR, Herber R, Spoerl E, et al. A new biomechanical glaucoma
factor to discriminate normal eyes from normal pressure glaucoma
eyes[ J]. Acta Ophthalmol, 2019, 97(7): e962-e967. DOI: 10.1111/
aos.14115.Pillunat KR, Herber R, Spoerl E, et al. A new biomechanical glaucoma
factor to discriminate normal eyes from normal pressure glaucoma
eyes[ J]. Acta Ophthalmol, 2019, 97(7): e962-e967. DOI: 10.1111/
aos.14115.
25、Scarcelli G, Yun SH. Confocal Brillouin microscopy for threedimensional mechanical imaging[ J]. Nat Photonics, 2007, 2: 39-43.
DOI: 10.1038/nphoton.2007.250.Scarcelli G, Yun SH. Confocal Brillouin microscopy for threedimensional mechanical imaging[ J]. Nat Photonics, 2007, 2: 39-43.
DOI: 10.1038/nphoton.2007.250.
26、Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the
human eye[ J]. Opt Express, 2012, 20(8): 9197-9202. DOI: 10.1364/
OE.20.009197.Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the
human eye[ J]. Opt Express, 2012, 20(8): 9197-9202. DOI: 10.1364/
OE.20.009197.
27、Scarcelli G, Kling S, Quijano E, et al. Brillouin microscopy of collagen
crosslinking: noncontact depth-dependent analysis of corneal elastic
modulus[ J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 1418-1425. DOI:
10.1167/iovs.12-11387.Scarcelli G, Kling S, Quijano E, et al. Brillouin microscopy of collagen
crosslinking: noncontact depth-dependent analysis of corneal elastic
modulus[ J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 1418-1425. DOI:
10.1167/iovs.12-11387.
28、Seiler%20TG%2C%20Geerling%20G.%20Gegenw%C3%A4rtiger%20stand%20der%20brillouin-spektroskopie%20%0Ain%20der%20ophthalmologie%5B%20J%5D.%20Klin%20Monbl%20Augenheilkd%2C%202023%2C%20240(6)%3A%20779-782.%20DOI%3A%2010.1055%2Fa-2085-5738.Seiler%20TG%2C%20Geerling%20G.%20Gegenw%C3%A4rtiger%20stand%20der%20brillouin-spektroskopie%20%0Ain%20der%20ophthalmologie%5B%20J%5D.%20Klin%20Monbl%20Augenheilkd%2C%202023%2C%20240(6)%3A%20779-782.%20DOI%3A%2010.1055%2Fa-2085-5738.
29、Lan G, Aglyamov S, Larin KV, et al. In vivo human corneal natural
frequency quantification using dynamic optical coherence elastography:
Repeatability and reproducibility[ J]. J Biomech, 2021, 121: 110427.
DOI: 10.1016/j.jbiomech.2021.110427.Lan G, Aglyamov S, Larin KV, et al. In vivo human corneal natural
frequency quantification using dynamic optical coherence elastography:
Repeatability and reproducibility[ J]. J Biomech, 2021, 121: 110427.
DOI: 10.1016/j.jbiomech.2021.110427.
30、Zhou D, Abass A, Eliasy A, et al. Microstructure-based numerical
simulation of the mechanical behaviour of ocular tissue[ J]. J R Soc
Interface, 2019, 16(154): 20180685. DOI: 10.1098/rsif.2018.0685.Zhou D, Abass A, Eliasy A, et al. Microstructure-based numerical
simulation of the mechanical behaviour of ocular tissue[ J]. J R Soc
Interface, 2019, 16(154): 20180685. DOI: 10.1098/rsif.2018.0685.
31、Karimi A, Meimani N, Razaghi R, et al. Biomechanics of the healthy
and keratoconic corneas: acombination of the clinical data, finite
element analysis, and artificial neural network[ J]. Curr Pharm Des,
2018, 24(37): 4474-4483. DOI: 10.2174/138161282566618122412393
9.Karimi A, Meimani N, Razaghi R, et al. Biomechanics of the healthy
and keratoconic corneas: acombination of the clinical data, finite
element analysis, and artificial neural network[ J]. Curr Pharm Des,
2018, 24(37): 4474-4483. DOI: 10.2174/138161282566618122412393
9.
