1、马小倩, 刘昭升, 吴护平. 178例真菌性角膜炎的回顾性分析[J]. 中国眼耳鼻喉科杂志, 2023, 23(1): 73-76. DOI: 10.14166/j.issn.1671-2420.2023.01.015.
Ma XQ, Liu ZS, Wu HP. Retrospective analysis of 178 cases of fungal keratitis[J]. Chin J Ophthalmol Otorhinolaryngol, 2023, 23(1): 73-76. DOI: 10.14166/j.issn.1671-2420.2023.01.015. Ma XQ, Liu ZS, Wu HP. Retrospective analysis of 178 cases of fungal keratitis[J]. Chin J Ophthalmol Otorhinolaryngol, 2023, 23(1): 73-76. DOI: 10.14166/j.issn.1671-2420.2023.01.015.
2、Cheikhrouhou F, Makni F, Neji S, et al. Epidemiological profile of fungal keratitis in Sfax (Tunisia)[J]. J Mycol Med, 2014, 24(4): 308-312. DOI: 10.1016/j.mycmed.2014.06.047.Cheikhrouhou F, Makni F, Neji S, et al. Epidemiological profile of fungal keratitis in Sfax (Tunisia)[J]. J Mycol Med, 2014, 24(4): 308-312. DOI: 10.1016/j.mycmed.2014.06.047.
3、钟文贤,谢立信,史伟云,等.真菌性角膜炎654例感染谱分析[J]. 中华医学杂志, 2006, 86(24): 1681-1685. DOI: 10.3760/j: issn: 0376-2491.2006.24.007.
Zhong WX, Xie LX, Shi WY, et al. Spectrum of infection of fungal keratitis: analysis of 654 cases[J]. Natl Med J China, 2006, 86(24): 1681-1685. DOI: 10.3760/j: issn: 0376-2491.2006.24.007. Zhong WX, Xie LX, Shi WY, et al. Spectrum of infection of fungal keratitis: analysis of 654 cases[J]. Natl Med J China, 2006, 86(24): 1681-1685. DOI: 10.3760/j: issn: 0376-2491.2006.24.007.
4、王智群, 邓世靖, 张阳, 等. 念珠菌性角膜炎的临床特征及病原学分析[J]. 眼科, 2023, 32(5): 416-420. DOI: 10.13281/j.cnki.issn.1004-4469.2023.05.010.
Wang ZQ, Deng SJ, Zhang Y, et al. Clinical features and etiological analysis of candida keratitis[J]. Ophthalmol China, 2023, 32(5): 416-420. DOI: 10.13281/j.cnki.issn.1004-4469.2023.05.010.Wang ZQ, Deng SJ, Zhang Y, et al. Clinical features and etiological analysis of candida keratitis[J]. Ophthalmol China, 2023, 32(5): 416-420. DOI: 10.13281/j.cnki.issn.1004-4469.2023.05.010.
5、张洁, 王英, 顾军, 等. 白念珠菌生物膜耐药性的研究进展[J]. 药学服务与研究, 2008, 8(2): 98-101. DOI: 10.3969/j.issn.1671-2838.2008.02.016.
Zhang J, Wang Y, Gu J, et al. Study on drug-resistance of candida albicans biofilm[J]. Pharm Care Res, 2008, 8(2): 98-101. DOI: 10.3969/j.issn.1671-2838.2008.02.016.Zhang J, Wang Y, Gu J, et al. Study on drug-resistance of candida albicans biofilm[J]. Pharm Care Res, 2008, 8(2): 98-101. DOI: 10.3969/j.issn.1671-2838.2008.02.016.
6、Ranjith K, Kalyana Chakravarthy S, Adicherla H, et al. Temporal expression of genes in biofilm-forming ocular candida albicans isolated from patients with keratitis and orbital cellulitis[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 528-538. DOI: 10.1167/iovs.17-22933. Ranjith K, Kalyana Chakravarthy S, Adicherla H, et al. Temporal expression of genes in biofilm-forming ocular candida albicans isolated from patients with keratitis and orbital cellulitis[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 528-538. DOI: 10.1167/iovs.17-22933.
