您的位置: 首页 > 2025年4月 第40卷 第4期 > 文字全文
2023年7月 第38卷 第7期11
目录

新型纳米材料介导治疗念珠菌角膜炎研究进展

Research progress on novel nanomaterials mediated treatment of candidal keratitis

来源期刊: 眼科学报 | 2025年4月 第40卷 第4期 348-354 发布时间: 收稿时间:2025/4/21 10:06:21 阅读量:164
作者:
关键词:
念珠菌角膜炎纳米材料给药载体抗真菌药物
candida keratitis nanometer material drug delivery carrier antifungal drugs
DOI:
10.12419/24110605
收稿时间:
2024-11-06 
修订日期:
2025-01-10 
接收日期:
2025-02-09 

真菌性角膜炎是我国常见的致盲性眼病,其中排前3位的致病病原菌分别为曲霉菌、镰刀菌以及念珠菌。念珠菌作为一种条件致病真菌,在宿主免疫功能低下或眼表微环境失衡时易引发机会性感染,其发病率因免疫抑制药物的滥用以及隐形眼镜佩戴的增加等因素逐年上升。在机会感染后,由于念珠菌本身以及生物膜形成的特殊作用,常导致其对现用系统性抗真菌药物,如伏立康唑、两性霉素B、伊曲康唑及氟康唑等耐药性增加。近年来,关于纳米材料介导的药物传递系统作用于治疗念珠菌角膜炎的研究日益增多,新型纳米材料通过作为抗真菌药物的载体,增加药物溶解度,延长眼表停留时间,加强生物膜、角膜穿透性,提高了抗真菌药物对念珠菌的抗菌作用,为解决念珠菌感染耐药性难题提供了新思路。文章综述了纳米聚合物、纳米颗粒、纳米凝胶、脂质体载体、纳米立方体、纳米微针和纳米胶束等新型纳米材料作为治疗念珠菌角膜炎的新型给药载体的研究现状与进展,突破传统疗法的局限,为改善目前临床存在抗真菌治疗药物有限的问题提供新的可行思路。

Fungal keratitis is a prevalent blinding ocular disease in China, with Aspergillus, Fusarium, and Candida ranking as the top three pathogenic fungi. As an opportunistic pathogenic fungus, Candida readily causes opportunistic infections when host immunity is compromised or the ocular surface microenvironment is imbalanced. The incidence of Candida keratitis has been rising annually due to factors such as the misuse of immunosuppressive drugs and increased contact lens wear. Following infection, Candida itself and the formation of biofilms contribute to enhanced resistance against currently used systemic antifungal agents, including voriconazole, amphotericin B, itraconazole, and fluconazole, posing significant challenges to clinical treatment.Recently, research on nanomaterials-mediated drug delivery systems for treating Candida keratitis has burgeoned. Novel nanomaterials, serving as carriers for antifungal drugs, enhance therapeutic efficacy by improving drug solubility, prolonging ocular surface retention time, penetrating biofilms, and enhancing corneal permeability. These advancements offer new strategies to address drug resistance in Candida infections. This article reviews the research status and progress of emerging nanomaterialssuch as nanopolymers, nanoparticles, nanogels, liposomal carriers, nanocubes, nanoneedles, and nanomicellesas innovative drug delivery vectors for Candida keratitis. By overcoming the limitations of conventional therapies, these nanomaterials provide feasible solutions to the clinical challenges of limited antifungal options and drug resistance. The integration of nanotechnology holds promise for revolutionizing the treatment of Candida keratitis and advancing precision medicine for ocular surface fungal infections.

文章亮点

1.关键发现

·新型纳米材料可通过改善药物溶解度、延长眼表停留时间、增加生物膜、角膜穿透性等机制提升抗念珠菌药物的治疗效果。

2.已知与发现

·传统抗真菌药物疗效受限于耐药性、药物渗透性、生物膜屏障等多种因素。

·新型纳米材料可通过多种途径提升药物递送效率和治疗效果。

3.意义与改变

·创新药物递送模式,提升药物疗效,降低耐药风险与全身毒性,为临床念珠菌角膜炎的治疗提供了新的思路。


真菌性角膜炎是我国常见的致盲性眼病,疾病高发于秋冬季及夏季农忙季节,大多有明确的角膜外伤史,如植物性外伤史;其中排前3位的致病病原菌分别为曲霉菌、镰刀菌以及念珠菌[1-2]。近年来,随着糖皮质激素和免疫抑制剂的滥用、隐形眼镜以及角膜接触镜佩戴的增加,由念珠菌感染引起的角膜炎发病率正逐渐上升[3-4]

念珠菌作为一种机会致病菌,在免疫缺陷个体中,容易产生机会性感染。念珠菌角膜炎起病较为隐匿,感染后其胞外会分泌多糖-蛋白-脂质基质,并包被芽孢和丝状菌丝,组成念珠菌生物膜,并具有复杂的结构[5]。念珠菌感染的角膜炎患者常可伴有生物膜的形成:Ranjith等[6]从念珠菌角膜炎患者分离出的白念珠菌分离株,通过体外培养发现其表现出形成生物膜的潜力,并具有耐药性。Elder[7]认为,感染真菌性角膜炎的患者眼部形成的生物膜由白念珠菌引起。

目前临床上针对念珠菌感染的敏感药物有伏立康唑、两性霉素B等,但由于念珠菌生物膜中细胞的高密度;生物膜基质中营养物质的缺乏使细胞生长受限;生物膜基质本身的物理屏障;生物膜中对药物治疗具有高度耐药性的持久性细胞的存在;以及抗真菌耐药性基因的表达等因素导致了念珠菌对常规系统性抗真菌药物,如伏立康唑,两性霉素B、伊曲康唑及氟康唑等耐药[5, 8]。为面对眼部念珠菌菌感染以及应对其生物膜形成的治疗这一严峻挑战,新型治疗策略成为研究热点。

1 纳米材料


目前,临床上常用多烯类,唑类棘球白素类、嘧啶类、免疫抑制剂类以及有抗真菌活性的抗生素等药物作为念珠菌角膜炎的治疗药物[1],但是由于念珠菌感染的隐匿性,复杂性及其生物膜的形成,包括药物毒性、溶解度低等因素的存在,临床上常存在药物的药物利用度低,停留时间短以及作用效果不佳等问题。因此常需要频繁给药或高剂量用药[9]

