您的位置: 首页 > 2025年5月 第40卷 第5期 > 文字全文
2023年7月 第38卷 第7期11
目录

泪道支架材料的研究进展

Research progress on lacrimal duct stent materials

来源期刊: 眼科学报 | 2025年5月 第40卷 第5期 363-370 发布时间:2025-5-28 收稿时间:2025/5/14 14:56:01 阅读量:48
作者:
关键词:
泪道阻塞泪道置管泪道支架材料
obstruction of lacrimal passage intubation of lacrimal passage support material
DOI:
10.12419/24122702
收稿时间:
2024-12-31 
修订日期:
2025-02-05 
接收日期:
2025-04-16 
泪道阻塞是临床常见的眼科疾病,主要表现为溢泪、反复感染等症状,严重影响患者的生活质量。传统治疗方法主要采用硅胶或金属支架置入术,这些材料虽然能够暂时维持泪道通畅,但由于其不可降解性、容易移位、易形成生物膜导致感染等固有缺陷,往往需要二次手术取出,给患者带来额外的痛苦和经济负担。随着材料科学和生物医学工程的发展,新型支架材料的研发为解决这些问题提供了新的思路。文章聚焦新型材料如可降解材料、3D打印个性化支架、复合材料及表面改性技术等,这些材料可通过材料降解、精准适配或多功能整合提升临床疗效,但在降解速率调控、3D打印精度及成本方面仍面临诸多挑战。此外,这些新技术的长期安全性和有效性还需要更多临床数据的支持,在未来仍需不断探索,开发更精准的降解速率调控方法,优化3D打印流程以提高精度,降低材料制备的成本,探索更高效的复合材料制备技术。同时,要加强基础研究,推动更多创新技术在临床的应用,开发出更安全、更有效的新型泪道支架材料,为泪道阻塞患者提供更优质的治疗方案,推动泪道疾病治疗向精准微创化方向发展。
Lacrimal duct obstruction is a common clinical ophthalmic condition characterized by symptoms such as epiphora and recurrent infections, significantly impairing patients' quality of life. Traditional treatments primarily involve the implantation of silicone or metal stents. While these materials can temporarily maintain lacrimal duct patency, their inherent drawbacks—such as non-degradability, susceptibility to displacement, and tendency to form biofilms leading to infections—often necessitate secondary surgeries for removal, imposing additional physical and financial burdens on patients.Advances in materials science and biomedical engineering have introduced novel stent materials as potential solutions to these challenges. This article focuses on emerging materials such as biodegradable polymers, 3D-printed personalized stents, composite materials, and surface modification technologies. These innovations can enhance clinical outcomes through material degradation, precise customization, or multifunctional integration. However, challenges remain in regulating degradation rates, improving 3D printing precision, and reducing costs.Furthermore, the longterm safety and efficacy of these technologies require more clinical data for validation. Future research should explore more precise degradation rate control methods, optimize 3D printing processes to enhance accuracy, lower material production costs, and develop more efficient composite material fabrication techniques. Concurrently, strengthening fundamental research and promoting the clinical application of innovative technologies will be crucial to developing safer and more effective lacrimal duct stent materials. Such advancements will provide superior treatment options for patients with lacrimal duct obstruction and drive the field toward minimally invasive and precision medicine approaches.

文章亮点

1. 关键发现

 • 通过聚焦新型材料发现了其在材料降解、整合、抗炎抗菌及精准适配等方面的显著优势。

2. 已知与发现

 • 传统材料虽应用广泛,但存在不可降解、易移位、生物膜感染等问题;
 • 新型材料通过其可降解、相互整合、抗炎抗菌、可个性化定制等特性,有效提升了泪道阻塞性疾病的疗效;
 • 现存挑战:可降解材料降解速率的调控、复合材料的成本优化、表面改性技术的长效验证以及 3D 打印标准化流程的缺失仍是关键问题。

3. 意义与改变

 • 新型材料的研发推动了泪道阻塞性疾病向精准微创化方向转化,为临床诊疗提供了更多选择。

       泪道疾病是眼科常见病[1],泪道阻塞时泪液排出受阻,出现流泪等不适症状严重影响生活质量。泪道支架置入术为常用治疗手段之一,通过置入支架材料维持泪道通畅[2],解决因阻塞或狭窄导致的溢泪、感染等问题。但其材料的选择和性能优化仍是研究难点。传统硅胶和金属类支架材料虽应用广泛,但存在不可降解、易移位、生物膜形成引发感染等固有缺陷[3-4]。近年来,可降解材料[5]、复合材料、3D打印技术、表面改性技术[6-7]等新兴方向为解决上述问题提供了新思路,但当前研究仍存在显著不足:其一,可降解材料的降解速率与泪道修复周期的匹配性尚未明确[8],长期生物相容性仍需验证;其二,3D打印技术受限于材料力学性能不足与建模精度不足,难以完全贴合复杂泪道解剖结构[9];其三,复合材料制备工艺复杂、成本高昂[10],限制了其临床推广。本文综述的独特视角在于系统整合多学科技术进展,从材料学、生物工程及临床需求出发,对比分析传统与新型支架材料的优劣,旨在为推动泪道疾病治疗向高效化、个性化和微创化发展。

1 传统支架材料

       尼龙丝、金属材料、硬膜外麻醉导管等都曾被用作泪道支撑材料[11-12],其优点是易于获取、价格较低,在早期的泪道重建手术中应用广泛。硅胶凭借不易老化、价格低、韧性好、在置管过程中不易造成泪道损伤等优点,推动了其在临床中的广泛应用[13-14]。但就材质而言,由于硅胶表面光滑,支架容易发生移位或脱落[15],同时硅胶表面易形成生物膜[16],导致细菌感染和炎症反应,长期留置还可能引发肉芽组织增生或瘢痕形成[17],可以通过改进支架设计、优化置管留置时间,来降低术后并发症发生风险。此外,Baruah等[18]根据聚丙烯的材料特性,将通过缝合材料形成的泪道支架应用于泪道炎症性疾病患者中,降低了组织反应和术后滑脱率,缺点是不能很好地支撑泪道及隔离病变组织,需密切监测感染迹象[19]。相比于聚丙烯材料制成的泪道支架,硅胶支架适用于大多数泪道手术,尤其是需要长期留置或较复杂的病例[20]

2 新型支架材料

2.1 可降解支撑材料

       研制生物相容性好、物理性质稳定的新型可降解泪道支架对治疗泪道阻塞性疾病具有重要的临床意义。单一材料的力学性能及降解特性难以满足其作为泪道支架的要求,生物可降解高分子材料是第三代生物材料,具有良好的生物活性和可降解性,已成为近年来医学研究的热点。可降解材料相比于传统的引流管,具有留置时间短和能够避免二次手术取出的特点,能够减少对泪道内皮功能的影响,从而降低术后瘢痕萎缩等并发症的风险[21]。研究较多的材料有以下几种:胶原、壳聚糖、聚乙烯醇、左旋聚乳酸、聚己内酯和聚乙二醇等[5, 22]。可降解材料制成的支架早已在泌尿、心血管、消化等领域广泛应用。在银纳米颗粒表面掺入石墨炔,形成纯化的银-石墨炔,再与聚乳酸-羟基乙酸共聚物混合,所制备的多孔支架抗菌性能显著提升,可以有效防止细菌生物膜的形成[23]。郑贵球等[24]曾经通过特殊方法,将胶原、壳聚糖和 PVA 混合成复合凝胶,干燥处理后脱模形成长度>20 mm的人工泪小管。这种人工泪小管具有良好的生物相容性和力学性能,利用胶原的膨胀性在一定程度上促进泪道的塑形,特定环境和药物下人工泪小管也可逐渐溶解,揭示了可降解材料在人工泪小管中的潜力[25]。随着材料及技术的不断发展,新型生物高分子可降解材料不断被研究探索,詹新媛团队[26]采用左旋聚乳酸:聚己内酯+15%聚乙二醇研制的中空管状高分子可降解生物材料构建的可降解泪道支架,观察其植入兔泪道后的生物可降解性和生物相容性,研究结果显示可降解泪道支架植入兔眼后对泪道黏膜的刺激性小,损伤轻微,具有较好的生物可降解性、生物相容性及生物力学特性。尽管可降解泪道支架前景广阔,但其材料本身对泪道黏膜引起的病理变化仍存在争议[27],目前对于可降解材料的制备和使用仍处于实验阶段,可降解材料的种类分配及制备方式仍在探索中。