7、Elder MJ, Matheson M, Stapleton F, et al. Biofilm formation in infectious crystalline keratopathy due to Candida albicans[J]. Cornea, 1996, 15(3): 301-304. DOI: 10.1097/00003226-199605000-00012. Elder MJ, Matheson M, Stapleton F, et al. Biofilm formation in infectious crystalline keratopathy due to Candida albicans[J]. Cornea, 1996, 15(3): 301-304. DOI: 10.1097/00003226-199605000-00012.
8、孙秋宁, 方凯. 念珠菌生物膜的结构、影响因素及其对抗真菌药的敏感性[J]. 中国医学科学院学报, 2002, 24(4): 385-388.
Sun QN, Fang K. Architecture, influencing factors, and sensitivity to antifungal agents of candida biofilm[J]. Acta Acad Med Sin, 2002, 24(4): 385-388. Sun QN, Fang K. Architecture, influencing factors, and sensitivity to antifungal agents of candida biofilm[J]. Acta Acad Med Sin, 2002, 24(4): 385-388.
9、RAI M, CAROLINA A D S. Nanotechnology Applied To Pharmaceutical Technology :Nanotechnological Interventions for Drug Delivery in Eye Diseases [M]. New York:Springer International Publishing 2017.RAI M, CAROLINA A D S. Nanotechnology Applied To Pharmaceutical Technology :Nanotechnological Interventions for Drug Delivery in Eye Diseases [M]. New York:Springer International Publishing 2017.
10、Shen HH, Chan EC, Lee JH, et al. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery[J]. Nanomedicine (Lond), 2015, 10(13): 2093-2107. DOI: 10.2217/nnm.15.47.Shen HH, Chan EC, Lee JH, et al. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery[J]. Nanomedicine (Lond), 2015, 10(13): 2093-2107. DOI: 10.2217/nnm.15.47.
11、张雨欣, 王基伟. 响应性聚合物纳米材料作为药物载体的研究进展[J]. 高分子通报, 2021(4): 1-6. DOI: 10.14028/j.cnki.1003-3726.2021.04.001.
Zhang YX, Wang JW. Progress of stimuli-responsive polymer nanomaterials in drug carrier[J]. Polym Bull, 2021(4): 1-6. DOI: 10.14028/j.cnki.1003-3726.2021.04.001. Zhang YX, Wang JW. Progress of stimuli-responsive polymer nanomaterials in drug carrier[J]. Polym Bull, 2021(4): 1-6. DOI: 10.14028/j.cnki.1003-3726.2021.04.001.
12、Goldblum D, Frueh BE, Sarra GM, et al. Topical caspofungin for treatment of keratitis caused by Candida albicans in a rabbit model[J]. Antimicrob Agents Chemother, 2005, 49(4): 1359-1363. DOI: 10.1128/AAC.49.4.1359-1363.2005. Goldblum D, Frueh BE, Sarra GM, et al. Topical caspofungin for treatment of keratitis caused by Candida albicans in a rabbit model[J]. Antimicrob Agents Chemother, 2005, 49(4): 1359-1363. DOI: 10.1128/AAC.49.4.1359-1363.2005.
13、Hurtado-Sarrió M. Successful topical application of caspofungin in the treatment of fungal keratitis refractory to voriconazole[J]. Arch Ophthalmol, 2010, 128(7): 941. DOI: 10.1001/archophthalmol.2010.110. Hurtado-Sarrió M. Successful topical application of caspofungin in the treatment of fungal keratitis refractory to voriconazole[J]. Arch Ophthalmol, 2010, 128(7): 941. DOI: 10.1001/archophthalmol.2010.110.