近年来,关于纳米材料介导的药物传递系统的研究越加热门,其中包括对纳米颗粒、纳米聚合物、纳米凝胶、脂质体、纳米立方体等的研究。纳米材料作为新型的给药系统,凭借其小分子的优势来传递药物,可通过改善药物的渗透性,进而延长药物驻留时间、药物释放曲线,减少注射频率,并且有效地给药到靶部位[10]。纳米材料成为克服临床用药限制和提高眼部药物生物利用度的前沿方法,现今已设计出多种纳米材料,有望将其构建成临床眼部给药新载体。

1.1 纳米聚合物


纳米聚合物在纳米材料给药系统中具有独特的优势,因为聚合物的核心可以包被药物,将其增溶,并降低不良反应;其外壳的亲水作用,有利于药物的穿透[11]。由此,一系列纳米聚合物配方被研制出来作为药物传递载体。卡泊芬净CSP, caspofungin)对多种真菌感染治疗有效,临床上CSP常通过静脉给药,用于食管念珠菌病、念珠菌血症,念珠菌所致腹腔内脓肿、腹膜炎、胸膜腔感染等治疗。但有报道称CSP滴眼液对家兔角膜炎有效[12],并对部分患者有效[13]。然而CSP作为一种治疗真菌性角膜炎的药物,局部使用时的渗透能力差。Pérez-González等[14]发现,泊洛沙姆 407 (P407)是一种亲水性非离子表面活性剂聚合物,CSP与P407聚合物基体结合后可具有特殊的溶解性。研究者通过实验得出了含0.5% CSP的P407配方,并证实其对白念珠菌、光滑念珠菌等真菌的生长均有抑制作用。这些配方为未来临床治疗念珠菌角膜炎提供了新思路。

频繁佩戴隐形眼镜或角膜接触镜的患者具有较大患角膜炎风险[15] 目前常使用的聚己基双胍(PHMB, polyhexamethylbiguanide)是一种双胍聚合物,用作隐形眼镜清洗液中作为抑菌成分。聚六亚甲基胍(PHMG, Polyhexamethylene guanidine),是一种类似于PHMB的高分子聚合物,每个单体由一个端接胍基的六碳六甲基链组成。Dharanga等证实[16],与PHMB相比,PHMG对白念珠菌的抗菌能力更强,其最低抑菌浓度(MIC, minimum inhibitory concentration)/最低杀菌浓度(MBC, minimum bactericidal concentration),为0.5 µg/mL。通过时间杀菌实验可知,在0.05 µg/mL浓度下,PHMB对白念珠菌的抗真菌活性显著高于对照组;在6 h内,PHMG的抗真菌活性显著优于PHMB。这些观察结果表明,PHMG可代替PHMB作为隐形眼镜护理液的更有效抗菌成分,但是需要进一步的实验来评估PHMG作为隐形眼镜溶液消毒剂的安全性,以及是否有用于治疗白念珠菌性角膜炎的可能。

1.2 纳米颗粒


纳米颗粒系统相较于传统给药系统具有更高的相对表面积,可以显著增加与细胞的接触,增强药物吸收,增强药物溶解度和稳定性,改善其生物相容性和生物利用度[17]

1.2.1 金属纳米颗粒

银纳米颗粒具有广谱、持久抗菌等特点,近年来备受关注。Shi等[18]以牛血清白蛋白为模板、H2O2为激活剂合成纳米银颗粒(AgMPs),通过体内抗真菌治疗实验表明,25 μg/mL的AgMPs对念珠菌感染具有良好效果,并且对角膜上皮细胞的安全性也较高。AgMPs可以作为抗念珠菌感染的新型药物。

为控制佩戴隐形眼镜或角膜接触镜的患者的角膜炎风险,除在隐形眼镜护理液中添加抗菌成分之外,现也有研究针对隐形眼镜表面涂层进行改造。Khan等[19]利用氧化锌纳米颗粒+没食子酸+妥布霉素(ZGT)对隐形眼镜表面涂层进行改性。抗真菌活性结果显示:隐形眼镜涂层对镰刀菌、念珠菌和曲霉菌的生长均起到抑制作用。电镜结果显示:涂层隐形眼镜处理后的微生物菌种细胞壁紊乱,胞质膜皱褶异常,细胞内容物渗出,导致细菌和真菌菌株死亡。涂层隐形眼镜通过破坏微生物细胞的完整性来达到其抗菌活性,具有良好的抗真菌作用。多功能纳米颗粒涂层隐形眼镜的抗真菌效果较为良好,在进一步改进后,可以作为改善长期佩戴角膜接触镜患者患真菌性角膜炎的风险的新方法。

Alejandro等[20]研究发现,孟加拉玫瑰红(RB,rose bengal)作为光敏剂,通过光动力疗法(PDAT, photodynamic therapy)对真菌性角膜炎的治疗效果显著。研究利用包含5.4 J/cm2辐射和0.1% RBPDAT对确诊真菌性角膜炎患者分离出的真菌具有显著抑制作用,其中又以白念珠菌最为敏感。然而,RB对角膜渗透性较低。为提升RB作用效果,Ghoniem[21]利用聚吡咯包覆金纳米颗粒(AuPpy NP)作为一种具有高负载能力的RB纳米传递系统,他们以白念珠菌和曲霉菌感染大鼠,再分为RB +辐射(光动力)组、AuPpy NP +辐射(光热)组和RB-AuPpy NP +辐射(光动力/光热联合)组,在治疗3周后,组织病理检查和裂隙灯成像观察结果显示,RB-AuPpy NP(光动力/光热联合效应)治疗组的角膜改善最佳。由此证实了聚吡咯包覆金纳米颗粒(AuPpy NP)作为RB给药系统的可行性。