2.2 自体组织与 3D 打印个性化支架

       与生物材料相比,自体组织引起机体发生免疫排斥的概率低,能与周围的泪道组织良好整合,降低术后并发症的发生风险,提高泪道置管的成功率和长期效果。在泪道重建手术中,曾有学者使用组织学特点更接近泪道上皮的口唇黏膜、鼻丘细胞黏膜及结膜瓣等[28-29],取得了较好效果。也有研究者在诊断为泪小管阻塞的患者中,通过自体结膜移植联合泪道置管进行疾病治疗,其术后并发症的发生及预后均较好[30]。但自体组织在泪道支架中的应用初步显示的较高成功率多来自小样本或个案报道,仍需更多临床数据支持。Ma等[31]通过观察羊膜泪膜支架治疗围绝经期兔模型干眼综合征的效果,发现羊膜泪膜支架对围绝经期雌性兔子的干眼症具有特异性治疗作用。有研究将羊膜泪膜支架与硅胶管的疗效相比,得出结论羊膜泪膜支架在改善角膜上皮基底膜下神经的神经纤维密度方面效果略优于硅胶管[32]。理论上与其他材质的支撑材料相比,自体组织的组织相容性更高,发生排斥的概率相对较低,但长期来看,也存在着术后收缩再狭窄等风险[33]。随着3D打印技术的兴起,通过计算机断层扫描建立鼻泪管3D模型[34],并使用3D打印模型对不同支架材料进行模拟置管训练,为临床手术提供了术前规划和模拟操作的可能。Lee等[35]通过3D打印技术对鼻泪管形态进行建模,以研究鼻泪管阻塞的原因和治疗方案。目前多数研究处于体外或动物实验阶段,Kim等[36]在猪体内模型中,利用3D打印生产由聚己内酯和硫酸钡制成的可降解胆道支架,在置入猪的胆总管后,尽管有轻微的胆管炎症和纤维化,但3D打印的可生物降解胆道支架在猪胆管中显示出良好的可行性和安全性,为泪道支架的转化提供了参考。在泪道支架3D打印研究中,3D建模可依据患者个体的解剖结构差异,实现泪道支架的个性化定制。与传统支架相比,这种个性化定制的泪道支架在植入后,能更好地适应患者的生理结构,提高治疗效果。便有学者提出联合3D打印技术对泪道结构进行3D建模,表面以口唇黏膜覆盖,在支撑力得到满足的情况下结合自体组织制成一种新的支撑材料,但缺乏动物实验和临床研究结果支持,并未得到推行或成为未来的发展趋势之一。需要注意的是,自体组织需快速血管化以避免坏死,3D打印支架缺乏现成血管网络,影响自体组织存活[37]。此类支架虽在解剖适配性和减少异物反应方面潜力显著,但长期功能维持和血管化仍是关键瓶颈。同时,泪道结构精细复杂,现有3D打印技术难以完全精准地打印出符合生理结构的支架,影响支架与组织的贴合度。泪道系统个体差异大,构建准确反映患者生理特征的3D模型难度高,还需更先进的医学影像技术和建模算法等,目前该技术仍处于不断探索与完善阶段,需要更进一步研究如何优化建模流程、开发更理想的支架材料以及拓展其临床应用范围[38],以实现更好的临床与社会效益任重而道远。

2.3 复合材料

       复合材料通过整合不同材料的优势,在力学性能、生物相容性及功能扩展等方面展现出显著潜力。Men等[39]在研究中发现,将由亲水聚氨酯与苯乙烯-嵌段-异丁烯-嵌段-苯乙烯共聚物复合物制成的双泪道亲水支架用于泪道外伤患者中,有较好的手术效果。支架在术后5个月移除前,患者未出现自发性支架丢失或移位,无眼睑错位、肉芽肿形成等,所有患者取出支架后泪道冲洗通畅。Men等[39]认为,与传统双泪小管插管相比,此类支架具有操作时间短,不需鼻内固定或取出等优点,且此类聚合物在操作中更易插入泪道,能够减少医源性损伤或假道形成,但缺乏大样本量的随机对照试验,具体效果有待考察。有研究者发现,将氧化石墨烯、纳米银、壳聚糖、左氧氟沙星及水凝胶联合制成复合凝胶支架,通过兔泪小管损伤模型观察,认为复合支架能够综合各种材料的优势,对解决目前泪道拔管后炎症反应等并发症和瘢痕形成具有一定价值[40]。术后炎症反应发生的另一个重要原因是支撑材料表面的生物膜,早在 20 世纪 90 年代末就有学者通过在有机硅支架表面覆以亲水性聚乙烯吡咯烷酮涂层来提高排水效率,减少生物膜的影响[41-43]。这些发现都使研究者们思考,是否能研制出更优质更符合人体结构的支架材料,综合不同材料的优势进行不同的配比,在支架的质地、形状、性能、排水效率、抗菌性以及生物相容性等方面取得重大突破。Lokesh等[44]研究发现,生物材料由于其天然降解性和生物相容性,在神经组织再生方面有着很大的优势,而天然聚合物生物材料,可制成各种支架、水凝胶、纳米颗粒等[45],凭借其天然特性,在医学组织修复与重建领域大有可为。Wu等[46]也调查了此领域近十年的研究,强调了生物聚合物材料在重建泪道系统中的应用,标志着高分子材料与临床的紧密融合,从脱细胞移植物和脱细胞基质,到创新的天然和合成聚合物,通过调整材料的组成和结构,将成分进行优化组合,既能控制降解速率又能减少不良反应,有利于提高治疗效果,但此类复合材料的制备工艺复杂,成本较高,限制了其应用。

2.4 表面改性技术与药物释放

       表面改性技术通过赋予支架表面特定功能,显著提升其临床适应性。等离子体处理、涂层技术(如肝素、壳聚糖等)及生物分子修饰可改善表面亲水性、减少生物膜形成并降低组织排斥反应[45]。由于感染、炎症或成纤维细胞过度增殖导致的泪道阻塞可能导致持续的溢泪、眼内炎症,甚至失明。Xiao等[47]研究者将表面改性技术应用于泪道支架,采用 “一步法” 和“分步法” 构建了以多巴胺和雷帕霉素为原料的新型多功能超亲水涂层。微米级的雷帕霉素晶体与纳米级的多巴胺粒子结合形成微纳米形貌结构,赋予支架优异而持久的超亲水性,此涂层通过抑制支架植入早期急性炎症和感染的发生,有效地维持了支架植入初始微环境的稳定性。同时,在超亲水涂层的支持下,雷帕霉素晶体表现出持续释放的能力,帮助它们更好地发挥其抗炎、抗菌和抗成纤维细胞增殖的特性,确保有利于泪器上皮细胞快速修复的条件,为解决泪道支架植入后的再狭窄问题提供了一种新的策略。通过在支架表面涂覆抗菌药物或抗炎药物,可有效减少术后感染和炎症反应。Wen等[6]针对药物涂层支架领域,从材料的选择、药物释放速度、药物负载能力等方面进行了阐述,指明了该领域的未来前景。例如,支架表面涂抹抗生素药物可预防术后感染,而涂有糖皮质激素的支架[48]能够减轻局部炎症反应。此外,研究人员还开发了药物释放型支架[7, 49],能够持续释放药物,维持长期的治疗效果,减少患者的用药负担。有研究者将此项技术运用于治疗泪道疾病方面,疗效显著。针对行内镜下泪囊鼻腔吻合术的患者,术后造瘘口情况一直是临床医生需要处理的问题,陈鹏飞等[50]将药物涂层技术与可降解材料相结合,采用糠酸莫米松、聚乙二醇、丙交酯-已交酯共聚物和自膨胀式支架材料组合制成全降解鼻窦药物支架,有效减少了术后复发和炎症反应,减轻了患者的痛苦,Gong等[51]报道,他们开发了一种基于光敏水凝胶的载药泪栓,根据眼部环境释放药物,延长药物停留时间,维持有效药物浓度,为泪道支架材料的药物缓释功能的开发提供了思路。需要注意的是,表面改性技术通过优化涂层特性,在抑制术后感染、炎症、再狭窄等方面虽有优势,但涂层材料的长期稳定性与生物安全性仍需验证,支架的药物缓释功能可延长药物作用时间,有效地减少患者用药负担,但过量或过快的释放易引发副作用,未来仍需深入研究。

