1、Olloquequi J, Cornejo-Córdova E, Verdaguer E, et al. Excitotoxicity in
the pathogenesis of neurological and psychiatric disorders: therapeutic
implications[ J]. J Psychopharmacol, 2018, 32(3): 265-275. DOI:
10.1177/0269881118754680.Olloquequi J, Cornejo-Córdova E, Verdaguer E, et al. Excitotoxicity in
the pathogenesis of neurological and psychiatric disorders: therapeutic
implications[ J]. J Psychopharmacol, 2018, 32(3): 265-275. DOI:
10.1177/0269881118754680.
2、Whetsell WO Jr, Shapira NA. Neuroexcitation, excitotoxicity and
human neurological disease[ J]. LabInvest, 1993, 68(4): 372-387.Whetsell WO Jr, Shapira NA. Neuroexcitation, excitotoxicity and
human neurological disease[ J]. LabInvest, 1993, 68(4): 372-387.
3、Crupi R, Impellizzeri D, Cuzzocrea S. Role of metabotropic glutamate
receptors in neurological disorders[ J]. FrontMolNeurosci, 2019, 12:
20. DOI: 10.3389/fnmol.2019.00020.Crupi R, Impellizzeri D, Cuzzocrea S. Role of metabotropic glutamate
receptors in neurological disorders[ J]. FrontMolNeurosci, 2019, 12:
20. DOI: 10.3389/fnmol.2019.00020.
4、Ribeiro FM, Vieira LB, PiresRGW, et al. Metabotropic glutamate
receptors and neurodegenerative diseases[ J]. PharmacolRes, 2017,
115: 179-191. DOI: 10.1016/j.phrs.2016.11.013.Ribeiro FM, Vieira LB, PiresRGW, et al. Metabotropic glutamate
receptors and neurodegenerative diseases[ J]. PharmacolRes, 2017,
115: 179-191. DOI: 10.1016/j.phrs.2016.11.013.
5、Storck T, Schulte S, Hofmann K, et al. Structure, expression, and
functional analysis of a Na(+)-dependent glutamate/aspartate
transporter from rat brain[ J]. ProcNatlAcadSciUSA, 1992, 89(22):
10955-10959. DOI: 10.1073/pnas.89.22.10955.Storck T, Schulte S, Hofmann K, et al. Structure, expression, and
functional analysis of a Na(+)-dependent glutamate/aspartate
transporter from rat brain[ J]. ProcNatlAcadSciUSA, 1992, 89(22):
10955-10959. DOI: 10.1073/pnas.89.22.10955.
6、Pines%20G%2C%20Danbolt%20NC%2C%20Bj%C3%B8r%C3%A5s%20M%2C%20et%20al.%20Cloning%20and%20expression%20of%20a%20rat%20%0Abrain%20L-glutamate%20transporter%5B%20J%5D.%20Nature%2C%201992%2C%20360(6403)%3A%20464-467.%20%0ADOI%3A%2010.1038%2F360464a0Pines%20G%2C%20Danbolt%20NC%2C%20Bj%C3%B8r%C3%A5s%20M%2C%20et%20al.%20Cloning%20and%20expression%20of%20a%20rat%20%0Abrain%20L-glutamate%20transporter%5B%20J%5D.%20Nature%2C%201992%2C%20360(6403)%3A%20464-467.%20%0ADOI%3A%2010.1038%2F360464a0
7、Kanai Y, Hediger MA. Primary structure and functional characterization
of a high-affinity glutamate transporter[ J]. Nature, 1992, 360(6403):
467-471. DOI: 10.1038/360467a0.Kanai Y, Hediger MA. Primary structure and functional characterization
of a high-affinity glutamate transporter[ J]. Nature, 1992, 360(6403):
467-471. DOI: 10.1038/360467a0.
8、Fairman WA, Vandenberg RJ, Arriza JL, et al. An excitatory aminoacid transporter with properties of a ligand-gated chloride channel[ J].
Nature, 1995, 375(6532): 599-603. DOI: 10.1038/375599a0.Fairman WA, Vandenberg RJ, Arriza JL, et al. An excitatory aminoacid transporter with properties of a ligand-gated chloride channel[ J].
Nature, 1995, 375(6532): 599-603. DOI: 10.1038/375599a0.