14、Pérez-González N, Rodríguez-Lagunas MJ, Calpena-Campmany AC, et al. Caspofungin-loaded formulations for treating ocular infections caused by candida spp[J]. Gels, 2023, 9(4): 348. DOI: 10.3390/gels9040348.Pérez-González N, Rodríguez-Lagunas MJ, Calpena-Campmany AC, et al. Caspofungin-loaded formulations for treating ocular infections caused by candida spp[J]. Gels, 2023, 9(4): 348. DOI: 10.3390/gels9040348.
15、Dart JG, Radford CF, Minassian D, et al. Risk factors for microbial keratitis with contemporary contact lenses: a case-control study[J]. Ophthalmology, 2008, 115(10): 1647-1654, 1654.e1-1654.e3. DOI: 10.1016/j.ophtha.2008.05.003. Dart JG, Radford CF, Minassian D, et al. Risk factors for microbial keratitis with contemporary contact lenses: a case-control study[J]. Ophthalmology, 2008, 115(10): 1647-1654, 1654.e1-1654.e3. DOI: 10.1016/j.ophtha.2008.05.003.
16、Ratnayake D, Ansah M, Al Ani E, et al. The activity of PHMB and other guanidino containing compounds against Acanthamoeba and other ocular pathogens[J]. Microorganisms, 2022, 10(7): 1375. DOI: 10.3390/microorganisms10071375. Ratnayake D, Ansah M, Al Ani E, et al. The activity of PHMB and other guanidino containing compounds against Acanthamoeba and other ocular pathogens[J]. Microorganisms, 2022, 10(7): 1375. DOI: 10.3390/microorganisms10071375.
17、Mohanraj VJ, Chen Y. Nanoparticles - A review[J]. Trop. J. Pharm. Res,2006,5:561–573DOI: 10.4314/tjpr.v5i1.14634.Mohanraj VJ, Chen Y. Nanoparticles - A review[J]. Trop. J. Pharm. Res,2006,5:561–573DOI: 10.4314/tjpr.v5i1.14634.
18、Shi%20H%2C%20Ding%20J%2C%20Chen%20C%2C%20et%20al.%20Antimicrobial%20Action%20of%20Biocompatible%20Silver%20Microspheres%20and%20Their%20Role%20in%20the%20Potential%20Treatment%20of%20Fungal%20Keratitis%5BJ%5D.%C2%A0ACS%20Biomater%20Sci%20Eng.%202021%3B7(11)%3A5090-5098.%20DOI%3A10.1021%2Facsbiomaterials.1c00815.Shi%20H%2C%20Ding%20J%2C%20Chen%20C%2C%20et%20al.%20Antimicrobial%20Action%20of%20Biocompatible%20Silver%20Microspheres%20and%20Their%20Role%20in%20the%20Potential%20Treatment%20of%20Fungal%20Keratitis%5BJ%5D.%C2%A0ACS%20Biomater%20Sci%20Eng.%202021%3B7(11)%3A5090-5098.%20DOI%3A10.1021%2Facsbiomaterials.1c00815.
19、Khan%20SA%2C%20Shahid%20S%2C%20Mahmood%20T%2C%20Lee%20CS.%20Contact%20lenses%20coated%20with%20hybrid%20multifunctional%20ternary%20nanocoatings%20(Phytomolecule-coated%20ZnO%20nanoparticles%3AGallic%20Acid%3ATobramycin)%20for%20the%20treatment%20of%20bacterial%20and%20fungal%20keratitis%5BJ%5D.%C2%A0Acta%20Biomater.%202021%3B128%3A262-276.%20DOI%3A10.1016%2Fj.actbio.2021.04.014.Khan%20SA%2C%20Shahid%20S%2C%20Mahmood%20T%2C%20Lee%20CS.%20Contact%20lenses%20coated%20with%20hybrid%20multifunctional%20ternary%20nanocoatings%20(Phytomolecule-coated%20ZnO%20nanoparticles%3AGallic%20Acid%3ATobramycin)%20for%20the%20treatment%20of%20bacterial%20and%20fungal%20keratitis%5BJ%5D.%C2%A0Acta%20Biomater.%202021%3B128%3A262-276.%20DOI%3A10.1016%2Fj.actbio.2021.04.014.