3 新型泪道支架材料研发对泪道疾病治疗的意义

       泪道支架的最基本作用是机械性地维持泪道的通畅。泪道阻塞多因炎症、损伤或解剖异常等原因导致,支架可以作为一种支撑结构,防止泪道内壁的再次粘连和瘢痕形成。在泪道探通术或鼻腔泪囊吻合术后,泪道支架能够有效保持泪道开放状态,使泪液顺畅引流,减少术后复发的风险,所以支架材料的选择至关重要。常用的硅胶支架因其柔软且富有弹性,能有效支撑泪道,同时减轻对周围组织的压迫和刺激。近年来,高分子材料和可降解材料的发展,使得支架在支撑泪道恢复过程中能够更加灵活应用,从而达到长期或短期维持泪道通畅的目标。随着支架材料的优化,如采用抗菌涂层或药物释放功能的支架,可以显著减轻术后感染和炎症反应,进一步提高手术效果。抗菌涂层可有效防止细菌在支架表面繁殖,从而避免因感染导致的术后失败。可降解材料支架可以在泪道功能恢复的过程中为泪道提供支撑,并在不再需要支架时自然降解,不会对泪道造成长期刺激或损伤,不需要进行二次手术取出,减少了患者术后的治疗负担,对于需要长期治疗的患者,减轻了频繁手术和复发带来的心理负担和痛苦。这在泪道疾病的长期治疗和患者护理中具有重要意义。

4 未来的发展方向

       泪道支架置入术作为临床治疗泪道阻塞性疾病的常用方法之一,能有效解除泪道阻塞,改善患者症状。当前支架材料仍面临长期生物相容性不足、降解速率与组织修复不匹配、二次手术风险等问题。其材料研发正朝着生物相容性、可降解性、药物缓释及智能化方向突破。材料科学与新兴技术的结合势不可挡,应积极推动复合材料与3D打印技术的深度应用,通过精准建模和低成本合成工艺实现个性化定制,利用表面改性技术延长支架的功能持久性,推动智能材料在泪道系统的临床应用,平衡好力学性能、安全性与经济成本,减少术后并发症,提升临床疗效与患者体验。

5 总结与展望

       泪道支架材料的发展显著改善了泪道阻塞性疾病的治疗效果,但可降解材料的降解调控、复合材料的成本优化、表面改性技术的长效验证以及3D打印标准化流程的缺失仍是关键挑战。通过持续的技术创新和临床应用优化,新型泪道支架在眼科领域的应用前景将更加广阔。