9、Arriza JL, Eliasof S, Kavanaugh MP, et al. Excitatory amino acid
transporter 5, a retinal glutamate transporter coupled to a chloride
conductance[ J]. ProcNatlAcadSciUSA, 1997, 94(8): 4155-4160. DOI:
10.1073/pnas.94.8.4155.Arriza JL, Eliasof S, Kavanaugh MP, et al. Excitatory amino acid
transporter 5, a retinal glutamate transporter coupled to a chloride
conductance[ J]. ProcNatlAcadSciUSA, 1997, 94(8): 4155-4160. DOI:
10.1073/pnas.94.8.4155.
10、Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate
transporters, EAATs and VGLUTs[ J]. Brain Res Brain ResRev, 2004,
45(3): 250-265. DOI: 10.1016/j.brainresrev.2004.04.004.Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate
transporters, EAATs and VGLUTs[ J]. Brain Res Brain ResRev, 2004,
45(3): 250-265. DOI: 10.1016/j.brainresrev.2004.04.004.
11、Gherghel D, Griffiths HR , Hilton EJ, et al. Systemic reduction
in glutathione levels occurs in patients with primary open-angle
glaucoma[ J]. InvestOphthalmolVisSci, 2005, 46(3): 877-883. DOI:
10.1167/iovs.04-0777.Gherghel D, Griffiths HR , Hilton EJ, et al. Systemic reduction
in glutathione levels occurs in patients with primary open-angle
glaucoma[ J]. InvestOphthalmolVisSci, 2005, 46(3): 877-883. DOI:
10.1167/iovs.04-0777.
12、Harada T, Harada C, Nakamura K, et al. The potential role of glutamate
transporters in the pathogenesis of normal tension glaucoma[ J].
JClinInvest, 2007, 117(7): 1763-1770. DOI: 10.1172/JCI30178.Harada T, Harada C, Nakamura K, et al. The potential role of glutamate
transporters in the pathogenesis of normal tension glaucoma[ J].
JClinInvest, 2007, 117(7): 1763-1770. DOI: 10.1172/JCI30178.
13、Hu C, Feng Y, Huang G, et al. Melatonin prevents EAAC1 deletioninduced retinal ganglion cell degeneration by inhibiting apoptosis
and senescence[ J]. JPineal Res, 2024, 76(1): e12916. DOI: 10.1111/
jpi.12916.Hu C, Feng Y, Huang G, et al. Melatonin prevents EAAC1 deletioninduced retinal ganglion cell degeneration by inhibiting apoptosis
and senescence[ J]. JPineal Res, 2024, 76(1): e12916. DOI: 10.1111/
jpi.12916.
14、Russo R , Cavaliere F, Varano GP, et al. Impairment of neuronal
glutamate uptake and modulation of the glutamate transporter GLT-1
induced by retinal ischemia[ J]. PLoSOne, 2013, 8(8): e69250. DOI:
10.1371/journal.pone.0069250.Russo R , Cavaliere F, Varano GP, et al. Impairment of neuronal
glutamate uptake and modulation of the glutamate transporter GLT-1
induced by retinal ischemia[ J]. PLoSOne, 2013, 8(8): e69250. DOI:
10.1371/journal.pone.0069250.
15、Park CK, Cha J, Park SC, et al. Differential expression of two glutamate
transporters, GLAST and GLT-1, in an experimental rat model of
glaucoma[ J]. ExpBrain Res, 2009, 197(2): 101-109. DOI: 10.1007/
s00221-009-1896-0.Park CK, Cha J, Park SC, et al. Differential expression of two glutamate
transporters, GLAST and GLT-1, in an experimental rat model of
glaucoma[ J]. ExpBrain Res, 2009, 197(2): 101-109. DOI: 10.1007/
s00221-009-1896-0.
16、Telegina DV, Antonenko AK, Fursova AZ, et al. The glutamate/GABA
system in the retina of male rats: effects of aging, neurodegeneration,
and supplementation with melatonin and antioxidant SkQ1[ J].
Biogerontology, 2022, 23(5): 571-585. DOI: 10.1007/s10522-022-
09983-w.Telegina DV, Antonenko AK, Fursova AZ, et al. The glutamate/GABA
system in the retina of male rats: effects of aging, neurodegeneration,
and supplementation with melatonin and antioxidant SkQ1[ J].
Biogerontology, 2022, 23(5): 571-585. DOI: 10.1007/s10522-022-
09983-w.
17、Lee A, Stevens MG, Anderson AR, et al. A novel splice variant of the
excitatory amino acid transporter 5: cloning, immunolocalization and functional characterization of hEAAT5v in human retina[ J].