1.2.2聚合物纳米颗粒

两性霉素B(AmB)常用于治疗真菌感染,为提高其疗效,Abdulghani[22]研究发现,N-棕榈酰-N-单甲基-N,N-二甲基-N,N,N-三甲基-6-o-糖基壳聚糖MET, N-palmitoyl-N-monomethyl-N, N-dimethyl-N, N, N-trimethyl-6-o-glycolchitosan)纳米颗粒作为黏液黏合剂,同时也是角膜穿透增强剂。利用MET纳米颗粒包被AmB,通过对念珠菌和曲霉感染小鼠模型治疗显示,MET纳米颗粒在体外可穿透白念珠菌生物膜,并且MET- Amb配方对生物膜包被的念珠菌细胞显示出显著的抗真菌活性。含MET-AmB滴眼液为生物膜相关的眼念珠菌感染提供了较好的思路选择,期待进一步改进和实验以证实其临床安全性和适用性。

硝酸芬替康唑(FTN, fenticonazole nitrate)属于咪唑类抗真菌药物,低浓度FTN通过抑制麦角甾醇的合成发挥抑菌作用,高浓度通过破坏真菌细胞壁发挥杀菌作用。但FTN水溶性较差,眼部利用率不高Ahmed等[23]报道了新型FTN递药载体,研究利用油胺包封载有FTN的纤溶酶,并通过体外MIC测定、体内角膜吸收和药敏试验结果得知,此配方在体外和体内均具有抗真菌活性。

1.3 纳米凝胶


近年来,纳米凝胶作为眼部给药载体的研究越来越多,它是水凝胶、微凝胶的升级版,作为一种纳米载体,可以与胶束、脂质体、聚合物等结合,具有更高的生物相容性、载药能力、毒性更低[24]。此形式更易于作为滴眼液给药,在与眼表接触后可转化为凝胶,可避免由于眼表泪液循环而导致的药物快速消除,从而增加了药物的停留时间,减少了给药频率。

氟康唑(FLZ, fluconazole)是一种合成的含氟三唑类抗真菌药物,具有广谱和优越的理化性质,是最重要的抗真菌药物之一。但它仍是一种低溶解度药物,存在生物利用度低的问题。因此,提高FLZ滴眼液的生物利用度是有效控制真菌性角膜炎及眼内炎感染的关键。Elmotasem[25]研发了以羟丙基-β-环糊精(HP-β-CD)复合物,结合纳米囊泡和环糊精作为FLZ载体,并混合到热敏原位水胶凝的新型配方,研究显示此配方在促进药物的角膜渗透,增强抗真菌活性和延长药物作用时间上较为有效Almehmady[26]开发了一种优化的FLZ聚乙二醇化纳米颗粒,利用热敏原位水凝胶制剂负载。从而可以有效传递药物并增强FLZ的眼部吸收,降低其全身吸收,最大限度地减少其副作用减少副作用,减少给药次数,提高患者的依从性,并被发现对角膜无刺激,是一种用于治疗深部真菌感染的新策略。

伏立康唑与氟康唑类似,都是三唑类抗真菌药物,为提升对其传的传递作用,Rakhmetova[27]研究利用聚乙二醇1000 (PEG-1000)作为破孔剂,由1-乙烯基-2-吡咯烷酮和1,6-己二醇二甲基丙烯酸酯(交联剂)自由基聚合反应制备出柔性多孔水凝胶,并证实此配方具有出色的细胞相容性。利用其负载伏立康唑,通过建立的猪眼模型离体试验证实,此配方的水凝胶可提升药物对角膜的渗透性,从而提高了药物的生物利用度。

伊曲康唑作为广谱的抗真菌药物,可通过局部或口服来治疗真菌性角膜炎。但其全身用药有较多不良反应,故而多考虑局部用药,为改善伊曲康唑局部用药低溶解度导致的生物利用度偏低的问题,Andi等[28]将伊曲康唑制成200~500 μm的纳米晶体,并利用热敏水凝胶负载,将其作用于念珠菌感染的猪眼模型,在48 h后观察到念珠菌的菌落数量减少了93%。实验结果显示:利用热敏原位凝胶负载可增加伊曲康唑纳米晶体在眼部的停留时间,并且对白念珠菌具有更好的体外活性。 

1.4 脂质体载体


脂质体作为载体,可增加中两性霉素B与真菌细胞膜上甾醇的亲和力,促使孔道形成,破坏胞膜完整性以提升其抗真菌作用,同时降低了对人体的毒性。有对局部脂质体两性霉素B(L-AMB, liposomal amphotericin B)超声滴眼液的研究表明[29]L-AMB比传统形式的两性霉素B具有更好的抗真菌作用,可有效促进溃疡愈合并减少血管的形成,并且具有更低的药物毒性。

Liang等[30]通过研究制备了脂质体负载那他霉素的滴眼液,并证实其具有较强的角膜穿透性,在单次给药3 h后,角膜内药物浓度仍然高于MIC,可增加那他霉素停留时间与角膜穿透率,对治疗念珠菌性角膜炎具有显著效果。除此之外,脂质体负载那他霉素的滴眼液在角膜浸润和前房积脓的治疗中效果更好。

1.5 纳米立方体


纳米立方体结构具有特殊的胶体稳定性、较高的内表面积,并且其批量生产较为简单,是适用于眼部给药的纳米结构之一。植三醇是制备立方体最常见的脂质,并且植三醇为立方体在眼部给药应用中提供了适当的安全性、生物相容性、结构稳定性[31]。Hosny等[32]研发了基于纳米立方体为载体,含有800 mg植三醇、510 mg 丙烯酸酯/C10-30烷基丙烯酸酯交联聚合物和460mg 纳他霉素的新型配方,通过实验证实可降低眼刺激,增强纳他霉素的角膜渗透,并延长纳他霉素的滞留时间,从而降低了给药频率,有望于成为治疗念珠菌角膜炎的新配方。