20、Arboleda%20A%2C%20Durkee%20H%2C%20Miller%20D%2C%20et%20al.%20Variations%20in%20irradiation%20energy%20and%20rose%20bengal%20concentration%20for%20photodynamic%20antimicrobial%20therapy%20of%20fungal%20keratitis%20isolates%5BJ%5D.%C2%A0Lasers%20Med%20Sci.%202024%3B39(1)%3A72.%20Published%202024%20Feb%2021.%20DOI%3A10.1007%2Fs10103-024-04014-1.Arboleda%20A%2C%20Durkee%20H%2C%20Miller%20D%2C%20et%20al.%20Variations%20in%20irradiation%20energy%20and%20rose%20bengal%20concentration%20for%20photodynamic%20antimicrobial%20therapy%20of%20fungal%20keratitis%20isolates%5BJ%5D.%C2%A0Lasers%20Med%20Sci.%202024%3B39(1)%3A72.%20Published%202024%20Feb%2021.%20DOI%3A10.1007%2Fs10103-024-04014-1.
21、Ghoniem%20DF%2C%20Abdelkawi%20SA%2C%20Fadel%20M%2C%20et%20al.%20Novel%20Photodynamic%2FPhotothermal%20Treatment%20of%20Fungal%20Keratitis%20Using%20Rose%20Bengal-Loaded%20Polypyrrole-Gold%20Nanoparticles%20in%20Wistar%20Albino%20Rats.%C2%A0J%20Ocul%20Pharmacol%20Ther%5BJ%5D.%202023%3B39(6)%3A379-388.%20DOI%3A10.1089%2Fjop.2023.0004.Ghoniem%20DF%2C%20Abdelkawi%20SA%2C%20Fadel%20M%2C%20et%20al.%20Novel%20Photodynamic%2FPhotothermal%20Treatment%20of%20Fungal%20Keratitis%20Using%20Rose%20Bengal-Loaded%20Polypyrrole-Gold%20Nanoparticles%20in%20Wistar%20Albino%20Rats.%C2%A0J%20Ocul%20Pharmacol%20Ther%5BJ%5D.%202023%3B39(6)%3A379-388.%20DOI%3A10.1089%2Fjop.2023.0004.
22、Alakkad A, Stapleton P, Schlosser C, et al. Amphotericin B polymer nanoparticles show efficacy against candida species biofilms[J]. Pathogens, 2022, 11(1): 73. DOI: 10.3390/pathogens11010073.Alakkad A, Stapleton P, Schlosser C, et al. Amphotericin B polymer nanoparticles show efficacy against candida species biofilms[J]. Pathogens, 2022, 11(1): 73. DOI: 10.3390/pathogens11010073.
23、Ahmed S, Amin MM, El-Korany SM, et al. Pronounced capping effect of olaminosomes as nanostructured platforms in ocular candidiasis management[J]. Drug Deliv, 2022, 29(1): 2945-2958. DOI: 10.1080/10717544.2022.2120926.Ahmed S, Amin MM, El-Korany SM, et al. Pronounced capping effect of olaminosomes as nanostructured platforms in ocular candidiasis management[J]. Drug Deliv, 2022, 29(1): 2945-2958. DOI: 10.1080/10717544.2022.2120926.
24、Wu Y, Tao Q, Xie J, et al. Advances in nanogels for topical drug delivery in ocular diseases[J]. Gels, 2023, 9(4): 292. DOI: 10.3390/gels9040292. Wu Y, Tao Q, Xie J, et al. Advances in nanogels for topical drug delivery in ocular diseases[J]. Gels, 2023, 9(4): 292. DOI: 10.3390/gels9040292.