NeurochemInt, 2016: S0197-S0186(16)30404-1. DOI:10.1016/
j.neuint.2016.10.013.Lee A, Stevens MG, Anderson AR, et al. A novel splice variant of the
excitatory amino acid transporter 5: cloning, immunolocalization and functional characterization of hEAAT5v in human retina[ J].
NeurochemInt, 2016: S0197-S0186(16)30404-1. DOI:10.1016/
j.neuint.2016.10.013.
18、Vandenberg RJ, Ryan RM. Mechanisms of glutamate transport[ J].
PhysiolRev, 2013, 93(4): 1621-1657. DOI: 10.1152/physrev.
00007.2013.Vandenberg RJ, Ryan RM. Mechanisms of glutamate transport[ J].
PhysiolRev, 2013, 93(4): 1621-1657. DOI: 10.1152/physrev.
00007.2013.
19、Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate
transpor ter[ J]. Nature, 1996, 383(6601): 634-637. D OI:
10.1038/383634a0.Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate
transpor ter[ J]. Nature, 1996, 383(6601): 634-637. D OI:
10.1038/383634a0.
20、Conradt M, Storck T, Stoffel W. Localization of N-glycosylation sites
and functional role of the carbohydrate units of GLAST-1, a cloned
rat brain L-glutamate/L-aspartate transporter[ J]. EurJBiochem, 1995,
229(3): 682-687. DOI: 10.1111/j.1432-1033.1995.tb20514.x.Conradt M, Storck T, Stoffel W. Localization of N-glycosylation sites
and functional role of the carbohydrate units of GLAST-1, a cloned
rat brain L-glutamate/L-aspartate transporter[ J]. EurJBiochem, 1995,
229(3): 682-687. DOI: 10.1111/j.1432-1033.1995.tb20514.x.
21、Rothstein JD, Martin L, Levey AI, et al. Localization of neuronal and
glial glutamate transporters[ J]. Neuron, 1994, 13(3): 713-725. DOI:
10.1016/0896-6273(94)90038-8.Rothstein JD, Martin L, Levey AI, et al. Localization of neuronal and
glial glutamate transporters[ J]. Neuron, 1994, 13(3): 713-725. DOI:
10.1016/0896-6273(94)90038-8.
22、Danbolt NC. Glutamate uptake[ J]. ProgNeurobiol, 2001, 65(1): 1-105.
DOI: 10.1016/s0301-0082(00)00067-8.Danbolt NC. Glutamate uptake[ J]. ProgNeurobiol, 2001, 65(1): 1-105.
DOI: 10.1016/s0301-0082(00)00067-8.
23、McLennan H. The autoradiographic localization of L-[3h]glutamate
in rat brain tissue[ J]. Brain Res, 1976, 115(1): 139-144. DOI:
10.1016/0006-8993(76)90828-3.McLennan H. The autoradiographic localization of L-[3h]glutamate
in rat brain tissue[ J]. Brain Res, 1976, 115(1): 139-144. DOI:
10.1016/0006-8993(76)90828-3.
24、Gundersen V, Shupliakov O, Brodin L, et al. Quantification of
excitatory amino acid uptake at intact glutamatergic synapses by
immunocytochemistry of exogenous D-aspartate[ J]. JNeurosci, 1995,
15(6): 4417-4428. DOI: 10.1523/JNEUROSCI.15-06-04417.1995.Gundersen V, Shupliakov O, Brodin L, et al. Quantification of
excitatory amino acid uptake at intact glutamatergic synapses by
immunocytochemistry of exogenous D-aspartate[ J]. JNeurosci, 1995,
15(6): 4417-4428. DOI: 10.1523/JNEUROSCI.15-06-04417.1995.
25、Bergles DE, Jahr CE. Synaptic activation of glutamate transporters in
hippocampal astrocytes[ J]. Neuron, 1997, 19(6): 1297-1308. DOI:
10.1016/s0896-6273(00)80420-1.Bergles DE, Jahr CE. Synaptic activation of glutamate transporters in
hippocampal astrocytes[ J]. Neuron, 1997, 19(6): 1297-1308. DOI:
10.1016/s0896-6273(00)80420-1.
26、Bergles DE, Dzubay JA, Jahr CE. Glutamate transporter currents
in bergmann glial cells follow the time course of extrasynaptic
glutamate[ J]. ProcNatlAcadSciUSA, 1997, 94(26): 14821-14825.