32、Xin Y, Lopes BT, Wang J, et al. Biomechanical effects of tPRK, FSLASIK, and SMILE on the cornea[ J]. Front Bioeng Biotechnol, 2022,
10: 834270. DOI: 10.3389/fbioe.2022.834270.Xin Y, Lopes BT, Wang J, et al. Biomechanical effects of tPRK, FSLASIK, and SMILE on the cornea[ J]. Front Bioeng Biotechnol, 2022,
10: 834270. DOI: 10.3389/fbioe.2022.834270.
33、宁吉良, 方石峰, 靳琳, 等. TransPRK与SMILE术后早期角膜生物
力学对比研究[ J]. 中华实验眼科杂志, 2023, 41(11): 1098-1104.
DOI: 10.3760/cma.j.cn115989-20211130-00659.
Ning JL, Fang SF, Jin L, et al. Comparison of corneal biomechanics in
the early postoperative period between TransPRK and SMILE[ J]. Chin
J Exp Ophthalmol, 2023, 41(11): 1098-1104. DOI: 10.3760/cma.
j.cn115989-20211130-00659.Ning JL, Fang SF, Jin L, et al. Comparison of corneal biomechanics in
the early postoperative period between TransPRK and SMILE[ J]. Chin
J Exp Ophthalmol, 2023, 41(11): 1098-1104. DOI: 10.3760/cma.
j.cn115989-20211130-00659.
34、杨丹丹, 尹禾, 卢丽芳. Corvis ST评估近视患者角膜生物力学参
数及相关影响因素[ J]. 国际眼科杂志, 2023, 23(10): 1754-1759.
DOI: 10.3980/j.issn.1672-5123.2023.10.29.
Yang DD, Yin H, Lu LF. Evaluation of corneal biomechanical
parameters and related influencing factors in myopic patients by
Corvis ST[ J]. Int Eye Sci, 2023, 23(10): 1754-1759. DOI: 10.3980/
j.issn.1672-5123.2023.10.29.Yang DD, Yin H, Lu LF. Evaluation of corneal biomechanical
parameters and related influencing factors in myopic patients by
Corvis ST[ J]. Int Eye Sci, 2023, 23(10): 1754-1759. DOI: 10.3980/
j.issn.1672-5123.2023.10.29.
35、Hwang ES, Stagg BC, Swan R, et al. Corneal biomechanical properties
after laser-assisted in situ keratomileusis and photorefractive
keratectomy[ J]. Clin Ophthalmol, 2017, 11: 1785-1789. DOI:
10.2147/OPTH.S142821.Hwang ES, Stagg BC, Swan R, et al. Corneal biomechanical properties
after laser-assisted in situ keratomileusis and photorefractive
keratectomy[ J]. Clin Ophthalmol, 2017, 11: 1785-1789. DOI:
10.2147/OPTH.S142821.
36、Hashemi H, Asgari S, Mortazavi M, et al. Evaluation of corneal
biomechanics after excimer laser corneal refractive surgery in high
myopic patients using dynamic scheimpflug technology[ J]. Eye Contact
Lens, 2017, 43(6): 371-377. DOI: 10.1097/ICL.0000000000000280.Hashemi H, Asgari S, Mortazavi M, et al. Evaluation of corneal
biomechanics after excimer laser corneal refractive surgery in high
myopic patients using dynamic scheimpflug technology[ J]. Eye Contact
Lens, 2017, 43(6): 371-377. DOI: 10.1097/ICL.0000000000000280.
37、Yu M, Chen M, Dai J. Comparison of the posterior corneal elevation
and biomechanics after SMILE and LASEK for myopia: a short- and
long-term observation[ J]. Graefes Arch Clin Exp Ophthalmol, 2019,
257(3): 601-606. DOI: 10.1007/s00417-018-04227-5.Yu M, Chen M, Dai J. Comparison of the posterior corneal elevation
and biomechanics after SMILE and LASEK for myopia: a short- and
long-term observation[ J]. Graefes Arch Clin Exp Ophthalmol, 2019,
257(3): 601-606. DOI: 10.1007/s00417-018-04227-5.