25、Elmotasem%20H%2C%20Awad%20GEA.%20A%20stepwise%20optimization%20strategy%20to%20formulate%C2%A0in%20situ%C2%A0gelling%20formulations%20comprising%20fluconazole-hydroxypropyl-beta-cyclodextrin%20complex%20loaded%20niosomal%20vesicles%20and%20Eudragit%20nanoparticles%20for%20enhanced%20antifungal%20activity%20and%20prolonged%20ocular%20delivery%5BJ%5D.%C2%A0Asian%20J%20Pharm%20Sci.%202020%3B15(5)%3A617-636.%20DOI%3A10.1016%2Fj.ajps.2019.09.003.Elmotasem%20H%2C%20Awad%20GEA.%20A%20stepwise%20optimization%20strategy%20to%20formulate%C2%A0in%20situ%C2%A0gelling%20formulations%20comprising%20fluconazole-hydroxypropyl-beta-cyclodextrin%20complex%20loaded%20niosomal%20vesicles%20and%20Eudragit%20nanoparticles%20for%20enhanced%20antifungal%20activity%20and%20prolonged%20ocular%20delivery%5BJ%5D.%C2%A0Asian%20J%20Pharm%20Sci.%202020%3B15(5)%3A617-636.%20DOI%3A10.1016%2Fj.ajps.2019.09.003.
26、Almehmady%20AM%2C%20El-Say%20KM%2C%20Mubarak%20MA%2C%20et%20al.%20Enhancing%20the%20Antifungal%20Activity%20and%20Ophthalmic%20Transport%20of%20Fluconazole%20from%20PEGylated%20Polycaprolactone%20Loaded%20Nanoparticles%5BJ%5D.%C2%A0Polymers%20(Basel).%202022%3B15(1)%3A209.%20Published%202022%20Dec%2031.%20DOI%3A10.3390%2Fpolym15010209Almehmady%20AM%2C%20El-Say%20KM%2C%20Mubarak%20MA%2C%20et%20al.%20Enhancing%20the%20Antifungal%20Activity%20and%20Ophthalmic%20Transport%20of%20Fluconazole%20from%20PEGylated%20Polycaprolactone%20Loaded%20Nanoparticles%5BJ%5D.%C2%A0Polymers%20(Basel).%202022%3B15(1)%3A209.%20Published%202022%20Dec%2031.%20DOI%3A10.3390%2Fpolym15010209
27、Rakhmetova%20A%2C%20Yi%20Z%2C%20Sarmout%20M%2C%20Koole%20LH.%20Sustained%20Release%20of%20Voriconazole%20Using%203D-Crosslinked%20Hydrogel%20Rings%20and%20Rods%20for%20Use%20in%20Corneal%20Drug%20Delivery%5BJ%5D.%C2%A0Gels.%202023%3B9(12)%3A933.%20Published%202023%20Nov%2028.%20DOI%3A10.3390%2Fgels9120933.Rakhmetova%20A%2C%20Yi%20Z%2C%20Sarmout%20M%2C%20Koole%20LH.%20Sustained%20Release%20of%20Voriconazole%20Using%203D-Crosslinked%20Hydrogel%20Rings%20and%20Rods%20for%20Use%20in%20Corneal%20Drug%20Delivery%5BJ%5D.%C2%A0Gels.%202023%3B9(12)%3A933.%20Published%202023%20Nov%2028.%20DOI%3A10.3390%2Fgels9120933.