DOI: 10.1073/pnas.94.26.14821.Bergles DE, Dzubay JA, Jahr CE. Glutamate transporter currents
in bergmann glial cells follow the time course of extrasynaptic
glutamate[ J]. ProcNatlAcadSciUSA, 1997, 94(26): 14821-14825.
DOI: 10.1073/pnas.94.26.14821.
27、Robinson MB. The family of sodium-dependent glutamate transporters:
a focus on the GLT-1/EAAT2 subtype[ J]. NeurochemInt, 1998,
33(6): 479-491. DOI: 10.1016/s0197-0186(98)00055-2.Robinson MB. The family of sodium-dependent glutamate transporters:
a focus on the GLT-1/EAAT2 subtype[ J]. NeurochemInt, 1998,
33(6): 479-491. DOI: 10.1016/s0197-0186(98)00055-2.
28、Rao P, YallapuMM, Sari Y, et al. Designing novel nanoformulationstargeting glutamate transporter excitatory amino acid transporter 2:
implications in treating drug addiction[ J]. JPersNanomed, 2015, 1(1):
3-9.Rao P, YallapuMM, Sari Y, et al. Designing novel nanoformulationstargeting glutamate transporter excitatory amino acid transporter 2:
implications in treating drug addiction[ J]. JPersNanomed, 2015, 1(1):
3-9.
29、Kugler P, Schleyer V. Developmental expression of glutamate
transporters and glutamate dehydrogenase in astrocytes of the postnatal
rat hippocampus[ J]. Hippocampus, 2004, 14(8): 975-985. DOI:
10.1002/hipo.20015.Kugler P, Schleyer V. Developmental expression of glutamate
transporters and glutamate dehydrogenase in astrocytes of the postnatal
rat hippocampus[ J]. Hippocampus, 2004, 14(8): 975-985. DOI:
10.1002/hipo.20015.
30、Karki P, Smith K, Johnson J Jr, et al. Role of transcription factor Yin
Yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putat ive mechani sm for manganese-induced
neurotoxicity[ J]. NeurochemInt, 2015, 88: 53-59. DOI: 10.1016/
j.neuint.2014.08.002.Karki P, Smith K, Johnson J Jr, et al. Role of transcription factor Yin
Yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putat ive mechani sm for manganese-induced
neurotoxicity[ J]. NeurochemInt, 2015, 88: 53-59. DOI: 10.1016/
j.neuint.2014.08.002.
31、Takahashi K, Kong Q, Lin Y, et al. Restored glial glutamate transporter
EAAT2 function as a potential therapeutic approach for Alzheimer's
disease[ J]. JExpMed, 2015, 212(3): 319-332. DOI: 10.1084/
jem.20140413.Takahashi K, Kong Q, Lin Y, et al. Restored glial glutamate transporter
EAAT2 function as a potential therapeutic approach for Alzheimer's
disease[ J]. JExpMed, 2015, 212(3): 319-332. DOI: 10.1084/
jem.20140413.
32、Young D, Fong DM, Lawlor PA, et al. Adenosine kinase, glutamine
synthetase and EAAT2 as gene therapy targets for temporal lobe
epilepsy[ J]. Gene Ther, 2014, 21(12): 1029-1040. DOI: 10.1038/
gt.2014.82.Young D, Fong DM, Lawlor PA, et al. Adenosine kinase, glutamine
synthetase and EAAT2 as gene therapy targets for temporal lobe
epilepsy[ J]. Gene Ther, 2014, 21(12): 1029-1040. DOI: 10.1038/
gt.2014.82.
33、He Y, Janssen WG, Rothstein JD, et al. Differential synaptic localization
of the glutamate transporter EAAC1 and glutamate receptor subunit
GluR2 in the rat hippocampus[ J]. JCompNeurol, 2000, 418(3): 255-
269.He Y, Janssen WG, Rothstein JD, et al. Differential synaptic localization
of the glutamate transporter EAAC1 and glutamate receptor subunit
GluR2 in the rat hippocampus[ J]. JCompNeurol, 2000, 418(3): 255-
269.
34、Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of
glutamate transporters reveals a major role for astroglial transport in
excitotoxicity and clearance of glutamate[ J]. Neuron, 1996, 16(3):
675-686. DOI: 10.1016/s0896-6273(00)80086-0.Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of
glutamate transporters reveals a major role for astroglial transport in
excitotoxicity and clearance of glutamate[ J]. Neuron, 1996, 16(3):
675-686. DOI: 10.1016/s0896-6273(00)80086-0.