1.6 可溶性纳米微针


可溶性纳米微针,是一种基于水溶性聚合物制成并具有良好的穿透性的给药载体,目前已广泛用于经皮肤、黏膜给药[33]Mahfud[34]利用聚乙烯醇(PVA, Polyvinyl alcohol)和聚乙烯吡咯烷酮(PVP, Polyvinylpyrrolidone)聚合物的混合物,研制了一种含两性霉素B分散体的眼部可溶性纳米微针 (DMN-SD-AMB, ocular dissolving microneedle containing the solid dispersion amphotericin B),通过兔感染模型的抗真菌结果显示,此配方具有最佳的体外角膜渗透性、抗真菌活性,以及眼部安全性。可溶性纳米微针是提升两性霉素B治疗念珠菌性角膜炎效果新型眼内制剂。有研究发现,负载银纳米颗粒、丝素蛋白微球和抗生素的可溶性微针系统,并证实可穿透细菌生物膜,有效控制感染[35]。相似的,可溶性纳米微针系统在对念珠菌生物膜形成时是否有相似的作用,有望得到进一步研究和证实。

1.7 纳米胶束


不同于纳米聚合物和脂质体,纳米胶束具有更强的溶解性和黏附性,可以有效改善脂溶类药物的穿透性,增加其水溶性以及眼表停留时间。泊沙康唑(PSC, posaconazole)由于其高度亲脂性,眼部用药的生物利用度极低。Meltem[36]利用胶束载体系统负载PSC,并通过体外穿透、抗真菌活性,鸡胚绒毛尿囊膜等试验证明了胶束系统增加了PSC对眼部组织的穿透性,以及其对白念珠菌具有更佳抑制作用。厦门大学研发了聚倍半硅氧烷杂化纳米胶束系统负载AmB,通过真菌性角膜炎小鼠模型的研究发现,此纳米胶束系统提升AmB的药物停留时间,增加其对真菌性角膜炎的治疗效果[37]Sun[38]合成了由苯硼酸偶联的壳聚糖-维生素E共聚物(PBA-CS-VE),利用其负载伏立康唑而制成纳米胶束。通过体外眼球黏附实验证实:此胶束系统具有较强的附性,作用于兔真菌性角膜炎模型的治疗并展示出较好的效果。由上可知纳米胶束也可作为一个良好的穿透和黏附载体,可以增强药物的停留时间,是负载抗真菌药物的新选择

2  小结


目前,我国临床上抗念珠菌药物的种类有限,而念珠菌对这些药物的耐药性却在增加。由于念珠菌结构的复杂性以及念珠菌生物膜形成时的屏障作用,常导致药物难以穿透和保持有效浓度。新型纳米材料的研究,有利于研发新的抗菌药物配方以及抗菌药物传递载体,提升现有抗真菌药物的作用效果。通过纳米系统负载虽然可以一定程度提升药物的角膜、生物膜穿透性,溶解度,停留时间以及生物利用度。

综上所述,针对不同类型纳米材料,研究其作为抗真菌药物传递载体具有可行性与必要性。但不足的是,考虑到某些纳米材料可能存在毒性,制备困难以及成本较高等问题,新型纳米材料对于临床的适用程度有待酌量。虽然上述材料仍在实验研究阶段,但其为念珠菌的治疗提供了新的思路,期待进一步的临床试验,为念珠菌的治疗提供更多的方案选择。

