1、Stern ME, Beuerman RW, Fox RI, et al. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands[J]. Cornea, 1998, 17(6): 584-589. DOI: 10.1097/00003226-199811000-00002.Stern ME, Beuerman RW, Fox RI, et al. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands[J]. Cornea, 1998, 17(6): 584-589. DOI: 10.1097/00003226-199811000-00002.
2、Zhang X, Vimalin JM, Qu Y, et al. Dry eye management: targeting the ocular surface microenvironment[J]. Int J Mol Sci, 2017, 18(7): 1398. DOI: 10.3390/ijms18071398. Zhang X, Vimalin JM, Qu Y, et al. Dry eye management: targeting the ocular surface microenvironment[J]. Int J Mol Sci, 2017, 18(7): 1398. DOI: 10.3390/ijms18071398.
3、Wu F, Zhao Y, Zhang H. Ocular autonomic nervous system: an update from anatomy to physiological functions[J]. Vision (Basel), 2022, 6(1): 6. DOI: 10.3390/vision6010006. Wu F, Zhao Y, Zhang H. Ocular autonomic nervous system: an update from anatomy to physiological functions[J]. Vision (Basel), 2022, 6(1): 6. DOI: 10.3390/vision6010006.
4、Patel DV, McGhee CNJ. Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4485-4488. DOI: 10.1167/iovs.05-0794. Patel DV, McGhee CNJ. Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy[J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4485-4488. DOI: 10.1167/iovs.05-0794.
5、 Friedman NJ, Butron K, Robledo N, et al. A nonrandomized, open-label study to evaluate the effect of nasal stimulation on tear production in subjects with dry eye disease[J]. Clin Ophthalmol, 2016, 10: 795-804. DOI: 10.2147/OPTH.S101716. Friedman NJ, Butron K, Robledo N, et al. A nonrandomized, open-label study to evaluate the effect of nasal stimulation on tear production in subjects with dry eye disease[J]. Clin Ophthalmol, 2016, 10: 795-804. DOI: 10.2147/OPTH.S101716.
6、 LeDoux MS, Zhou Q, Murphy RB, et al. Parasympathetic innervation of the meibomian glands in rats[J]. Invest Ophthalmol Vis Sci, 2001, 42(11): 2434-2441. LeDoux MS, Zhou Q, Murphy RB, et al. Parasympathetic innervation of the meibomian glands in rats[J]. Invest Ophthalmol Vis Sci, 2001, 42(11): 2434-2441.
7、Guzmán M, Miglio M, Keitelman I, et al. Transient tear hyperosmolarity disrupts the neuroimmune homeostasis of the ocular surface and facilitates dry eye onset[J]. Immunology, 2020, 161(2): 148-161. DOI: 10.1111/imm.13243. Guzmán M, Miglio M, Keitelman I, et al. Transient tear hyperosmolarity disrupts the neuroimmune homeostasis of the ocular surface and facilitates dry eye onset[J]. Immunology, 2020, 161(2): 148-161. DOI: 10.1111/imm.13243.
8、 Medeiros CS, Santhiago MR. Corneal nerves anatomy, function, injury and regeneration[J]. Exp Eye Res, 2020, 200: 108243. DOI: 10.1016/j.exer.2020.108243. Medeiros CS, Santhiago MR. Corneal nerves anatomy, function, injury and regeneration[J]. Exp Eye Res, 2020, 200: 108243. DOI: 10.1016/j.exer.2020.108243.
9、Ma L, Yang L, Wang X, et al. CGRP released by corneal sensory nerve maintains tear secretion of the lacrimal gland[J]. Invest Ophthalmol Vis Sci, 2024, 65(4): 30. DOI: 10.1167/iovs.65.4.30.Ma L, Yang L, Wang X, et al. CGRP released by corneal sensory nerve maintains tear secretion of the lacrimal gland[J]. Invest Ophthalmol Vis Sci, 2024, 65(4): 30. DOI: 10.1167/iovs.65.4.30.
10、Dastjerdi MH, Dana R. Corneal nerve alterations in dry eye-associated ocular surface disease[J]. Int Ophthalmol Clin, 2009, 49(1): 11-20. DOI: 10.1097/IIO.0b013e31819242c9. Dastjerdi MH, Dana R. Corneal nerve alterations in dry eye-associated ocular surface disease[J]. Int Ophthalmol Clin, 2009, 49(1): 11-20. DOI: 10.1097/IIO.0b013e31819242c9.