35、Sepkuty JP, Cohen AS, Eccles C, et al. A neuronal glutamate
transporter contributes to neurotransmitter GABA synthesis and
epilepsy[ J]. JNeurosci, 2002, 22(15): 6372-6379. DOI: 10.1523/
JNEUROSCI.22-15-06372.2002.Sepkuty JP, Cohen AS, Eccles C, et al. A neuronal glutamate
transporter contributes to neurotransmitter GABA synthesis and
epilepsy[ J]. JNeurosci, 2002, 22(15): 6372-6379. DOI: 10.1523/
JNEUROSCI.22-15-06372.2002.
36、Guillet B, Lortet S, Masmejean F, et al. Developmental expression and
activity of high affinity glutamate transporters in rat cortical primary
cultures[ J]. NeurochemInt, 2002, 40(7): 661-671. DOI: 10.1016/
s0197-0186(01)00110-3.Guillet B, Lortet S, Masmejean F, et al. Developmental expression and
activity of high affinity glutamate transporters in rat cortical primary
cultures[ J]. NeurochemInt, 2002, 40(7): 661-671. DOI: 10.1016/
s0197-0186(01)00110-3.
37、Denicola A, Souza JM, Radi R . Diffusion of peroxynitrite across
erythrocyte membranes[ J]. ProcNatlAcadSciUSA, 1998, 95(7): 3566-
3571. DOI: 10.1073/pnas.95.7.3566.Denicola A, Souza JM, Radi R . Diffusion of peroxynitrite across
erythrocyte membranes[ J]. ProcNatlAcadSciUSA, 1998, 95(7): 3566-
3571. DOI: 10.1073/pnas.95.7.3566.
38、Nagao S, Kwak S, Kanazawa I. EAAT4, a glutamate transporter
with properties of a chloride channel, is predominantly localized in
Purkinje cell dendrites, and forms parasagittal compartments in rat
cerebellum[ J]. Neuroscience, 1997, 78(4): 929-933. DOI: 10.1016/
s0306-4522(97)00021-3.Nagao S, Kwak S, Kanazawa I. EAAT4, a glutamate transporter
with properties of a chloride channel, is predominantly localized in
Purkinje cell dendrites, and forms parasagittal compartments in rat
cerebellum[ J]. Neuroscience, 1997, 78(4): 929-933. DOI: 10.1016/
s0306-4522(97)00021-3.
39、Yamada K, Watanabe M, Shibata T, et al. EAAT4 is a post-synaptic
glutamate transporter at Purkinje cell synapses[ J]. Neuroreport, 1996,
7(12): 2013-2017. DOI: 10.1097/00001756-199608120-00032.Yamada K, Watanabe M, Shibata T, et al. EAAT4 is a post-synaptic
glutamate transporter at Purkinje cell synapses[ J]. Neuroreport, 1996,
7(12): 2013-2017. DOI: 10.1097/00001756-199608120-00032.
40、Perkins EM, Clarkson YL, Suminaite D, et al. Loss of cerebellar
glutamate transporters EAAT4 and GLAST differentially affects
the spontaneous firing pattern and survival of Purkinje cells[ J].
HumMolGenet, 2018, 27(15): 2614-2627. DOI: 10.1093/hmg/
ddy169.Perkins EM, Clarkson YL, Suminaite D, et al. Loss of cerebellar
glutamate transporters EAAT4 and GLAST differentially affects
the spontaneous firing pattern and survival of Purkinje cells[ J].
HumMolGenet, 2018, 27(15): 2614-2627. DOI: 10.1093/hmg/
ddy169.
41、Ward MM, Jobling AI, Puthussery T, et al. Localization and expression
of the glutamate transporter, excitatory amino acid transporter 4, within
astrocytes of the rat retina[ J]. Cell Tissue Res, 2004, 315(3): 305-310. DOI: 10.1007/s00441-003-0849-3.Ward MM, Jobling AI, Puthussery T, et al. Localization and expression
of the glutamate transporter, excitatory amino acid transporter 4, within
astrocytes of the rat retina[ J]. Cell Tissue Res, 2004, 315(3): 305-310. DOI: 10.1007/s00441-003-0849-3.