声明

       在论文撰写过程中未使用生成式人工智能。论文撰写中的所有内容仅有作者独立完成,并对出版物的真实性和准确性承担全部责任。

利益冲突

       所有作者均声明不存在利益冲突。

开放获取声明

       本文适用于知识共享许可协议 (Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。

1、Atkova EL, Yartsev VD, Krakhovetskiy NN. Disorders of lacrimal drainage: the way from theory to practice[ J]. Vestn Oftalmol, 2023, 139(3. Vyp. 2): 71-80. DOI: 10.17116/oftalma202313903271.Atkova EL, Yartsev VD, Krakhovetskiy NN. Disorders of lacrimal drainage: the way from theory to practice[ J]. Vestn Oftalmol, 2023, 139(3. Vyp. 2): 71-80. DOI: 10.17116/oftalma202313903271.
2、%E7%A7%A6%E4%BA%9A%E5%B9%B3%2C%20%E5%A7%9C%E8%8B%8F.%20%E6%B3%AA%E9%81%93%E7%BD%AE%E7%AE%A1%E6%9C%AF%E6%B2%BB%E7%96%97%E6%B3%AA%E9%81%93%E7%8B%AD%E7%AA%84%E6%88%96%E9%98%BB%E5%A1%9E%E7%9A%84%E4%B8%B4%E5%BA%8A%E6%95%88%E6%9E%9C%5B%20J%5D.%20%0A%E6%99%BA%E6%85%A7%E5%81%A5%E5%BA%B7%2C%202024%2C%2010(18)%3A%2047-49.%20DOI%3A%2010.19335%2Fj.cnki.2096-1219.%20%0A2024.18.014.%3Cbr%3E%0A%20QIN%20YP%2C%20JIANG%20S.%C2%A0Clinical%20efficacy%20of%20lacrimal%20duct%20intubation%20in%20%0Athe%20treatment%20of%20lacrimal%20duct%20stenosis%20or%20obstruction%C2%A0%20%5B%20J%5D.%C2%A0%20Smart%20%0AHealthcare%2C%202024%2C%2010(18)%3A%2047-49.%20DOI%3A%2010.19335%2Fj.cnki.2096-%20%0A1219.2024.18.014.QIN%20YP%2C%20JIANG%20S.%C2%A0Clinical%20efficacy%20of%20lacrimal%20duct%20intubation%20in%20%0Athe%20treatment%20of%20lacrimal%20duct%20stenosis%20or%20obstruction%C2%A0%20%5B%20J%5D.%C2%A0%20Smart%20%0AHealthcare%2C%202024%2C%2010(18)%3A%2047-49.%20DOI%3A%2010.19335%2Fj.cnki.2096-%20%0A1219.2024.18.014.
3、Radwan AB, Okonkwo PC, Murugan S, et al. Evaluation of the Influence of Eggshell (ES) Concentration on the Degradation Behavior of Mg-2.5Zn Biodegradable Alloy in Simulated Body Fluid[ J]. ACS Biomater Sci Eng, 2023, 9(5): 2376-2391. DOI: 10.1021/ acsbiomaterials.2c01366.Radwan AB, Okonkwo PC, Murugan S, et al. Evaluation of the Influence of Eggshell (ES) Concentration on the Degradation Behavior of Mg-2.5Zn Biodegradable Alloy in Simulated Body Fluid[ J]. ACS Biomater Sci Eng, 2023, 9(5): 2376-2391. DOI: 10.1021/ acsbiomaterials.2c01366.
4、Mayers J, Hofman B, Sobiech I, et al. Insights into the biocompatibility of biodegradable metal lic moly bdenum for cardiovascular applications-a critical review[ J]. Front Bioeng Biotechnol, 2024, 12: 1457553. DOI: 10.3389/fbioe.2024.1457553.Mayers J, Hofman B, Sobiech I, et al. Insights into the biocompatibility of biodegradable metal lic moly bdenum for cardiovascular applications-a critical review[ J]. Front Bioeng Biotechnol, 2024, 12: 1457553. DOI: 10.3389/fbioe.2024.1457553.
5、%E8%8E%AB%E4%B8%BD%E5%A8%9F%2C%20%E5%88%98%E8%8E%B9%2C%20%E5%BC%A0%E9%9D%96%E7%BE%9A%2C%20%E7%AD%89.%E5%A3%B3%E8%81%9A%E7%B3%96%2F%E6%B0%A7%E5%8C%96%E7%9F%B3%E5%A2%A8%E7%83%AF%E5%A4%8D%E5%90%88%E6%9D%90%E6%96%99%E7%A0%94%E7%A9%B6%0A%E7%8E%B0%E7%8A%B6%5B%20J%5D.%20%E5%A4%8D%E5%90%88%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5%2C%202025%2C%2042(3)%3A%201261-1271.%20DOI%3A%2010.13801%2F%0Aj.cnki.fhclxb.20240816.001.%0A%20MO%20LJ%2C%20LIU%20Y%2C%20ZHANG%20JL%2C%20et%20al.Research%20status%20of%20chitosan%2Fgraphene%20oxide%20composite%20materials%5B%20J%5D.%C2%A0Acta%20Materiae%20Compositae%20Sinica%2C%202025%2C%20%0A42(3)%3A1261-1271.%20DOI%3A10.13801%2Fj.cnki.fhclxb.20240816.001.MO%20LJ%2C%20LIU%20Y%2C%20ZHANG%20JL%2C%20et%20al.Research%20status%20of%20chitosan%2Fgraphene%20oxide%20composite%20materials%5B%20J%5D.%C2%A0Acta%20Materiae%20Compositae%20Sinica%2C%202025%2C%20%0A42(3)%3A1261-1271.%20DOI%3A10.13801%2Fj.cnki.fhclxb.20240816.001.
6、Wen Y, Li Y, Yang R, et al. Biofunctional coatings and drug-coated stents for restenosis therapy[ J]. Mater Today Bio, 2024, 29: 101259. DOI: 10.1016/j.mtbio.2024.101259.Wen Y, Li Y, Yang R, et al. Biofunctional coatings and drug-coated stents for restenosis therapy[ J]. Mater Today Bio, 2024, 29: 101259. DOI: 10.1016/j.mtbio.2024.101259.
7、Moradi MR, Salahinejad E, Sharifi E, et al. Controlled drug delivery from chitosan-coated heparin-loaded nanopores anodically grown on nitinol shape-memory alloy[ J]. Carbohydr Polym, 2023, 314: 120961. DOI: 10.1016/j.carbpol.2023.120961.Moradi MR, Salahinejad E, Sharifi E, et al. Controlled drug delivery from chitosan-coated heparin-loaded nanopores anodically grown on nitinol shape-memory alloy[ J]. Carbohydr Polym, 2023, 314: 120961. DOI: 10.1016/j.carbpol.2023.120961.
8、R%C3%B3%C5%BCycki%20R%2C%20Skrzypiec%20%C5%81%2C%20Ulaszewska%20K%2C%20et%20al.%20Effectiveness%20and%20factors%20%0Ainfluencing%20success%20of%20transcanalicular%20laser-assisted%20endoscopic%20%0Adacryocystorhinostomy%3A%20cohort%20study%5B%20J%5D.%20Diagnostics%20(Basel)%2C%202024%2C%20%0A14(17)%3A%201944.%20DOI%3A%2010.3390%2Fdiagnostics14171944.R%C3%B3%C5%BCycki%20R%2C%20Skrzypiec%20%C5%81%2C%20Ulaszewska%20K%2C%20et%20al.%20Effectiveness%20and%20factors%20%0Ainfluencing%20success%20of%20transcanalicular%20laser-assisted%20endoscopic%20%0Adacryocystorhinostomy%3A%20cohort%20study%5B%20J%5D.%20Diagnostics%20(Basel)%2C%202024%2C%20%0A14(17)%3A%201944.%20DOI%3A%2010.3390%2Fdiagnostics14171944.
9、Jeong HE, Lee CJ, Min SC. Improvement of jelly 3D printing using ultrasound treatment and calcium chloride[ J]. Food Sci Biotechnol, 2024, 33(11): 2551-2557. DOI: 10.1007/s10068-024-01517-z.Jeong HE, Lee CJ, Min SC. Improvement of jelly 3D printing using ultrasound treatment and calcium chloride[ J]. Food Sci Biotechnol, 2024, 33(11): 2551-2557. DOI: 10.1007/s10068-024-01517-z.
10、Liu LL, Qin J, Zeng CH, et al. Biodegradable PTX-PLGA-coated magnesium stent for benign esophageal stricture: an experimental study[ J]. Acta Biomater, 2022, 146: 495-505. DOI: 10.1016/ j.actbio.2022.04.038.Liu LL, Qin J, Zeng CH, et al. Biodegradable PTX-PLGA-coated magnesium stent for benign esophageal stricture: an experimental study[ J]. Acta Biomater, 2022, 146: 495-505. DOI: 10.1016/ j.actbio.2022.04.038.