声明


在论文撰写中无使用生成式人工智能。论文撰写中的所有内容均由作者独立完成, 并对出版物的真实性和准确性承担全部责任。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。
1、马小倩, 刘昭升, 吴护平. 178例真菌性角膜炎的回顾性分析[J]. 中国眼耳鼻喉科杂志, 2023, 23(1): 73-76. DOI: 10.14166/j.issn.1671-2420.2023.01.015.
Ma XQ, Liu ZS, Wu HP. Retrospective analysis of 178 cases of fungal keratitis[J]. Chin J Ophthalmol Otorhinolaryngol, 2023, 23(1): 73-76. DOI: 10.14166/j.issn.1671-2420.2023.01.015.
Ma XQ, Liu ZS, Wu HP. Retrospective analysis of 178 cases of fungal keratitis[J]. Chin J Ophthalmol Otorhinolaryngol, 2023, 23(1): 73-76. DOI: 10.14166/j.issn.1671-2420.2023.01.015.
2、Cheikhrouhou F, Makni F, Neji S, et al. Epidemiological profile of fungal keratitis in Sfax (Tunisia)[J]. J Mycol Med, 2014, 24(4): 308-312. DOI: 10.1016/j.mycmed.2014.06.047.Cheikhrouhou F, Makni F, Neji S, et al. Epidemiological profile of fungal keratitis in Sfax (Tunisia)[J]. J Mycol Med, 2014, 24(4): 308-312. DOI: 10.1016/j.mycmed.2014.06.047.
3、钟文贤,谢立信,史伟云,等.真菌性角膜炎654例感染谱分析[J]. 中华医学杂志, 2006, 86(24): 1681-1685. DOI: 10.3760/j: issn: 0376-2491.2006.24.007.
Zhong WX, Xie LX, Shi WY, et al. Spectrum of infection of fungal keratitis: analysis of 654 cases[J]. Natl Med J China, 2006, 86(24): 1681-1685. DOI: 10.3760/j: issn: 0376-2491.2006.24.007.
Zhong WX, Xie LX, Shi WY, et al. Spectrum of infection of fungal keratitis: analysis of 654 cases[J]. Natl Med J China, 2006, 86(24): 1681-1685. DOI: 10.3760/j: issn: 0376-2491.2006.24.007.
4、王智群, 邓世靖, 张阳, 等. 念珠菌性角膜炎的临床特征及病原学分析[J]. 眼科, 2023, 32(5): 416-420. DOI: 10.13281/j.cnki.issn.1004-4469.2023.05.010.
Wang ZQ, Deng SJ, Zhang Y, et al. Clinical features and etiological analysis of candida keratitis[J]. Ophthalmol China, 2023, 32(5): 416-420. DOI: 10.13281/j.cnki.issn.1004-4469.2023.05.010.
Wang ZQ, Deng SJ, Zhang Y, et al. Clinical features and etiological analysis of candida keratitis[J]. Ophthalmol China, 2023, 32(5): 416-420. DOI: 10.13281/j.cnki.issn.1004-4469.2023.05.010.
5、张洁, 王英, 顾军, 等. 白念珠菌生物膜耐药性的研究进展[J]. 药学服务与研究, 2008, 8(2): 98-101. DOI: 10.3969/j.issn.1671-2838.2008.02.016.
Zhang J, Wang Y, Gu J, et al. Study on drug-resistance of candida albicans biofilm[J]. Pharm Care Res, 2008, 8(2): 98-101. DOI: 10.3969/j.issn.1671-2838.2008.02.016.
Zhang J, Wang Y, Gu J, et al. Study on drug-resistance of candida albicans biofilm[J]. Pharm Care Res, 2008, 8(2): 98-101. DOI: 10.3969/j.issn.1671-2838.2008.02.016.
6、Ranjith K, Kalyana Chakravarthy S, Adicherla H, et al. Temporal expression of genes in biofilm-forming ocular candida albicans isolated from patients with keratitis and orbital cellulitis[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 528-538. DOI: 10.1167/iovs.17-22933. Ranjith K, Kalyana Chakravarthy S, Adicherla H, et al. Temporal expression of genes in biofilm-forming ocular candida albicans isolated from patients with keratitis and orbital cellulitis[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 528-538. DOI: 10.1167/iovs.17-22933.
7、Elder MJ, Matheson M, Stapleton F, et al. Biofilm formation in infectious crystalline keratopathy due to Candida albicans[J]. Cornea, 1996, 15(3): 301-304. DOI: 10.1097/00003226-199605000-00012. Elder MJ, Matheson M, Stapleton F, et al. Biofilm formation in infectious crystalline keratopathy due to Candida albicans[J]. Cornea, 1996, 15(3): 301-304. DOI: 10.1097/00003226-199605000-00012.
8、孙秋宁, 方凯. 念珠菌生物膜的结构、影响因素及其对抗真菌药的敏感性[J]. 中国医学科学院学报, 2002, 24(4): 385-388.
Sun QN, Fang K. Architecture, influencing factors, and sensitivity to antifungal agents of candida biofilm[J]. Acta Acad Med Sin, 2002, 24(4): 385-388.
Sun QN, Fang K. Architecture, influencing factors, and sensitivity to antifungal agents of candida biofilm[J]. Acta Acad Med Sin, 2002, 24(4): 385-388.
9、RAI M, CAROLINA A D S. Nanotechnology Applied To Pharmaceutical Technology :Nanotechnological Interventions for Drug Delivery in Eye Diseases [M]. New York:Springer International Publishing 2017.RAI M, CAROLINA A D S. Nanotechnology Applied To Pharmaceutical Technology :Nanotechnological Interventions for Drug Delivery in Eye Diseases [M]. New York:Springer International Publishing 2017.
10、Shen HH, Chan EC, Lee JH, et al. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery[J]. Nanomedicine (Lond), 2015, 10(13): 2093-2107. DOI: 10.2217/nnm.15.47.Shen HH, Chan EC, Lee JH, et al. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery[J]. Nanomedicine (Lond), 2015, 10(13): 2093-2107. DOI: 10.2217/nnm.15.47.
11、张雨欣, 王基伟. 响应性聚合物纳米材料作为药物载体的研究进展[J]. 高分子通报, 2021(4): 1-6. DOI: 10.14028/j.cnki.1003-3726.2021.04.001.
Zhang YX, Wang JW. Progress of stimuli-responsive polymer nanomaterials in drug carrier[J]. Polym Bull, 2021(4): 1-6. DOI: 10.14028/j.cnki.1003-3726.2021.04.001.
Zhang YX, Wang JW. Progress of stimuli-responsive polymer nanomaterials in drug carrier[J]. Polym Bull, 2021(4): 1-6. DOI: 10.14028/j.cnki.1003-3726.2021.04.001.