42、Hanna MC, Calkins DJ. Expression of genes encoding glutamate
receptors and transporters in rod and cone bipolar cells of the primate
retina determined by single-cell polymerase chain reaction[ J]. MolVis,
2007, 13: 2194-2208.Hanna MC, Calkins DJ. Expression of genes encoding glutamate
receptors and transporters in rod and cone bipolar cells of the primate
retina determined by single-cell polymerase chain reaction[ J]. MolVis,
2007, 13: 2194-2208.
43、Pignataro L, Sitaramayya A, Finnemann SC, et al. Nonsynaptic
locali zat ion of the exc itator y amino ac id transpor ter 4 in
photoreceptors[ J]. MolCellNeurosci, 2005, 28(3): 440-451. DOI:
10.1016/j.mcn.2004.10.004.Pignataro L, Sitaramayya A, Finnemann SC, et al. Nonsynaptic
locali zat ion of the exc itator y amino ac id transpor ter 4 in
photoreceptors[ J]. MolCellNeurosci, 2005, 28(3): 440-451. DOI:
10.1016/j.mcn.2004.10.004.
44、Wersinger E, Schwab Y, Sahel JA, et al. The glutamate transporter
EAAT5 works as a presynaptic receptor in mouse rod bipolar
cells[ J]. JPhysiol, 2006, 577(Pt 1): 221-234. DOI: 10.1113/jphysiol.
2006.118281.Wersinger E, Schwab Y, Sahel JA, et al. The glutamate transporter
EAAT5 works as a presynaptic receptor in mouse rod bipolar
cells[ J]. JPhysiol, 2006, 577(Pt 1): 221-234. DOI: 10.1113/jphysiol.
2006.118281.
45、Thoreson WB, Chhunchha B. E A AT5 glutamate transporter
rapidly binds glutamate w ith micromolar aff inity in mouse
rods[ J]. JGenPhysiol, 2023, 155(9): e202313349. DOI: 10.1085/
jgp.202313349.Thoreson WB, Chhunchha B. E A AT5 glutamate transporter
rapidly binds glutamate w ith micromolar aff inity in mouse
rods[ J]. JGenPhysiol, 2023, 155(9): e202313349. DOI: 10.1085/
jgp.202313349.
46、Tang FS, Yuan HL, Liu JB, et al. Glutamate transporters EAAT2
and EAAT5 differentially shape synaptic transmission from rod
bipolar cell terminals[ J]. eNeuro, 2022, 9(3): ENEURO.0074-
ENEURO.0022.2022. DOI: 10.1523/ENEURO.0074-22.2022.Tang FS, Yuan HL, Liu JB, et al. Glutamate transporters EAAT2
and EAAT5 differentially shape synaptic transmission from rod
bipolar cell terminals[ J]. eNeuro, 2022, 9(3): ENEURO.0074-
ENEURO.0022.2022. DOI: 10.1523/ENEURO.0074-22.2022.
47、Lukasiewcz PD, Bligard GW, DeBrecht JD. EAAT5 glutamate
transporter-mediated inhibition in the vertebrate retina[ J].
FrontCellNeurosci, 2021, 15: 662859. DOI: 10.3389/fncel.2021.
662859.Lukasiewcz PD, Bligard GW, DeBrecht JD. EAAT5 glutamate
transporter-mediated inhibition in the vertebrate retina[ J].
FrontCellNeurosci, 2021, 15: 662859. DOI: 10.3389/fncel.2021.
662859.
48、Bligard GW, DeBrecht J, Smith RG, et al. Light-evoked glutamate
transporter EAAT5 activation coordinates with conventional feedback
inhibition to control rod bipolar cell output[ J]. JNeurophysiol, 2020,
123(5): 1828-1837. DOI: 10.1152/jn.00527.2019.Bligard GW, DeBrecht J, Smith RG, et al. Light-evoked glutamate
transporter EAAT5 activation coordinates with conventional feedback
inhibition to control rod bipolar cell output[ J]. JNeurophysiol, 2020,
123(5): 1828-1837. DOI: 10.1152/jn.00527.2019.
49、Jonas J, Aung T, Bourne R, et al. Glaucoma[ J]. Lancet, 2017, 390:
2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.Jonas J, Aung T, Bourne R, et al. Glaucoma[ J]. Lancet, 2017, 390:
2183-2193. DOI: 10.1016/S0140-6736(17)31469-1.
50、Jassim AH, Fan Y, Pappenhagen N, et al. Oxidative stress and
hypoxia modify mitochondrial homeostasis during glaucoma[ J].