11、Labetoulle M, Baudouin C, Calonge M, et al. Role of corneal nerves in ocular surface homeostasis and disease[J]. Acta Ophthalmol, 2019, 97(2): 137-145. DOI: 10.1111/aos.13844. Labetoulle M, Baudouin C, Calonge M, et al. Role of corneal nerves in ocular surface homeostasis and disease[J]. Acta Ophthalmol, 2019, 97(2): 137-145. DOI: 10.1111/aos.13844.
12、Yang AY, Chow J, Liu J. Corneal innervation and sensation: the eye and beyond[J]. Yale J Biol Med, 2018, 91(1): 13-21. Yang AY, Chow J, Liu J. Corneal innervation and sensation: the eye and beyond[J]. Yale J Biol Med, 2018, 91(1): 13-21.
13、Tuominen%20ISJ%2C%20Konttinen%20YT%2C%20Vesaluoma%20MH%2C%20et%20al.%20Corneal%20innervation%20and%20morphology%20in%20primary%20Sj%C3%B6gren%E2%80%99s%20syndrome%5BJ%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202003%2C%2044(6)%3A%202545-2549.%20DOI%3A%2010.1167%2Fiovs.02-1260.%20Tuominen%20ISJ%2C%20Konttinen%20YT%2C%20Vesaluoma%20MH%2C%20et%20al.%20Corneal%20innervation%20and%20morphology%20in%20primary%20Sj%C3%B6gren%E2%80%99s%20syndrome%5BJ%5D.%20Invest%20Ophthalmol%20Vis%20Sci%2C%202003%2C%2044(6)%3A%202545-2549.%20DOI%3A%2010.1167%2Fiovs.02-1260.%20
14、 Kalangara JP, Vanijcharoenkarn K, Chisolm S, et al. Neuropathic pain and itch: mechanisms in allergic conjunctivitis[J]. Curr Opin Allergy Clin Immunol, 2022, 22(5): 298-303. DOI: 10.1097/ACI.0000000000000843. Kalangara JP, Vanijcharoenkarn K, Chisolm S, et al. Neuropathic pain and itch: mechanisms in allergic conjunctivitis[J]. Curr Opin Allergy Clin Immunol, 2022, 22(5): 298-303. DOI: 10.1097/ACI.0000000000000843.
15、Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa[J]. Dev Ophthalmol, 2008, 41: 21-35. DOI: 10.1159/000131068. Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa[J]. Dev Ophthalmol, 2008, 41: 21-35. DOI: 10.1159/000131068.
16、 Knop E, Knop N. Eye-associated lymphoid tissue (EALT) is continuously spread throughout the ocular surface from the lacrimal gland to the lacrimal drainage system[J]. Ophthalmologe, 2003, 100(11): 929-942. DOI: 10.1007/s00347-003-0936-6. Knop E, Knop N. Eye-associated lymphoid tissue (EALT) is continuously spread throughout the ocular surface from the lacrimal gland to the lacrimal drainage system[J]. Ophthalmologe, 2003, 100(11): 929-942. DOI: 10.1007/s00347-003-0936-6.
17、Yin X, Zhang S, Lee JH, et al. Compartmentalized ocular lymphatic system mediates eye-brain immunity[J]. Nature, 2024, 628(8006): 204-211. DOI: 10.1038/s41586-024-07130-8.Yin X, Zhang S, Lee JH, et al. Compartmentalized ocular lymphatic system mediates eye-brain immunity[J]. Nature, 2024, 628(8006): 204-211. DOI: 10.1038/s41586-024-07130-8.
18、Damasceno RWF, Barbosa JAP, Cortez LRC, et al. Orbital lymphatic vessels: immunohistochemical detection in the lacrimal gland, optic nerve, fat tissue, and extrinsic oculomotor muscles[J]. Arq Bras Oftalmol, 2021, 84(3): 209-213. DOI: 10.5935/0004-2749.20210035.Damasceno RWF, Barbosa JAP, Cortez LRC, et al. Orbital lymphatic vessels: immunohistochemical detection in the lacrimal gland, optic nerve, fat tissue, and extrinsic oculomotor muscles[J]. Arq Bras Oftalmol, 2021, 84(3): 209-213. DOI: 10.5935/0004-2749.20210035.
19、O’Sullivan NL, Montgomery PC. Selective interactions of lymphocytes with neonatal and adult lacrimal gland tissues[J]. Invest Ophthalmol Vis Sci, 1990, 31(8): 1615-1622. O’Sullivan NL, Montgomery PC. Selective interactions of lymphocytes with neonatal and adult lacrimal gland tissues[J]. Invest Ophthalmol Vis Sci, 1990, 31(8): 1615-1622.