11、%E5%B4%94%E5%B7%8D.%20%E6%BF%80%E5%85%89%E6%B3%AA%E9%81%93%E6%88%90%E5%BD%A2%E8%81%94%E5%90%88%E4%BA%BA%E5%B7%A5%E6%B3%AA%E7%AE%A1%E7%BD%AE%E5%85%A5%E6%B2%BB%E7%96%97%E6%B3%AA%E9%81%93%E7%8B%AD%E7%AA%84%E7%9A%84%E7%96%97%E6%95%88%0A%E5%88%86%E6%9E%90%5B%20J%5D.%20%E4%B8%AD%E5%9B%BD%E7%8E%B0%E4%BB%A3%E8%8D%AF%E7%89%A9%E5%BA%94%E7%94%A8%2C%202020%2C%2014(22)%3A%2072-74.%20DOI%3A10.14164%2F%0Aj.cnki.cn11-5581%2Fr.2020.22.033.%3Cbr%3E%0A%20CUI%20W.%C2%A0%20Efficacy%20analysis%20of%20laser%20dacryoplasty%20combined%20with%20%0Aartificial%20lacrimal%20duct%20intubation%20in%20the%20treatment%20of%20lacrimal%20duct%20%0Astenosis%5B%20J%5D.%C2%A0%20Chin%20J%20Mod%20Drug%20Appli%2C%202020%2C%2014(22)%3A%2072-74.%20DOI%3A%20%0A10.14164%2Fj.cnki.cn11-5581%2Fr.2020.22.033.%20CUI%20W.%C2%A0%20Efficacy%20analysis%20of%20laser%20dacryoplasty%20combined%20with%20%0Aartificial%20lacrimal%20duct%20intubation%20in%20the%20treatment%20of%20lacrimal%20duct%20%0Astenosis%5B%20J%5D.%C2%A0%20Chin%20J%20Mod%20Drug%20Appli%2C%202020%2C%2014(22)%3A%2072-74.%20DOI%3A%20%0A10.14164%2Fj.cnki.cn11-5581%2Fr.2020.22.033.
12、%E5%BE%90%E5%BC%BA%2C%E5%AD%99%E7%A7%8B%E6%9C%88%2C%E9%A9%AC%E7%90%B3%E4%B8%BD%2C%E7%AD%89.%20%E7%A1%AC%E8%86%9C%E5%A4%96%E5%AF%BC%E7%AE%A1%E8%BE%85%E5%8A%A9%E5%8F%8C%E8%B7%AF%E7%BD%AE%E7%AE%A1%E6%9C%AF%E4%B8%8E%E4%BC%A0%E7%BB%9F%0A%E6%9C%AF%E5%BC%8F%E5%9C%A8%E6%B3%AA%E5%B0%8F%E7%AE%A1%E6%96%AD%E8%A3%82%E5%90%BB%E5%90%88%E6%9C%AF%E4%B8%AD%E7%9A%84%E7%96%97%E6%95%88%E6%AF%94%E8%BE%83%5B%20J%5D.%20%E7%9C%BC%E7%A7%91%E5%AD%A6%E6%8A%A5%2C%202021%2C%20%0A36(11)%3A%20888-893.%20DOI%3A10.3978%2Fj.issn.1000-4432.2021.07.29.%3Cbr%3E%0A%20XU%20Q%2C%20SUN%20QY%2C%20MA%20LL%2C%20et%20al.%C2%A0Efficacy%20comparison%20of%20epidural%20catheter%02assisted%20double-canalicular%20intubation%20versus%20traditional%20procedure%20in%20%0Acanalicular%20laceration%20anastomosis%5B%20J%5D.%C2%A0Yan%20Ke%20Xue%20Bao%2C%202021%2C%2036(11)%3A%20%0A888-893.%20DOI%3A%2010.3978%2Fj.issn.1000-4432.2021.07.29.XU%20Q%2C%20SUN%20QY%2C%20MA%20LL%2C%20et%20al.%C2%A0Efficacy%20comparison%20of%20epidural%20catheter%02assisted%20double-canalicular%20intubation%20versus%20traditional%20procedure%20in%20%0Acanalicular%20laceration%20anastomosis%5B%20J%5D.%C2%A0Yan%20Ke%20Xue%20Bao%2C%202021%2C%2036(11)%3A%20%0A888-893.%20DOI%3A%2010.3978%2Fj.issn.1000-4432.2021.07.29.
13、Fan YM, Yin XX , Gao N, et al. Long-term outcomes of laser dacryoplasty combined with intubation using a new silicon tube in patients with lacrimal duct obstruction[ J]. Int J Ophthalmol, 2023, 16(9): 1475-1481. DOI: 10.18240/ijo.2023.09.14.Fan YM, Yin XX , Gao N, et al. Long-term outcomes of laser dacryoplasty combined with intubation using a new silicon tube in patients with lacrimal duct obstruction[ J]. Int J Ophthalmol, 2023, 16(9): 1475-1481. DOI: 10.18240/ijo.2023.09.14.
14、Sahan B, Ciftci F. Trephination and silicone tube intubation in the treatment of canalicular obstruction[ J]. Int Ophthalmol, 2023, 43(2): 541-547. DOI: 10.1007/s10792-022-02453-9.Sahan B, Ciftci F. Trephination and silicone tube intubation in the treatment of canalicular obstruction[ J]. Int Ophthalmol, 2023, 43(2): 541-547. DOI: 10.1007/s10792-022-02453-9.
15、Shen X, Huang C, Wang S, et al. Optimisation of reduction for prolapsed silicone tube after lacrimal intubation[ J]. J Laryngol Otol, 2024, 138(5): 535-539. DOI: 10.1017/s0022215123001706.Shen X, Huang C, Wang S, et al. Optimisation of reduction for prolapsed silicone tube after lacrimal intubation[ J]. J Laryngol Otol, 2024, 138(5): 535-539. DOI: 10.1017/s0022215123001706.
16、Ali MJ. Microbial metagenomics of the extubated lacrimal stents follow ing dacr yoc ystorhinostomy: the lacriome paper 4[ J]. Ophthalmic Plast Reconstr Surg, 2022, 38(6): 558-562. DOI: 10.1097/iop.0000000000002202.Ali MJ. Microbial metagenomics of the extubated lacrimal stents follow ing dacr yoc ystorhinostomy: the lacriome paper 4[ J]. Ophthalmic Plast Reconstr Surg, 2022, 38(6): 558-562. DOI: 10.1097/iop.0000000000002202.
17、Zimmermann JA, Esser EL, Merté RL, et al. Nasolacrimal intubation in transcanalicular endoscopic dacryoplasty: a long-term follow-up study[ J]. Sci Rep, 2023, 13(1): 7521. DOI: 10.1038/s41598-023- 34351-0.Zimmermann JA, Esser EL, Merté RL, et al. Nasolacrimal intubation in transcanalicular endoscopic dacryoplasty: a long-term follow-up study[ J]. Sci Rep, 2023, 13(1): 7521. DOI: 10.1038/s41598-023- 34351-0.
18、Okuyucu S, Gorur H, Oksuz H , et al . Endoscopic dacryocystorhinostomy with silicone, polypropylene, and T-tube stents; randomized controlled trial of efficacy and safety[ J]. Am J Rhinol Allergy, 2015, 29(1): 63-68. DOI: 10.2500/ajra.2015.29.4119.Okuyucu S, Gorur H, Oksuz H , et al . Endoscopic dacryocystorhinostomy with silicone, polypropylene, and T-tube stents; randomized controlled trial of efficacy and safety[ J]. Am J Rhinol Allergy, 2015, 29(1): 63-68. DOI: 10.2500/ajra.2015.29.4119.
19、Boniao ELO, Gungab AGNL, Lim BXH, et al. Scanning electron microscopic features of lacrimal drainage Silastic stents: Comparison of various Crawford and large-diameter stents[ J]. PLoS One, 2023, 18(12): e0295285. DOI: 10.1371/journal.pone.0295285.Boniao ELO, Gungab AGNL, Lim BXH, et al. Scanning electron microscopic features of lacrimal drainage Silastic stents: Comparison of various Crawford and large-diameter stents[ J]. PLoS One, 2023, 18(12): e0295285. DOI: 10.1371/journal.pone.0295285.
20、Cai W, Wang H, Zhou Y, et al. Canalicular laceration repair using a novel bicanalicular silicone stent versus traditional bicanalicular stent with nasal fixation[ J]. J Plast Reconstr Aesthetic Surg, 2024, 90: 192- 199. DOI: 10.1016/j.bjps.2024.02.006.Cai W, Wang H, Zhou Y, et al. Canalicular laceration repair using a novel bicanalicular silicone stent versus traditional bicanalicular stent with nasal fixation[ J]. J Plast Reconstr Aesthetic Surg, 2024, 90: 192- 199. DOI: 10.1016/j.bjps.2024.02.006.