AntioxidRedox Signal, 2021, 35(16): 1341-1357. DOI: 10.1089/
ars.2020.8180.Jassim AH, Fan Y, Pappenhagen N, et al. Oxidative stress and
hypoxia modify mitochondrial homeostasis during glaucoma[ J].
AntioxidRedox Signal, 2021, 35(16): 1341-1357. DOI: 10.1089/
ars.2020.8180.
51、Di%20Pierdomenico%20J%2C%20Gallego-Ortega%20A%20%2C%20Norte-Mu%C3%B1oz%20M%2C%20et%20al.%20%0AEvaluation%20of%20the%20neuroprotective%20efficacy%20of%20the%20gramine%20derivative%20%0AITH12657%20against%20NMDA-induced%20excitotox%20icity%20in%20the%20rat%20%0Aretina%5B%20J%5D.%20FrontNeuroanat%2C%202024%2C%2018%3A%201335176.%20DOI%3A%2010.3389%2F%0Afnana.2024.1335176.Di%20Pierdomenico%20J%2C%20Gallego-Ortega%20A%20%2C%20Norte-Mu%C3%B1oz%20M%2C%20et%20al.%20%0AEvaluation%20of%20the%20neuroprotective%20efficacy%20of%20the%20gramine%20derivative%20%0AITH12657%20against%20NMDA-induced%20excitotox%20icity%20in%20the%20rat%20%0Aretina%5B%20J%5D.%20FrontNeuroanat%2C%202024%2C%2018%3A%201335176.%20DOI%3A%2010.3389%2F%0Afnana.2024.1335176.
52、Zhou ZX, Xu LJ, Wang HN, et al. EphA4/ephrinA3 reverse signaling
mediated downregulation of glutamate transporter GLAST in Müller
cells in an experimental glaucoma model[ J]. Glia, 2023, 71(3): 720-
741. DOI: 10.1002/glia.24307.Zhou ZX, Xu LJ, Wang HN, et al. EphA4/ephrinA3 reverse signaling
mediated downregulation of glutamate transporter GLAST in Müller
cells in an experimental glaucoma model[ J]. Glia, 2023, 71(3): 720-
741. DOI: 10.1002/glia.24307.
53、Wang Y, Brahma MM, Takahashi K, et al. Drug treatment attenuates
retinal ganglion cell death by inhibiting collapsinresponse mediator protein 2 phosphorylation in mouse models of normal tension
glaucoma[ J]. NeuromolecularMed, 2024, 26(1): 13. DOI: 10.1007/
s12017-024-08778-1.Wang Y, Brahma MM, Takahashi K, et al. Drug treatment attenuates
retinal ganglion cell death by inhibiting collapsinresponse mediator protein 2 phosphorylation in mouse models of normal tension
glaucoma[ J]. NeuromolecularMed, 2024, 26(1): 13. DOI: 10.1007/
s12017-024-08778-1.
54、Sano H, Namekata K , Kimura A , et al. Differential effects of
N-acetylcysteine on retinal degeneration in two mouse models of
normal tension glaucoma[ J]. Cell Death Dis, 2019, 10(2): 75. DOI:
10.1038/s41419-019-1365-z.Sano H, Namekata K , Kimura A , et al. Differential effects of
N-acetylcysteine on retinal degeneration in two mouse models of
normal tension glaucoma[ J]. Cell Death Dis, 2019, 10(2): 75. DOI:
10.1038/s41419-019-1365-z.
55、Nakano N, Ikeda HO, Hasegawa T, et al. Neuroprotective effects of
VCP modulators in mouse models of glaucoma[ J]. Heliyon, 2016,
2(4): e00096. DOI: 10.1016/j.heliyon.2016.e00096.Nakano N, Ikeda HO, Hasegawa T, et al. Neuroprotective effects of
VCP modulators in mouse models of glaucoma[ J]. Heliyon, 2016,
2(4): e00096. DOI: 10.1016/j.heliyon.2016.e00096.
56、Kimura A, Guo X, Noro T, et al. Valproic acid prevents retinal
degeneration in a murine model of normal tension glaucoma[ J].
NeurosciLett, 2015, 588: 108-113. DOI: 10.1016/j.neulet.
2014.12.054.Kimura A, Guo X, Noro T, et al. Valproic acid prevents retinal
degeneration in a murine model of normal tension glaucoma[ J].
NeurosciLett, 2015, 588: 108-113. DOI: 10.1016/j.neulet.
2014.12.054.