12、Goldblum D, Frueh BE, Sarra GM, et al. Topical caspofungin for treatment of keratitis caused by Candida albicans in a rabbit model[J]. Antimicrob Agents Chemother, 2005, 49(4): 1359-1363. DOI: 10.1128/AAC.49.4.1359-1363.2005. Goldblum D, Frueh BE, Sarra GM, et al. Topical caspofungin for treatment of keratitis caused by Candida albicans in a rabbit model[J]. Antimicrob Agents Chemother, 2005, 49(4): 1359-1363. DOI: 10.1128/AAC.49.4.1359-1363.2005.
13、Hurtado-Sarrió M. Successful topical application of caspofungin in the treatment of fungal keratitis refractory to voriconazole[J]. Arch Ophthalmol, 2010, 128(7): 941. DOI: 10.1001/archophthalmol.2010.110. Hurtado-Sarrió M. Successful topical application of caspofungin in the treatment of fungal keratitis refractory to voriconazole[J]. Arch Ophthalmol, 2010, 128(7): 941. DOI: 10.1001/archophthalmol.2010.110.
14、Pérez-González N, Rodríguez-Lagunas MJ, Calpena-Campmany AC, et al. Caspofungin-loaded formulations for treating ocular infections caused by candida spp[J]. Gels, 2023, 9(4): 348. DOI: 10.3390/gels9040348.Pérez-González N, Rodríguez-Lagunas MJ, Calpena-Campmany AC, et al. Caspofungin-loaded formulations for treating ocular infections caused by candida spp[J]. Gels, 2023, 9(4): 348. DOI: 10.3390/gels9040348.
15、Dart JG, Radford CF, Minassian D, et al. Risk factors for microbial keratitis with contemporary contact lenses: a case-control study[J]. Ophthalmology, 2008, 115(10): 1647-1654, 1654.e1-1654.e3. DOI: 10.1016/j.ophtha.2008.05.003. Dart JG, Radford CF, Minassian D, et al. Risk factors for microbial keratitis with contemporary contact lenses: a case-control study[J]. Ophthalmology, 2008, 115(10): 1647-1654, 1654.e1-1654.e3. DOI: 10.1016/j.ophtha.2008.05.003.
16、Ratnayake D, Ansah M, Al Ani E, et al. The activity of PHMB and other guanidino containing compounds against Acanthamoeba and other ocular pathogens[J]. Microorganisms, 2022, 10(7): 1375. DOI: 10.3390/microorganisms10071375. Ratnayake D, Ansah M, Al Ani E, et al. The activity of PHMB and other guanidino containing compounds against Acanthamoeba and other ocular pathogens[J]. Microorganisms, 2022, 10(7): 1375. DOI: 10.3390/microorganisms10071375.
17、Mohanraj VJ, Chen Y. Nanoparticles - A review[J]. Trop. J. Pharm. Res,2006,5:561–573DOI: 10.4314/tjpr.v5i1.14634.Mohanraj VJ, Chen Y. Nanoparticles - A review[J]. Trop. J. Pharm. Res,2006,5:561–573DOI: 10.4314/tjpr.v5i1.14634.
18、Shi%20H%2C%20Ding%20J%2C%20Chen%20C%2C%20et%20al.%20Antimicrobial%20Action%20of%20Biocompatible%20Silver%20Microspheres%20and%20Their%20Role%20in%20the%20Potential%20Treatment%20of%20Fungal%20Keratitis%5BJ%5D.%C2%A0ACS%20Biomater%20Sci%20Eng.%202021%3B7(11)%3A5090-5098.%20DOI%3A10.1021%2Facsbiomaterials.1c00815.Shi%20H%2C%20Ding%20J%2C%20Chen%20C%2C%20et%20al.%20Antimicrobial%20Action%20of%20Biocompatible%20Silver%20Microspheres%20and%20Their%20Role%20in%20the%20Potential%20Treatment%20of%20Fungal%20Keratitis%5BJ%5D.%C2%A0ACS%20Biomater%20Sci%20Eng.%202021%3B7(11)%3A5090-5098.%20DOI%3A10.1021%2Facsbiomaterials.1c00815.
19、Khan%20SA%2C%20Shahid%20S%2C%20Mahmood%20T%2C%20Lee%20CS.%20Contact%20lenses%20coated%20with%20hybrid%20multifunctional%20ternary%20nanocoatings%20(Phytomolecule-coated%20ZnO%20nanoparticles%3AGallic%20Acid%3ATobramycin)%20for%20the%20treatment%20of%20bacterial%20and%20fungal%20keratitis%5BJ%5D.%C2%A0Acta%20Biomater.%202021%3B128%3A262-276.%20DOI%3A10.1016%2Fj.actbio.2021.04.014.Khan%20SA%2C%20Shahid%20S%2C%20Mahmood%20T%2C%20Lee%20CS.%20Contact%20lenses%20coated%20with%20hybrid%20multifunctional%20ternary%20nanocoatings%20(Phytomolecule-coated%20ZnO%20nanoparticles%3AGallic%20Acid%3ATobramycin)%20for%20the%20treatment%20of%20bacterial%20and%20fungal%20keratitis%5BJ%5D.%C2%A0Acta%20Biomater.%202021%3B128%3A262-276.%20DOI%3A10.1016%2Fj.actbio.2021.04.014.
20、Arboleda%20A%2C%20Durkee%20H%2C%20Miller%20D%2C%20et%20al.%20Variations%20in%20irradiation%20energy%20and%20rose%20bengal%20concentration%20for%20photodynamic%20antimicrobial%20therapy%20of%20fungal%20keratitis%20isolates%5BJ%5D.%C2%A0Lasers%20Med%20Sci.%202024%3B39(1)%3A72.%20Published%202024%20Feb%2021.%20DOI%3A10.1007%2Fs10103-024-04014-1.Arboleda%20A%2C%20Durkee%20H%2C%20Miller%20D%2C%20et%20al.%20Variations%20in%20irradiation%20energy%20and%20rose%20bengal%20concentration%20for%20photodynamic%20antimicrobial%20therapy%20of%20fungal%20keratitis%20isolates%5BJ%5D.%C2%A0Lasers%20Med%20Sci.%202024%3B39(1)%3A72.%20Published%202024%20Feb%2021.%20DOI%3A10.1007%2Fs10103-024-04014-1.
21、Ghoniem%20DF%2C%20Abdelkawi%20SA%2C%20Fadel%20M%2C%20et%20al.%20Novel%20Photodynamic%2FPhotothermal%20Treatment%20of%20Fungal%20Keratitis%20Using%20Rose%20Bengal-Loaded%20Polypyrrole-Gold%20Nanoparticles%20in%20Wistar%20Albino%20Rats.%C2%A0J%20Ocul%20Pharmacol%20Ther%5BJ%5D.%202023%3B39(6)%3A379-388.%20DOI%3A10.1089%2Fjop.2023.0004.Ghoniem%20DF%2C%20Abdelkawi%20SA%2C%20Fadel%20M%2C%20et%20al.%20Novel%20Photodynamic%2FPhotothermal%20Treatment%20of%20Fungal%20Keratitis%20Using%20Rose%20Bengal-Loaded%20Polypyrrole-Gold%20Nanoparticles%20in%20Wistar%20Albino%20Rats.%C2%A0J%20Ocul%20Pharmacol%20Ther%5BJ%5D.%202023%3B39(6)%3A379-388.%20DOI%3A10.1089%2Fjop.2023.0004.