21、%E5%88%98%E6%98%9F%E6%98%9F%2C%20%E6%9D%A8%E9%98%B3%2C%20%E9%A9%AC%E9%9B%AA%E7%90%B4%2C%20%E7%AD%89.%20%E9%BC%BB%E6%B3%AA%E7%AE%A1%E6%94%AF%E6%9E%B6%E7%9A%84%E6%9D%90%E6%96%99%E8%AE%BE%E8%AE%A1%E4%B8%8E%E4%B8%B4%E5%BA%8A%E7%A0%94%0A%E7%A9%B6%E8%BF%9B%E5%B1%95%5B%20J%5D.%20%E7%94%9F%E7%89%A9%E5%8C%BB%E5%AD%A6%E5%B7%A5%E7%A8%8B%E4%B8%8E%E4%B8%B4%E5%BA%8A%2C%202019%2C%2023(3)%3A%20359-364.%20DOI%3A%20%0A10.13339%2Fj.cnki.sglc.20190513.023.%3Cbr%3E%0A%20Liu%20XX%2C%20Yang%20Y%2C%20Ma%20XQ%2C%20et%20al.%C2%A0Advances%20in%20material%20design%20and%20clinical%20%0Aresearch%20of%20nasolacrimal%20duct%20stents%5B%20J%5D.%C2%A0Biomed%20Engin%20Clin%20Med%2C%202019%2C%20%0A23(3)%3A%20359-364.%20DOI%3A10.13339%2Fj.cnki.sglc.20190513.023.Liu%20XX%2C%20Yang%20Y%2C%20Ma%20XQ%2C%20et%20al.%C2%A0Advances%20in%20material%20design%20and%20clinical%20%0Aresearch%20of%20nasolacrimal%20duct%20stents%5B%20J%5D.%C2%A0Biomed%20Engin%20Clin%20Med%2C%202019%2C%20%0A23(3)%3A%20359-364.%20DOI%3A10.13339%2Fj.cnki.sglc.20190513.023.
22、Darie-Ni%C8%9B%C4%83%20RN%2C%20R%C3%A2p%C4%83%20M%2C%20Fr%C4%85ckowiak%20S.%20Special%20features%20of%20polyester%02based%20materials%20for%20medical%20applications%5B%20J%5D.%20Polymers%20(Basel)%2C%202022%2C%20%0A14(5)%3A%20951.%20DOI%3A%2010.3390%2Fpolym14050951.Darie-Ni%C8%9B%C4%83%20RN%2C%20R%C3%A2p%C4%83%20M%2C%20Fr%C4%85ckowiak%20S.%20Special%20features%20of%20polyester%02based%20materials%20for%20medical%20applications%5B%20J%5D.%20Polymers%20(Basel)%2C%202022%2C%20%0A14(5)%3A%20951.%20DOI%3A%2010.3390%2Fpolym14050951.
23、Zhang Y, Wang L, Wang Y, et al. Degradable antimicrobial ureteral stent construction with silver@graphdiyne nanocomposite[ J]. Adv Healthc Mater, 2023, 12(26): e2300885. DOI: 10.1002/adhm.202300885.Zhang Y, Wang L, Wang Y, et al. Degradable antimicrobial ureteral stent construction with silver@graphdiyne nanocomposite[ J]. Adv Healthc Mater, 2023, 12(26): e2300885. DOI: 10.1002/adhm.202300885.
24、%E9%83%91%E8%B4%B5%E7%90%83%2C%20%E8%92%8B%E4%B8%BD%E9%9C%9E%2C%20%E9%A1%BE%E5%85%B6%E8%83%9C%2C%E7%AD%89.%20%E6%96%B0%E5%9E%8B%E5%8F%AF%E9%99%8D%E8%A7%A3%E4%BA%BA%E5%B7%A5%E6%B3%AA%E5%B0%8F%E7%AE%A1%E7%9A%84%E5%88%B6%E5%A4%87%E4%B8%8E%E8%A1%A8%0A%E5%BE%81%5B%20J%5D.%20%E4%B8%AD%E5%9B%BD%E4%BF%AE%E5%A4%8D%E9%87%8D%E5%BB%BA%E5%A4%96%E7%A7%91%E6%9D%82%E5%BF%97%2C%202008%2C%2022(7)%3A%20856-860.%3Cbr%3E%0A%20Zheng%20GQ%2C%20Jiang%20LX%2C%20Gu%20QS%2C%20et%20al.%C2%A0Preparation%20and%20characterization%20%0Aof%20novel%20degradable%20artificial%20canaliculus%20tubes%5B%20J%5D.%C2%A0Chin%20J%20Reparat%20%0AReconstruct%20Surg%2C%202008%2C%2022(7)%3A%20856-860.Zheng%20GQ%2C%20Jiang%20LX%2C%20Gu%20QS%2C%20et%20al.%C2%A0Preparation%20and%20characterization%20%0Aof%20novel%20degradable%20artificial%20canaliculus%20tubes%5B%20J%5D.%C2%A0Chin%20J%20Reparat%20%0AReconstruct%20Surg%2C%202008%2C%2022(7)%3A%20856-860.
25、Zhan X, Guo X, Liu R, et al. Intervention using a novel biodegradable hollow stent containing polylactic acid-polyprolactone-polyethylene glycol complexes against lacrimal duct obstruction disease[ J]. PLoS One, 2017, 12(6): e0178679. DOI: 10.1371/journal.pone.0178679.Zhan X, Guo X, Liu R, et al. Intervention using a novel biodegradable hollow stent containing polylactic acid-polyprolactone-polyethylene glycol complexes against lacrimal duct obstruction disease[ J]. PLoS One, 2017, 12(6): e0178679. DOI: 10.1371/journal.pone.0178679.
26、%E8%A9%B9%E6%96%B0%E5%AA%9B%2C%20%E9%83%AD%E9%91%AB%2C%20%E8%83%A1%E7%BB%B4%E7%90%A8%2C%20%E7%AD%89.%20%E6%96%B0%E5%9E%8B%E5%8F%AF%E9%99%8D%E8%A7%A3%E6%B3%AA%E9%81%93%E6%94%AF%E6%9E%B6%E7%9A%84%E5%88%B6%E5%A4%87%E5%8F%8A%E5%85%B6%E7%94%9F%E7%89%A9%E9%99%8D%E8%A7%A3%E6%80%A7%E5%92%8C%E7%94%9F%E7%89%A9%E7%9B%B8%E5%AE%B9%E6%80%A7%E8%AF%84%E4%BC%B0%5B%20J%5D.%20%E4%B8%AD%E5%8D%8E%E5%AE%9E%E9%AA%8C%E7%9C%BC%E7%A7%91%E6%9D%82%E5%BF%97%2C%202017%2C%2035(2)%3A%20%0A129-134.%20DOI%3A%2010.3760%2Fcma.j.issn.2095-0160.2017.02.008.%3Cbr%3E%0A%20Zhan%20XY%2C%20Guo%20X%2C%20Hu%20WK%2C%20et%20al.%C2%A0%20Preparation%20of%20novel%20degradable%20%0Alacrimal%20duct%20stents%20and%20evaluation%20of%20their%20biodegradability%20and%20%0Abiocompatibility%5B%20J%5D.%C2%A0Chin%20J%20Experiment%20Ophthalmol%2C%202017%2C%2035(2)%3A%20%0A129-134.%20DOI%3A10.3760%2Fcma.j.issn.2095-0160.2017.02.008.Zhan%20XY%2C%20Guo%20X%2C%20Hu%20WK%2C%20et%20al.%C2%A0%20Preparation%20of%20novel%20degradable%20%0Alacrimal%20duct%20stents%20and%20evaluation%20of%20their%20biodegradability%20and%20%0Abiocompatibility%5B%20J%5D.%C2%A0Chin%20J%20Experiment%20Ophthalmol%2C%202017%2C%2035(2)%3A%20%0A129-134.%20DOI%3A10.3760%2Fcma.j.issn.2095-0160.2017.02.008.
27、%E4%B8%81%E5%A8%9F%2C%20%E6%BD%98%E5%8F%B6.%20%E9%98%BB%E5%A1%9E%E6%80%A7%E6%B3%AA%E9%81%93%E7%96%BE%E7%97%85%E7%9A%84%E4%B8%B4%E5%BA%8A%E6%B2%BB%E7%96%97%E8%BF%9B%E5%B1%95%5B%20J%5D.%20%E4%B8%AD%E5%8D%8E%E7%9C%BC%E8%A7%86%E5%85%89%0A%E5%AD%A6%E4%B8%8E%E8%A7%86%E8%A7%89%E7%A7%91%E5%AD%A6%E6%9D%82%E5%BF%97%2C%202014%2C%2016(2)%3A%20125-128.%20DOI%3A%2010.3760%2Fcma.%0Aj.issn.1674-845X.2014.02.016.%0A%20Ding%20J%2C%20Pan%20Y.%C2%A0Advances%20in%20clinical%20treatment%20of%20obstructive%20lacrimal%20%0Aduct%20diseases%5B%20J%5D.%C2%A0Chin%20J%20Optome%20Ophthalmol%20Vis%20Sci%2C%202014%2C%2016(2)%3A%20%0A125-128.%20DOI%3A%2010.3760%2Fcma.j.issn.1674-845X.2014.02.016.Ding%20J%2C%20Pan%20Y.%C2%A0Advances%20in%20clinical%20treatment%20of%20obstructive%20lacrimal%20%0Aduct%20diseases%5B%20J%5D.%C2%A0Chin%20J%20Optome%20Ophthalmol%20Vis%20Sci%2C%202014%2C%2016(2)%3A%20%0A125-128.%20DOI%3A%2010.3760%2Fcma.j.issn.1674-845X.2014.02.016.
28、Kobayashi E, Ling Y, Kobayashi R, et al. Development of a lip vermilion epithelium reconstruction model using keratinocytes from skin and oral mucosa[ J]. Histochem Cell Biol, 2023, 160(4): 349-359. DOI: 10.1007/s00418-023-02206-4.Kobayashi E, Ling Y, Kobayashi R, et al. Development of a lip vermilion epithelium reconstruction model using keratinocytes from skin and oral mucosa[ J]. Histochem Cell Biol, 2023, 160(4): 349-359. DOI: 10.1007/s00418-023-02206-4.
29、Izumi K, Yortchan W, Aizawa Y, et al. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents[ J]. Jpn Dent Sci Rev, 2023, 59: 365-374. DOI: 10.1016/j.jdsr.2023.10.002.Izumi K, Yortchan W, Aizawa Y, et al. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents[ J]. Jpn Dent Sci Rev, 2023, 59: 365-374. DOI: 10.1016/j.jdsr.2023.10.002.