57、Namekata K, Harada C, Kohyama K, et al. Interleukin-1 stimulates
glutamate uptake in glial cells by accelerating membrane trafficking of
Na+/K+-ATPase via actin depolymerization[ J]. MolCellBiol, 2008,
28(10): 3273-3280. DOI: 10.1128/MCB.02159-07.Namekata K, Harada C, Kohyama K, et al. Interleukin-1 stimulates
glutamate uptake in glial cells by accelerating membrane trafficking of
Na+/K+-ATPase via actin depolymerization[ J]. MolCellBiol, 2008,
28(10): 3273-3280. DOI: 10.1128/MCB.02159-07.
58、Okumichi H, Mizukami M, Kiuchi Y, et al. GABA A receptors are
associated with retinal ganglion cell death induced by oxidative
stress[ J]. ExpEye Res, 2008, 86(5): 727-733. DOI: 10.1016/
j.exer.2008.01.019.Okumichi H, Mizukami M, Kiuchi Y, et al. GABA A receptors are
associated with retinal ganglion cell death induced by oxidative
stress[ J]. ExpEye Res, 2008, 86(5): 727-733. DOI: 10.1016/
j.exer.2008.01.019.
59、Semba K, Namekata K, Guo X, et al. Renin-angiotensin system
regulates neurodegeneration in a mouse model of normal tension
glaucoma[ J]. Cell Death Dis, 2014, 5(7): e1333. DOI: 10.1038/
cddis.2014.296.Semba K, Namekata K, Guo X, et al. Renin-angiotensin system
regulates neurodegeneration in a mouse model of normal tension
glaucoma[ J]. Cell Death Dis, 2014, 5(7): e1333. DOI: 10.1038/
cddis.2014.296.
60、Semba K , Namekata K , Kimura A, et al. Brimonidine prevents
neurodegeneration in a mouse model of normal tension glaucoma[ J].
Cell Death Dis, 2014, 5(7): e1341. DOI: 10.1038/cddis.2014.306.Semba K , Namekata K , Kimura A, et al. Brimonidine prevents
neurodegeneration in a mouse model of normal tension glaucoma[ J].
Cell Death Dis, 2014, 5(7): e1341. DOI: 10.1038/cddis.2014.306.
61、Noro T, Namekata K , Azuchi Y, et al. Spermidine ameliorates
neurodegeneration in a mouse model of normal tension glaucoma[ J].
InvestOphthalmolVisSci, 2015, 56(8): 5012-5019. DOI: 10.1167/
iovs.15-17142.Noro T, Namekata K , Azuchi Y, et al. Spermidine ameliorates
neurodegeneration in a mouse model of normal tension glaucoma[ J].
InvestOphthalmolVisSci, 2015, 56(8): 5012-5019. DOI: 10.1167/
iovs.15-17142.
62、Akaiwa K, Namekata K, Azuchi Y, et al. Topical ripasudilsuppresses
retinal ganglion cell death in a mouse model of normal tension
glaucoma[ J]. InvestOphthalmolVisSci, 2018, 59(5): 2080-2089. DOI:
10.1167/iovs.17-23276.Akaiwa K, Namekata K, Azuchi Y, et al. Topical ripasudilsuppresses
retinal ganglion cell death in a mouse model of normal tension
glaucoma[ J]. InvestOphthalmolVisSci, 2018, 59(5): 2080-2089. DOI:
10.1167/iovs.17-23276.
63、Han L, Zhang M, Yang Z, et al. Huoxue-Tongluo-Lishui-Decoction
is visual-protective against retinal ischemia-reperfusion injury[ J].
BiomedecinePharmacother, 2020, 125: 109998. DOI: 10.1016/
j.biopha.2020.109998.Han L, Zhang M, Yang Z, et al. Huoxue-Tongluo-Lishui-Decoction
is visual-protective against retinal ischemia-reperfusion injury[ J].
BiomedecinePharmacother, 2020, 125: 109998. DOI: 10.1016/
j.biopha.2020.109998.
64、Harada T, Harada C, Watanabe M, et al. Functions of the two glutamate
transporters GLAST and GLT-1 in the retina[ J]. ProcNatlAcadSciUSA,
1998, 95(8): 4663-4666. DOI: 10.1073/pnas.95.8.4663.Harada T, Harada C, Watanabe M, et al. Functions of the two glutamate
transporters GLAST and GLT-1 in the retina[ J]. ProcNatlAcadSciUSA,
1998, 95(8): 4663-4666. DOI: 10.1073/pnas.95.8.4663.