38、Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to
compare the relative tensile strength of the cornea after PRK, LASIK,
and small incision lenticule extraction[ J]. J Refract Surg, 2013, 29(7):
454-460. DOI: 10.3928/1081597X-20130617-03.Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to
compare the relative tensile strength of the cornea after PRK, LASIK,
and small incision lenticule extraction[ J]. J Refract Surg, 2013, 29(7):
454-460. DOI: 10.3928/1081597X-20130617-03.
39、Seven I, Vahdati A, Pedersen IB, et al. Contralateral eye comparison
of SMILE and flap-based corneal refractive surgery: computational
analysis of biomechanical impact[ J]. J Refract Surg, 2017, 33(7): 444-
453. DOI: 10.3928/1081597X-20170504-01.Seven I, Vahdati A, Pedersen IB, et al. Contralateral eye comparison
of SMILE and flap-based corneal refractive surgery: computational
analysis of biomechanical impact[ J]. J Refract Surg, 2017, 33(7): 444-
453. DOI: 10.3928/1081597X-20170504-01.
40、Vanathi M, Azimeera S, Gupta N, et al. Study on change in corneal
biomechanics and effect of percent tissue altered in myopic laserassisted in situ keratomileusis[ J]. Indian J Ophthalmol, 2020, 68(12):
2964-2974. DOI: 10.4103/ijo.IJO_1453_20.Vanathi M, Azimeera S, Gupta N, et al. Study on change in corneal
biomechanics and effect of percent tissue altered in myopic laserassisted in situ keratomileusis[ J]. Indian J Ophthalmol, 2020, 68(12):
2964-2974. DOI: 10.4103/ijo.IJO_1453_20.
41、Elmohamady MN, Abdelghaffar W, Daifalla A, et al. Evaluation of
femtosecond laser in flap and cap creation in corneal refractive surgery
for myopia: a 3-year follow-up[ J]. Clin Ophthalmol, 2018, 12: 935-
942. DOI: 10.2147/OPTH.S164570.Elmohamady MN, Abdelghaffar W, Daifalla A, et al. Evaluation of
femtosecond laser in flap and cap creation in corneal refractive surgery
for myopia: a 3-year follow-up[ J]. Clin Ophthalmol, 2018, 12: 935-
942. DOI: 10.2147/OPTH.S164570.
42、He S, Luo Y, Ye Y, et al. A comparative and prospective study of
corneal biomechanics after SMILE and FS-LASIK performed on the
contralateral eyes of high myopia patients[ J]. Ann Transl Med, 2022,
10(13): 730. DOI: 10.21037/atm-22-330.He S, Luo Y, Ye Y, et al. A comparative and prospective study of
corneal biomechanics after SMILE and FS-LASIK performed on the
contralateral eyes of high myopia patients[ J]. Ann Transl Med, 2022,
10(13): 730. DOI: 10.21037/atm-22-330.
43、K amiya K , Shimizu K , Ohmoto F. Time course of cor neal
biomechanical parameters after laser in situ keratomileusis[ J].
Ophthalmic Res, 2009, 42(3): 167-171. DOI: 10.1159/000230670.K amiya K , Shimizu K , Ohmoto F. Time course of cor neal
biomechanical parameters after laser in situ keratomileusis[ J].
Ophthalmic Res, 2009, 42(3): 167-171. DOI: 10.1159/000230670.
44、Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical
properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a
systematic review and meta-analysis[ J]. BMC Ophthalmol, 2019,
19(1): 167. DOI: 10.1186/s12886-019-1165-3.Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical
properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a
systematic review and meta-analysis[ J]. BMC Ophthalmol, 2019,
19(1): 167. DOI: 10.1186/s12886-019-1165-3.