28、Permana%20AD%2C%20Utami%20RN%2C%20Layadi%20P%2C%20et%20al.%20Thermosensitive%20and%20mucoadhesive%20in%20situ%20ocular%20gel%20for%20effective%20local%20delivery%20and%20antifungal%20activity%20of%20itraconazole%20nanocrystal%20in%20the%20treatment%20of%20fungal%20keratitis%5BJ%5D.%C2%A0Int%20J%20Pharm.%202021%3B602%3A120623.DOI%3A10.1016%2Fj.ijpharm.2021.120623Permana%20AD%2C%20Utami%20RN%2C%20Layadi%20P%2C%20et%20al.%20Thermosensitive%20and%20mucoadhesive%20in%20situ%20ocular%20gel%20for%20effective%20local%20delivery%20and%20antifungal%20activity%20of%20itraconazole%20nanocrystal%20in%20the%20treatment%20of%20fungal%20keratitis%5BJ%5D.%C2%A0Int%20J%20Pharm.%202021%3B602%3A120623.DOI%3A10.1016%2Fj.ijpharm.2021.120623
29、Kumar V, Kumari P, Lomi N, et al. Evaluation of liposomal amphotericin B for the treatment of fungal keratitis in a tertiary eye care hospital[J]. Indian J Ophthalmol, 2023, 71(2): 518-523. DOI: 10.4103/ijo.IJO_1474_22. Kumar V, Kumari P, Lomi N, et al. Evaluation of liposomal amphotericin B for the treatment of fungal keratitis in a tertiary eye care hospital[J]. Indian J Ophthalmol, 2023, 71(2): 518-523. DOI: 10.4103/ijo.IJO_1474_22.
30、Liang Z, Zhang Z, Yang J, et al. Assessment to the antifungal effects in vitro and the ocular pharmacokinetics of solid-lipid nanoparticle in rabbits[J]. Int J Nanomed, 2021, 16: 7847-7857. DOI: 10.2147/ijn.s340068. Liang Z, Zhang Z, Yang J, et al. Assessment to the antifungal effects in vitro and the ocular pharmacokinetics of solid-lipid nanoparticle in rabbits[J]. Int J Nanomed, 2021, 16: 7847-7857. DOI: 10.2147/ijn.s340068.
31、Bessone CDV, Akhlaghi SP, Tártara LI, et al. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma[J]. Eur J Pharm Sci, 2021, 160: 105748. DOI: 10.1016/j.ejps.2021.105748. Bessone CDV, Akhlaghi SP, Tártara LI, et al. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma[J]. Eur J Pharm Sci, 2021, 160: 105748. DOI: 10.1016/j.ejps.2021.105748.
32、Hosny KM, Rizg WY, Alkhalidi HM, et al. Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: development, optimization, in-vitro, and in-vivo assessment[J]. Drug Deliv, 2021, 28(1): 1836-1848. DOI: 10.1080/10717544.2021.1965675. Hosny KM, Rizg WY, Alkhalidi HM, et al. Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: development, optimization, in-vitro, and in-vivo assessment[J]. Drug Deliv, 2021, 28(1): 1836-1848. DOI: 10.1080/10717544.2021.1965675.
33、Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system[J]. Biomed Pharmacother, 2019, 109: 1249-1258. DOI: 10.1016/j.biopha.2018.10.078. Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system[J]. Biomed Pharmacother, 2019, 109: 1249-1258. DOI: 10.1016/j.biopha.2018.10.078.
34、Mahfud%20MAS%2C%20Syahirah%20NA%2C%20et%20al.%20Solid%20Dispersion%20Incorporated%20into%20Dissolving%20Microneedles%20for%20Improved%20Antifungal%20Activity%20of%20Amphotericin%20B%3A%C2%A0In%20Vivo%C2%A0Study%20in%20a%20Fungal%20Keratitis%20Model%5BJ%5D.Mol%20Pharm%202023%3B20(12)%3A6246-6261.%20DOI%3A10.1021%2Facs.molpharmaceut.3c00647.Mahfud%20MAS%2C%20Syahirah%20NA%2C%20et%20al.%20Solid%20Dispersion%20Incorporated%20into%20Dissolving%20Microneedles%20for%20Improved%20Antifungal%20Activity%20of%20Amphotericin%20B%3A%C2%A0In%20Vivo%C2%A0Study%20in%20a%20Fungal%20Keratitis%20Model%5BJ%5D.Mol%20Pharm%202023%3B20(12)%3A6246-6261.%20DOI%3A10.1021%2Facs.molpharmaceut.3c00647.