22、Alakkad A, Stapleton P, Schlosser C, et al. Amphotericin B polymer nanoparticles show efficacy against candida species biofilms[J]. Pathogens, 2022, 11(1): 73. DOI: 10.3390/pathogens11010073.Alakkad A, Stapleton P, Schlosser C, et al. Amphotericin B polymer nanoparticles show efficacy against candida species biofilms[J]. Pathogens, 2022, 11(1): 73. DOI: 10.3390/pathogens11010073.
23、Ahmed S, Amin MM, El-Korany SM, et al. Pronounced capping effect of olaminosomes as nanostructured platforms in ocular candidiasis management[J]. Drug Deliv, 2022, 29(1): 2945-2958. DOI: 10.1080/10717544.2022.2120926.Ahmed S, Amin MM, El-Korany SM, et al. Pronounced capping effect of olaminosomes as nanostructured platforms in ocular candidiasis management[J]. Drug Deliv, 2022, 29(1): 2945-2958. DOI: 10.1080/10717544.2022.2120926.
24、Wu Y, Tao Q, Xie J, et al. Advances in nanogels for topical drug delivery in ocular diseases[J]. Gels, 2023, 9(4): 292. DOI: 10.3390/gels9040292. Wu Y, Tao Q, Xie J, et al. Advances in nanogels for topical drug delivery in ocular diseases[J]. Gels, 2023, 9(4): 292. DOI: 10.3390/gels9040292.
25、Elmotasem%20H%2C%20Awad%20GEA.%20A%20stepwise%20optimization%20strategy%20to%20formulate%C2%A0in%20situ%C2%A0gelling%20formulations%20comprising%20fluconazole-hydroxypropyl-beta-cyclodextrin%20complex%20loaded%20niosomal%20vesicles%20and%20Eudragit%20nanoparticles%20for%20enhanced%20antifungal%20activity%20and%20prolonged%20ocular%20delivery%5BJ%5D.%C2%A0Asian%20J%20Pharm%20Sci.%202020%3B15(5)%3A617-636.%20DOI%3A10.1016%2Fj.ajps.2019.09.003.Elmotasem%20H%2C%20Awad%20GEA.%20A%20stepwise%20optimization%20strategy%20to%20formulate%C2%A0in%20situ%C2%A0gelling%20formulations%20comprising%20fluconazole-hydroxypropyl-beta-cyclodextrin%20complex%20loaded%20niosomal%20vesicles%20and%20Eudragit%20nanoparticles%20for%20enhanced%20antifungal%20activity%20and%20prolonged%20ocular%20delivery%5BJ%5D.%C2%A0Asian%20J%20Pharm%20Sci.%202020%3B15(5)%3A617-636.%20DOI%3A10.1016%2Fj.ajps.2019.09.003.
26、Almehmady%20AM%2C%20El-Say%20KM%2C%20Mubarak%20MA%2C%20et%20al.%20Enhancing%20the%20Antifungal%20Activity%20and%20Ophthalmic%20Transport%20of%20Fluconazole%20from%20PEGylated%20Polycaprolactone%20Loaded%20Nanoparticles%5BJ%5D.%C2%A0Polymers%20(Basel).%202022%3B15(1)%3A209.%20Published%202022%20Dec%2031.%20DOI%3A10.3390%2Fpolym15010209Almehmady%20AM%2C%20El-Say%20KM%2C%20Mubarak%20MA%2C%20et%20al.%20Enhancing%20the%20Antifungal%20Activity%20and%20Ophthalmic%20Transport%20of%20Fluconazole%20from%20PEGylated%20Polycaprolactone%20Loaded%20Nanoparticles%5BJ%5D.%C2%A0Polymers%20(Basel).%202022%3B15(1)%3A209.%20Published%202022%20Dec%2031.%20DOI%3A10.3390%2Fpolym15010209
27、Rakhmetova%20A%2C%20Yi%20Z%2C%20Sarmout%20M%2C%20Koole%20LH.%20Sustained%20Release%20of%20Voriconazole%20Using%203D-Crosslinked%20Hydrogel%20Rings%20and%20Rods%20for%20Use%20in%20Corneal%20Drug%20Delivery%5BJ%5D.%C2%A0Gels.%202023%3B9(12)%3A933.%20Published%202023%20Nov%2028.%20DOI%3A10.3390%2Fgels9120933.Rakhmetova%20A%2C%20Yi%20Z%2C%20Sarmout%20M%2C%20Koole%20LH.%20Sustained%20Release%20of%20Voriconazole%20Using%203D-Crosslinked%20Hydrogel%20Rings%20and%20Rods%20for%20Use%20in%20Corneal%20Drug%20Delivery%5BJ%5D.%C2%A0Gels.%202023%3B9(12)%3A933.%20Published%202023%20Nov%2028.%20DOI%3A10.3390%2Fgels9120933.
28、Permana%20AD%2C%20Utami%20RN%2C%20Layadi%20P%2C%20et%20al.%20Thermosensitive%20and%20mucoadhesive%20in%20situ%20ocular%20gel%20for%20effective%20local%20delivery%20and%20antifungal%20activity%20of%20itraconazole%20nanocrystal%20in%20the%20treatment%20of%20fungal%20keratitis%5BJ%5D.%C2%A0Int%20J%20Pharm.%202021%3B602%3A120623.DOI%3A10.1016%2Fj.ijpharm.2021.120623Permana%20AD%2C%20Utami%20RN%2C%20Layadi%20P%2C%20et%20al.%20Thermosensitive%20and%20mucoadhesive%20in%20situ%20ocular%20gel%20for%20effective%20local%20delivery%20and%20antifungal%20activity%20of%20itraconazole%20nanocrystal%20in%20the%20treatment%20of%20fungal%20keratitis%5BJ%5D.%C2%A0Int%20J%20Pharm.%202021%3B602%3A120623.DOI%3A10.1016%2Fj.ijpharm.2021.120623
29、Kumar V, Kumari P, Lomi N, et al. Evaluation of liposomal amphotericin B for the treatment of fungal keratitis in a tertiary eye care hospital[J]. Indian J Ophthalmol, 2023, 71(2): 518-523. DOI: 10.4103/ijo.IJO_1474_22. Kumar V, Kumari P, Lomi N, et al. Evaluation of liposomal amphotericin B for the treatment of fungal keratitis in a tertiary eye care hospital[J]. Indian J Ophthalmol, 2023, 71(2): 518-523. DOI: 10.4103/ijo.IJO_1474_22.