45、李文静, 刘洋, 王政来, 等. 角膜生物力学分析仪评估SMILE与
FS-LASIK术后角膜生物力学的变化[ J]. 国际眼科杂志, 2023,23(11): 1793-1797. DOI: 10.3980/j.issn.1672-5123.2023.11.05.
Li WJ, Liu Y, Wang ZL, et al. Changes in corneal biomechanics after
small incision lenticule extraction and femtosecond laser - assisted laser
in situ keratomileusis evaluated by corneal visualization Scheimpflug
technology[ J]. Int Eye Sci, 2023, 23(11): 1793-1797. DOI: 10.3980/
j.issn.1672-5123.2023.11.05.Li WJ, Liu Y, Wang ZL, et al. Changes in corneal biomechanics after
small incision lenticule extraction and femtosecond laser - assisted laser
in situ keratomileusis evaluated by corneal visualization Scheimpflug
technology[ J]. Int Eye Sci, 2023, 23(11): 1793-1797. DOI: 10.3980/
j.issn.1672-5123.2023.11.05.
46、Wu D, Liu C, Li B, et al. Influence of cap thickness on corneal
curvature and corneal biomechanics after SMILE: aprospective,
contralateral eye study[ J]. J Refract Surg, 2020, 36(2): 82-88. DOI:
10.3928/1081597X-20191216-01.Wu D, Liu C, Li B, et al. Influence of cap thickness on corneal
curvature and corneal biomechanics after SMILE: aprospective,
contralateral eye study[ J]. J Refract Surg, 2020, 36(2): 82-88. DOI:
10.3928/1081597X-20191216-01.
47、Jun I, Kang DSY, Roberts CJ, et al. Comparison of clinical and
biomechanical outcomes of small incision lenticule extraction with
120- and 140-μm cap thickness[ J]. Transl Vis Sci Technol, 2021, 10(8):
15. DOI: 10.1167/tvst.10.8.15.Jun I, Kang DSY, Roberts CJ, et al. Comparison of clinical and
biomechanical outcomes of small incision lenticule extraction with
120- and 140-μm cap thickness[ J]. Transl Vis Sci Technol, 2021, 10(8):
15. DOI: 10.1167/tvst.10.8.15.
48、Damgaard IB, Ivarsen A, Hjortdal J. Refractive correction and
biomechanical strength following SMILE with a 110- or 160-μm cap
thickness, evaluated ex vivo by inflation test[ J]. Invest Ophthalmol Vis
Sci, 2018, 59(5): 1836-1843. DOI: 10.1167/iovs.17-23675.Damgaard IB, Ivarsen A, Hjortdal J. Refractive correction and
biomechanical strength following SMILE with a 110- or 160-μm cap
thickness, evaluated ex vivo by inflation test[ J]. Invest Ophthalmol Vis
Sci, 2018, 59(5): 1836-1843. DOI: 10.1167/iovs.17-23675.
49、Zarei-Ghanavati S, Jafarzadeh SV, Es’haghi A, et al. Comparison of
110- and 145-μm small-incision lenticule extraction cap thickness:
arandomized contralateral eye study[ J]. Cornea, 2024, 43(2): 154-158.
DOI: 10.1097/ICO.0000000000003294.Zarei-Ghanavati S, Jafarzadeh SV, Es’haghi A, et al. Comparison of
110- and 145-μm small-incision lenticule extraction cap thickness:
arandomized contralateral eye study[ J]. Cornea, 2024, 43(2): 154-158.
DOI: 10.1097/ICO.0000000000003294.
50、Wu F, Yin H, Yang Y. Contralateral eye comparison between 2
cap thicknesses in small incision lenticule extraction: 110 versus
130 μm[ J]. Cornea, 2019, 38(5): 617-623. DOI: 10.1097/
ICO.0000000000001835.Wu F, Yin H, Yang Y. Contralateral eye comparison between 2
cap thicknesses in small incision lenticule extraction: 110 versus
130 μm[ J]. Cornea, 2019, 38(5): 617-623. DOI: 10.1097/
ICO.0000000000001835.