35、Li%20Y%2C%20Gong%20JY%2C%20et%20al.%20Dissolving%20microneedle%20system%20containing%20Ag%20nanoparticle-decorated%20silk%20fibroin%20microspheres%20and%20antibiotics%20for%20synergistic%20therapy%20of%20bacterial%20biofilm%20infection%5BJ%5D.%C2%A0J%20Colloid%20Interface%20Sci.%202024%3B661%3A123-138.%20DOI%3A10.1016%2Fj.jcis.2024.01.147.Li%20Y%2C%20Gong%20JY%2C%20et%20al.%20Dissolving%20microneedle%20system%20containing%20Ag%20nanoparticle-decorated%20silk%20fibroin%20microspheres%20and%20antibiotics%20for%20synergistic%20therapy%20of%20bacterial%20biofilm%20infection%5BJ%5D.%C2%A0J%20Colloid%20Interface%20Sci.%202024%3B661%3A123-138.%20DOI%3A10.1016%2Fj.jcis.2024.01.147.
36、Durgun%20ME%2C%20Kahraman%20E%2C%20Hac%C4%B1o%C4%9Flu%20M%2C%20et%20al.%20Posaconazole%20micelles%20for%20ocular%20delivery%3A%20in%20vitro%20permeation%2C%20ocular%20irritation%20and%20antifungal%20activity%20studies%5BJ%5D.%20Drug%20Deliv%20Transl%20Res%2C%202022%2C%2012(3)%3A%20662-675.%20DOI%3A%2010.1007%2Fs13346-021-00974-x.Durgun%20ME%2C%20Kahraman%20E%2C%20Hac%C4%B1o%C4%9Flu%20M%2C%20et%20al.%20Posaconazole%20micelles%20for%20ocular%20delivery%3A%20in%20vitro%20permeation%2C%20ocular%20irritation%20and%20antifungal%20activity%20studies%5BJ%5D.%20Drug%20Deliv%20Transl%20Res%2C%202022%2C%2012(3)%3A%20662-675.%20DOI%3A%2010.1007%2Fs13346-021-00974-x.
37、徐陈芳. 聚倍半硅氧烷杂化纳米胶束负载两性霉素B用于真菌性角膜炎的治疗[D]. 厦门: 厦门大学, 2021. DOI: 10.27424/d.cnki.gxmdu.2021.003422.
Xu CF. Amphotericin B loaded on polysilsesquioxane hybrid nanomicelles for the treatment of fungal keratitis[D]. Xiamen: Xiamen University, 2021. DOI: 10.27424/d.cnki.gxmdu.2021.003422. Xu CF. Amphotericin B loaded on polysilsesquioxane hybrid nanomicelles for the treatment of fungal keratitis[D]. Xiamen: Xiamen University, 2021. DOI: 10.27424/d.cnki.gxmdu.2021.003422.
38、Sun%20X%2C%20Sheng%20Y%2C%20Li%20K%2C%20et%20al.%20Mucoadhesive%20phenylboronic%20acid%20conjugated%20chitosan%20oligosaccharide-vitamin%20E%20copolymer%20for%20topical%20ocular%20delivery%20of%20voriconazole%3A%20Synthesis%2C%20in%20vitro%2Fvivo%20evaluation%2C%20and%20mechanism%5BJ%5D.%C2%A0Acta%20Biomater.%202022%3B138%3A193-207.%20DOI%3A10.1016%2Fj.actbio.2021.10.047.Sun%20X%2C%20Sheng%20Y%2C%20Li%20K%2C%20et%20al.%20Mucoadhesive%20phenylboronic%20acid%20conjugated%20chitosan%20oligosaccharide-vitamin%20E%20copolymer%20for%20topical%20ocular%20delivery%20of%20voriconazole%3A%20Synthesis%2C%20in%20vitro%2Fvivo%20evaluation%2C%20and%20mechanism%5BJ%5D.%C2%A0Acta%20Biomater.%202022%3B138%3A193-207.%20DOI%3A10.1016%2Fj.actbio.2021.10.047.