30、%E9%99%88%E6%80%9D%E6%A8%BE.%20%E8%87%AA%E4%BD%93%E7%BB%93%E8%86%9C%E7%A7%BB%E6%A4%8D%E5%9C%A8%E6%B3%AA%E5%B0%8F%E7%AE%A1%E9%98%BB%E5%A1%9E%E9%87%8D%E5%BB%BA%E4%B8%AD%E7%9A%84%E5%BA%94%E7%94%A8%5BD%5D.%20%E5%8D%97%E4%BA%AC%EF%BC%9A%0A%E5%8D%97%E4%BA%AC%E5%8C%BB%E7%A7%91%E5%A4%A7%E5%AD%A6%2C%202021.%20DOI%3A%2010.27249%2Fd.cnki.gnjyu.2021.000346.%3Cbr%3E%0A%20Chen%20SY.%C2%A0Application%20of%20autologous%20conjunctival%20transplantation%20in%20%0Acanalicular%20obstruction%20reconstruction%5BD%5D.%20Nanjing%3A%20Nanjing%20Medical%20%0AUniversity%2C%202021.%20DOI%3A10.27249%2Fd.cnki.gnjyu.2021.000346.Chen%20SY.%C2%A0Application%20of%20autologous%20conjunctival%20transplantation%20in%20%0Acanalicular%20obstruction%20reconstruction%5BD%5D.%20Nanjing%3A%20Nanjing%20Medical%20%0AUniversity%2C%202021.%20DOI%3A10.27249%2Fd.cnki.gnjyu.2021.000346.
31、Ma M, Yuan Q, Ye L, et al. An experimental study of amniotic lacrimal duct stents in the treatment of perimenopausal female rabbits with dry eye[ J]. Mol Med Rep, 2019, 19(2): 1056-1064. DOI: 10.3892/ mmr.2018.9731.Ma M, Yuan Q, Ye L, et al. An experimental study of amniotic lacrimal duct stents in the treatment of perimenopausal female rabbits with dry eye[ J]. Mol Med Rep, 2019, 19(2): 1056-1064. DOI: 10.3892/ mmr.2018.9731.
32、%E9%A1%BE%E5%9B%BD%E5%BC%BA.%E7%BE%8A%E8%86%9C%E6%B3%AA%E9%81%93%E4%BF%AE%E5%A4%8D%E6%94%AF%E6%9E%B6%E6%A4%8D%E5%85%A5%E6%B2%BB%E7%96%97%E6%B3%AA%E9%81%93%E9%98%BB%E5%A1%9E%E6%80%A7%E7%96%BE%E7%97%85%E6%95%88%E6%9E%9C%0A%E8%A7%82%E5%AF%9F%5B%20J%5D.%20%E4%B8%AD%E5%9B%BD%E4%B9%A1%E6%9D%91%E5%8C%BB%E8%8D%AF%2C%202022%2C%2029(6)%3A%2018-19.DOI%3A10.19542%2F%0Aj.cnki.1006-5180.006096.%3Cbr%3E%0A%20Gu%20GQ.%C2%A0%20Therapeutic%20effect%20observation%20of%20amniotic%20membrane%20%0Alacrimal%20duct%20repair%20stent%20implantation%20for%20lacrimal%20duct%20obstructive%20%0Adiseases%5B%20J%5D.%C2%A0%20Chin%20J%20Rur%20Med%20Pharm%2C%202022%2C%2029(6)%3A%2018-19.%20DOI%3A%20%0A10.19542%2Fj.cnki.1006-5180.006096.Gu%20GQ.%C2%A0%20Therapeutic%20effect%20observation%20of%20amniotic%20membrane%20%0Alacrimal%20duct%20repair%20stent%20implantation%20for%20lacrimal%20duct%20obstructive%20%0Adiseases%5B%20J%5D.%C2%A0%20Chin%20J%20Rur%20Med%20Pharm%2C%202022%2C%2029(6)%3A%2018-19.%20DOI%3A%20%0A10.19542%2Fj.cnki.1006-5180.006096.
33、Madisi NY, Ali S, Greenberg D, et al. A multicenter observational study assessing the safety, feasibility, and complications of Bonastent in central airway obstruction[ J]. Ther Adv Respir Dis, 2024, 18: 17534666241260235. DOI: 10.1177/17534666241260235.Madisi NY, Ali S, Greenberg D, et al. A multicenter observational study assessing the safety, feasibility, and complications of Bonastent in central airway obstruction[ J]. Ther Adv Respir Dis, 2024, 18: 17534666241260235. DOI: 10.1177/17534666241260235.
34、Ja%C3%B1ez-Garcia%20L%2C%20Saenz-Frances%20F%2C%20Ramirez-Sebastian%20JM%2C%20et%20al.%20Three%02dimensional%20reconstruction%20of%20the%20bony%20nasolacrimal%20canal%20by%20%0Aautomated%20segmentation%20of%20computed%20tomography%20images%5B%20J%5D.%20PLoS%20One%2C%202016%2C%2011(5)%3A%20e0155436.%20DOI%3A%2010.1371%2Fjournal.pone.0155436.Ja%C3%B1ez-Garcia%20L%2C%20Saenz-Frances%20F%2C%20Ramirez-Sebastian%20JM%2C%20et%20al.%20Three%02dimensional%20reconstruction%20of%20the%20bony%20nasolacrimal%20canal%20by%20%0Aautomated%20segmentation%20of%20computed%20tomography%20images%5B%20J%5D.%20PLoS%20One%2C%202016%2C%2011(5)%3A%20e0155436.%20DOI%3A%2010.1371%2Fjournal.pone.0155436.
35、Lee S, Lee UY, Yang SW, et al. 3D morphological classification of the nasolacrimal duct: Anatomical study for planning treatment of tear drainage obstruction[ J]. Clin Anat, 2021, 34(4): 624-633. DOI: 10.1002/ca.23678.Lee S, Lee UY, Yang SW, et al. 3D morphological classification of the nasolacrimal duct: Anatomical study for planning treatment of tear drainage obstruction[ J]. Clin Anat, 2021, 34(4): 624-633. DOI: 10.1002/ca.23678.
36、Kim JH, Ha DH, Han ES, et al. Feasibility and safety of a novel 3D-printed biodegradable biliary stent in an in vivo porcine model: a preliminary study[ J]. Sci Rep, 2022, 12(1): 15875. DOI: 10.1038/ s41598-022-19317-y.Kim JH, Ha DH, Han ES, et al. Feasibility and safety of a novel 3D-printed biodegradable biliary stent in an in vivo porcine model: a preliminary study[ J]. Sci Rep, 2022, 12(1): 15875. DOI: 10.1038/ s41598-022-19317-y.
37、Wu KY, Dave A, Daigle P, et al. Advanced biomaterials for lacrimal tissue engineering: a review[ J]. Materials (Basel), 2024, 17(22): 5425. DOI: 10.3390/ma17225425.Wu KY, Dave A, Daigle P, et al. Advanced biomaterials for lacrimal tissue engineering: a review[ J]. Materials (Basel), 2024, 17(22): 5425. DOI: 10.3390/ma17225425.
38、Saxena A, Malviya R . 3D printable drug delivery systems: nextgeneration healthcare technology and regulatory aspects [ J]. Curr Pharm Des, 2023, 29(35): 2814-2826.DOI: 10.2174/0113816128275 872231105183036.Saxena A, Malviya R . 3D printable drug delivery systems: nextgeneration healthcare technology and regulatory aspects [ J]. Curr Pharm Des, 2023, 29(35): 2814-2826.DOI: 10.2174/0113816128275 872231105183036.
39、Men CJ, Ko AC, Ediriwickrema LS, et al. Canalicular laceration repair using a self-retaining, bicanalicular, hydrophilic nasolacrimal stent[ J]. Orbit, 2021, 40(3): 239-242. DOI: 10.1080/01676830.2020.1768559.Men CJ, Ko AC, Ediriwickrema LS, et al. Canalicular laceration repair using a self-retaining, bicanalicular, hydrophilic nasolacrimal stent[ J]. Orbit, 2021, 40(3): 239-242. DOI: 10.1080/01676830.2020.1768559.
40、%E9%82%B9%E9%9B%AA%E9%A6%99.%20%E7%BA%B3%E7%B1%B3%E9%93%B6%E6%B0%A7%E5%8C%96%E7%9F%B3%E5%A2%A8%E7%83%AF%E8%BD%BD%E8%8D%AF%E5%87%9D%E8%83%B6%E6%B3%AA%E9%81%93%E6%94%AF%E6%9E%B6%E5%AF%B9%E5%85%94%E6%B3%AA%E5%B0%8F%E7%AE%A1%E6%8D%9F%E4%BC%A4%0A%E6%84%88%E5%90%88%E8%BF%87%E7%A8%8B%E7%9A%84%E5%BD%B1%E5%93%8D%5BD%5D.%20%E8%A1%A1%E9%98%B3%3A%20%E5%8D%97%E5%8D%8E%E5%A4%A7%E5%AD%A6%2C%202018.%3Cbr%3E%0A%20Zou%20XX.%C2%A0Effects%20of%20nano-silver%20graphene%20oxide%20drug-loaded%20gel%20lacrimal%20%0Aduct%20stent%20on%20the%20healing%20process%20of%20rabbit%20canalicular%20injury%5BD%5D.%20%0AHengyang%3A%20University%20of%20South%20China%2C%202018.Zou%20XX.%C2%A0Effects%20of%20nano-silver%20graphene%20oxide%20drug-loaded%20gel%20lacrimal%20%0Aduct%20stent%20on%20the%20healing%20process%20of%20rabbit%20canalicular%20injury%5BD%5D.%20%0AHengyang%3A%20University%20of%20South%20China%2C%202018.