30、Liang Z, Zhang Z, Yang J, et al. Assessment to the antifungal effects in vitro and the ocular pharmacokinetics of solid-lipid nanoparticle in rabbits[J]. Int J Nanomed, 2021, 16: 7847-7857. DOI: 10.2147/ijn.s340068. Liang Z, Zhang Z, Yang J, et al. Assessment to the antifungal effects in vitro and the ocular pharmacokinetics of solid-lipid nanoparticle in rabbits[J]. Int J Nanomed, 2021, 16: 7847-7857. DOI: 10.2147/ijn.s340068.
31、Bessone CDV, Akhlaghi SP, Tártara LI, et al. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma[J]. Eur J Pharm Sci, 2021, 160: 105748. DOI: 10.1016/j.ejps.2021.105748. Bessone CDV, Akhlaghi SP, Tártara LI, et al. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma[J]. Eur J Pharm Sci, 2021, 160: 105748. DOI: 10.1016/j.ejps.2021.105748.
32、Hosny KM, Rizg WY, Alkhalidi HM, et al. Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: development, optimization, in-vitro, and in-vivo assessment[J]. Drug Deliv, 2021, 28(1): 1836-1848. DOI: 10.1080/10717544.2021.1965675. Hosny KM, Rizg WY, Alkhalidi HM, et al. Nanocubosomal based in situ gel loaded with natamycin for ocular fungal diseases: development, optimization, in-vitro, and in-vivo assessment[J]. Drug Deliv, 2021, 28(1): 1836-1848. DOI: 10.1080/10717544.2021.1965675.
33、Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system[J]. Biomed Pharmacother, 2019, 109: 1249-1258. DOI: 10.1016/j.biopha.2018.10.078. Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system[J]. Biomed Pharmacother, 2019, 109: 1249-1258. DOI: 10.1016/j.biopha.2018.10.078.
34、Mahfud%20MAS%2C%20Syahirah%20NA%2C%20et%20al.%20Solid%20Dispersion%20Incorporated%20into%20Dissolving%20Microneedles%20for%20Improved%20Antifungal%20Activity%20of%20Amphotericin%20B%3A%C2%A0In%20Vivo%C2%A0Study%20in%20a%20Fungal%20Keratitis%20Model%5BJ%5D.Mol%20Pharm%202023%3B20(12)%3A6246-6261.%20DOI%3A10.1021%2Facs.molpharmaceut.3c00647.Mahfud%20MAS%2C%20Syahirah%20NA%2C%20et%20al.%20Solid%20Dispersion%20Incorporated%20into%20Dissolving%20Microneedles%20for%20Improved%20Antifungal%20Activity%20of%20Amphotericin%20B%3A%C2%A0In%20Vivo%C2%A0Study%20in%20a%20Fungal%20Keratitis%20Model%5BJ%5D.Mol%20Pharm%202023%3B20(12)%3A6246-6261.%20DOI%3A10.1021%2Facs.molpharmaceut.3c00647.
35、Li%20Y%2C%20Gong%20JY%2C%20et%20al.%20Dissolving%20microneedle%20system%20containing%20Ag%20nanoparticle-decorated%20silk%20fibroin%20microspheres%20and%20antibiotics%20for%20synergistic%20therapy%20of%20bacterial%20biofilm%20infection%5BJ%5D.%C2%A0J%20Colloid%20Interface%20Sci.%202024%3B661%3A123-138.%20DOI%3A10.1016%2Fj.jcis.2024.01.147.Li%20Y%2C%20Gong%20JY%2C%20et%20al.%20Dissolving%20microneedle%20system%20containing%20Ag%20nanoparticle-decorated%20silk%20fibroin%20microspheres%20and%20antibiotics%20for%20synergistic%20therapy%20of%20bacterial%20biofilm%20infection%5BJ%5D.%C2%A0J%20Colloid%20Interface%20Sci.%202024%3B661%3A123-138.%20DOI%3A10.1016%2Fj.jcis.2024.01.147.
36、Durgun%20ME%2C%20Kahraman%20E%2C%20Hac%C4%B1o%C4%9Flu%20M%2C%20et%20al.%20Posaconazole%20micelles%20for%20ocular%20delivery%3A%20in%20vitro%20permeation%2C%20ocular%20irritation%20and%20antifungal%20activity%20studies%5BJ%5D.%20Drug%20Deliv%20Transl%20Res%2C%202022%2C%2012(3)%3A%20662-675.%20DOI%3A%2010.1007%2Fs13346-021-00974-x.Durgun%20ME%2C%20Kahraman%20E%2C%20Hac%C4%B1o%C4%9Flu%20M%2C%20et%20al.%20Posaconazole%20micelles%20for%20ocular%20delivery%3A%20in%20vitro%20permeation%2C%20ocular%20irritation%20and%20antifungal%20activity%20studies%5BJ%5D.%20Drug%20Deliv%20Transl%20Res%2C%202022%2C%2012(3)%3A%20662-675.%20DOI%3A%2010.1007%2Fs13346-021-00974-x.
37、徐陈芳. 聚倍半硅氧烷杂化纳米胶束负载两性霉素B用于真菌性角膜炎的治疗[D]. 厦门: 厦门大学, 2021. DOI: 10.27424/d.cnki.gxmdu.2021.003422.
Xu CF. Amphotericin B loaded on polysilsesquioxane hybrid nanomicelles for the treatment of fungal keratitis[D]. Xiamen: Xiamen University, 2021. DOI: 10.27424/d.cnki.gxmdu.2021.003422.
Xu CF. Amphotericin B loaded on polysilsesquioxane hybrid nanomicelles for the treatment of fungal keratitis[D]. Xiamen: Xiamen University, 2021. DOI: 10.27424/d.cnki.gxmdu.2021.003422.
38、Sun%20X%2C%20Sheng%20Y%2C%20Li%20K%2C%20et%20al.%20Mucoadhesive%20phenylboronic%20acid%20conjugated%20chitosan%20oligosaccharide-vitamin%20E%20copolymer%20for%20topical%20ocular%20delivery%20of%20voriconazole%3A%20Synthesis%2C%20in%20vitro%2Fvivo%20evaluation%2C%20and%20mechanism%5BJ%5D.%C2%A0Acta%20Biomater.%202022%3B138%3A193-207.%20DOI%3A10.1016%2Fj.actbio.2021.10.047.Sun%20X%2C%20Sheng%20Y%2C%20Li%20K%2C%20et%20al.%20Mucoadhesive%20phenylboronic%20acid%20conjugated%20chitosan%20oligosaccharide-vitamin%20E%20copolymer%20for%20topical%20ocular%20delivery%20of%20voriconazole%3A%20Synthesis%2C%20in%20vitro%2Fvivo%20evaluation%2C%20and%20mechanism%5BJ%5D.%C2%A0Acta%20Biomater.%202022%3B138%3A193-207.%20DOI%3A10.1016%2Fj.actbio.2021.10.047.
1、广州市科技计划项目(202201020015)This work was supported by Guangzhou Municipal Science and Technology Program(202201020015) ( )
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
推荐阅读
目录

点击右上角菜单,浏览器打开下载

我知道了