41、Kim DJ, Park JH, Chang M. Species-specific characteristics of the biofilm generated in silicone tube: an in vitro study[ J]. BMC Ophthalmol, 2018, 18(1): 85. DOI: 10.1186/s12886-018-0750-1.Kim DJ, Park JH, Chang M. Species-specific characteristics of the biofilm generated in silicone tube: an in vitro study[ J]. BMC Ophthalmol, 2018, 18(1): 85. DOI: 10.1186/s12886-018-0750-1.
42、Lee MJ, Park J, Yang MK, et al. Long-term results of maintenance of lacrimal silicone stent in patients with functional Epiphora after external dacryocystorhinostomy[ J]. Eye (Lond), 2020, 34(4): 669- 674. DOI: 10.1038/s41433-019-0572-2.Lee MJ, Park J, Yang MK, et al. Long-term results of maintenance of lacrimal silicone stent in patients with functional Epiphora after external dacryocystorhinostomy[ J]. Eye (Lond), 2020, 34(4): 669- 674. DOI: 10.1038/s41433-019-0572-2.
43、Olivier%20R%2C%20Fayet%20B%2C%20Racy%20E.%20Lifespan%20of%20a%20bicanalicular%20nasolacrimal%20%0Asilicone%20stent%5B%20J%5D.%20J%20Fran%C3%A7ais%20D'ophtalmologie%2C%202021%2C%2044(1)%3A%20138-140.%20%0ADOI%3A%2010.1016%2Fj.jfo.2020.01.026.Olivier%20R%2C%20Fayet%20B%2C%20Racy%20E.%20Lifespan%20of%20a%20bicanalicular%20nasolacrimal%20%0Asilicone%20stent%5B%20J%5D.%20J%20Fran%C3%A7ais%20D'ophtalmologie%2C%202021%2C%2044(1)%3A%20138-140.%20%0ADOI%3A%2010.1016%2Fj.jfo.2020.01.026.
44、Prabakaran L, Vedakumari SW, Pravin YR . Natural polymeric biomaterials for managing peripheral nerve injuries: a novel approach for tissue repair and reconstruction[ J]. Neurosurg Rev, 2024, 47(1): 805. DOI: 10.1007/s10143-024-03025-4.Prabakaran L, Vedakumari SW, Pravin YR . Natural polymeric biomaterials for managing peripheral nerve injuries: a novel approach for tissue repair and reconstruction[ J]. Neurosurg Rev, 2024, 47(1): 805. DOI: 10.1007/s10143-024-03025-4.
45、Wu KY, Khan S, Liao Z, et al. Biopolymeric innovations in ophthalmic surgery: enhancing devices and drug delivery systems[ J]. Polymers (Basel), 2024, 16(12): 1717. DOI: 10.3390/polym16121717.Wu KY, Khan S, Liao Z, et al. Biopolymeric innovations in ophthalmic surgery: enhancing devices and drug delivery systems[ J]. Polymers (Basel), 2024, 16(12): 1717. DOI: 10.3390/polym16121717.
46、Wu KY, Fujioka JK, Goodyear E, et al. Polymers and biomaterials for posterior lamella of the eyelid and the lacrimal system[ J]. Polymers (Basel), 2024, 16(3): 352. DOI: 10.3390/polym16030352.Wu KY, Fujioka JK, Goodyear E, et al. Polymers and biomaterials for posterior lamella of the eyelid and the lacrimal system[ J]. Polymers (Basel), 2024, 16(3): 352. DOI: 10.3390/polym16030352.
47、Xiao W, Wang B, Wang X, et al. Two-electron oxidized polyphenol chemistry-inspired superhydrophilic drug-carrying coatings for the construction of multifunctional nasolacrimal duct stents[ J]. J Mater Chem B, 2024, 12(11): 2877-2893. DOI: 10.1039/D3TB02668J.Xiao W, Wang B, Wang X, et al. Two-electron oxidized polyphenol chemistry-inspired superhydrophilic drug-carrying coatings for the construction of multifunctional nasolacrimal duct stents[ J]. J Mater Chem B, 2024, 12(11): 2877-2893. DOI: 10.1039/D3TB02668J.
48、Rahvar M, Ahmadi Lakalayeh G, Nazeri N, et al. Assessment of structural, biological and drug release properties of electro-sprayed poly lactic acid-dexamethasone coating for biomedical applications[ J]. Biomed Eng Lett, 2021, 11(4): 393-406. DOI: 10.1007/s13534-021- 00205-9.Rahvar M, Ahmadi Lakalayeh G, Nazeri N, et al. Assessment of structural, biological and drug release properties of electro-sprayed poly lactic acid-dexamethasone coating for biomedical applications[ J]. Biomed Eng Lett, 2021, 11(4): 393-406. DOI: 10.1007/s13534-021- 00205-9.
49、Liang C, Tian Y, Zou X , et al. Improve endothelialization of metallic cardiovascular stent via femtosecond laser induced micro/ nanostructure dependent cells proliferation and drug delivery control[ J]. Colloids Surf B Biointerfaces, 2022, 212: 112376. DOI: 10.1016/j.colsurfb.2022.112376.Liang C, Tian Y, Zou X , et al. Improve endothelialization of metallic cardiovascular stent via femtosecond laser induced micro/ nanostructure dependent cells proliferation and drug delivery control[ J]. Colloids Surf B Biointerfaces, 2022, 212: 112376. DOI: 10.1016/j.colsurfb.2022.112376.
50、%E9%99%88%E9%B9%8F%E9%A3%9E%2C%20%E5%A4%8F%E8%90%8D%E8%90%8D.%20%E5%85%A8%E9%99%8D%E8%A7%A3%E8%8D%AF%E7%89%A9%E6%94%AF%E6%9E%B6%E5%9C%A8%E9%BC%BB%E8%85%94%E6%B3%AA%E5%9B%8A%E9%80%A0%E5%8F%A3%E6%9C%AF%E4%B8%AD%E7%9A%84%E7%96%97%E6%95%88%0A%E8%A7%82%E5%AF%9F%5B%20J%5D.%20%E4%B8%AD%E5%9B%BD%E5%8C%BB%E5%AD%A6%E6%96%87%E6%91%98(%E8%80%B3%E9%BC%BB%E5%92%BD%E5%96%89%E7%A7%91%E5%AD%A6)%2C%202023%2C%2038(3)%3A%2039-41%2C10.%0ADOI%3A10.19617%2Fj.issn1001-1307.2023.03.39.%3Cbr%3E%0A%20Chen%20PF%2C%20Xia%20PP.%C2%A0Therapeutic%20effect%20observation%20of%20fully%20degradable%20%0Adrug-eluting%20stents%20in%20dacr%20yocystorhinostomy%5B%20J%5D.%C2%A0%20Chin%20Med%20%0AAbs(Otorhinolaryngol)%2C%202023%2C%2038(3)%3A%2039-41%2C10.%20DOI%3A%2010.19617%2F%0Aj.issn1001-1307.2023.03.39.Chen%20PF%2C%20Xia%20PP.%C2%A0Therapeutic%20effect%20observation%20of%20fully%20degradable%20%0Adrug-eluting%20stents%20in%20dacr%20yocystorhinostomy%5B%20J%5D.%C2%A0%20Chin%20Med%20%0AAbs(Otorhinolaryngol)%2C%202023%2C%2038(3)%3A%2039-41%2C10.%20DOI%3A%2010.19617%2F%0Aj.issn1001-1307.2023.03.39.
51、Lin T, Wang W, Chen T, et al. A lacrimal duct drug delivery system based on photo-induced hydrogel for dry eye and allergic conjunctivitis therapy[ J]. Compos Part B Eng, 2023, 266: 111014. DOI: 10.1016/ j.compositesb.2023.111014.Lin T, Wang W, Chen T, et al. A lacrimal duct drug delivery system based on photo-induced hydrogel for dry eye and allergic conjunctivitis therapy[ J]. Compos Part B Eng, 2023, 266: 111014. DOI: 10.1016/ j.compositesb.2023.111014.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
目录

点击右上角菜单,浏览器打开下载

我知道了