20、Paranyuk%20Y%2C%20Claros%20N%2C%20Birzgalis%20A%2C%20et%20al.%20Lacrimal%20gland%20fluid%20secretion%20and%20lymphocytic%20infiltration%20in%20the%20NZB%2FW%20mouse%20model%20of%20Sj%C3%B6gren%E2%80%99s%20syndrome%5BJ%5D.%20Curr%20Eye%20Res%2C%202001%2C%2023(3)%3A%20199-205.%20DOI%3A%2010.1076%2Fceyr.23.3.199.5468.Paranyuk%20Y%2C%20Claros%20N%2C%20Birzgalis%20A%2C%20et%20al.%20Lacrimal%20gland%20fluid%20secretion%20and%20lymphocytic%20infiltration%20in%20the%20NZB%2FW%20mouse%20model%20of%20Sj%C3%B6gren%E2%80%99s%20syndrome%5BJ%5D.%20Curr%20Eye%20Res%2C%202001%2C%2023(3)%3A%20199-205.%20DOI%3A%2010.1076%2Fceyr.23.3.199.5468.
21、Ji YW, Lee JL, Kang HG, et al. Corneal lymphangiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease[J]. Ocul Surf, 2018, 16(3): 306-313. DOI: 10.1016/j.jtos.2018.03.008. Ji YW, Lee JL, Kang HG, et al. Corneal lymphangiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease[J]. Ocul Surf, 2018, 16(3): 306-313. DOI: 10.1016/j.jtos.2018.03.008.
22、Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation[J]. Eye Contact Lens, 2014, 40(4): 248-256. DOI: 10.1097/ICL.0000000000000042.Wei Y, Asbell PA. The core mechanism of dry eye disease is inflammation[J]. Eye Contact Lens, 2014, 40(4): 248-256. DOI: 10.1097/ICL.0000000000000042.
23、Stepp MA, Tadvalkar G, Hakh R, et al. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves[J]. Glia, 2017, 65(6): 851-863. DOI: 10.1002/glia.23102.Stepp MA, Tadvalkar G, Hakh R, et al. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves[J]. Glia, 2017, 65(6): 851-863. DOI: 10.1002/glia.23102.
24、Nair AP, D’Souza S, Khamar P, et al. Ocular surface immune cell diversity in dry eye disease[J]. Indian J Ophthalmol, 2023, 71(4): 1237-1247. DOI: 10.4103/IJO.IJO_2986_22.Nair AP, D’Souza S, Khamar P, et al. Ocular surface immune cell diversity in dry eye disease[J]. Indian J Ophthalmol, 2023, 71(4): 1237-1247. DOI: 10.4103/IJO.IJO_2986_22.
25、Nair AP, D’Souza S, Shetty R, et al. Altered ocular surface immune cell profile in patients with dry eye disease[J]. Ocul Surf, 2021, 21: 96-106. DOI: 10.1016/j.jtos.2021.04.002.Nair AP, D’Souza S, Shetty R, et al. Altered ocular surface immune cell profile in patients with dry eye disease[J]. Ocul Surf, 2021, 21: 96-106. DOI: 10.1016/j.jtos.2021.04.002.
26、Benítez-Del-Castillo JM, Carmen Acosta M, Wassfi MA, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye[J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 173-181. DOI: 10.1167/iovs.06-0127. Benítez-Del-Castillo JM, Carmen Acosta M, Wassfi MA, et al. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye[J]. Invest Ophthalmol Vis Sci, 2007, 48(1): 173-181. DOI: 10.1167/iovs.06-0127.
27、Villani E, Galimberti D, Viola F, et al. The cornea in sjogren’s syndrome: an in vivo confocal study[J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2017-2022. DOI: 10.1167/iovs.06-1129. Villani E, Galimberti D, Viola F, et al. The cornea in sjogren’s syndrome: an in vivo confocal study[J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2017-2022. DOI: 10.1167/iovs.06-1129.
28、De Paiva CS, Raince JK, McClellan AJ, et al. Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13[J]. Mucosal Immunol, 2011, 4(4): 397-408. DOI: 10.1038/mi.2010.82. De Paiva CS, Raince JK, McClellan AJ, et al. Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13[J]. Mucosal Immunol, 2011, 4(4): 397-408. DOI: 10.1038/mi.2010.82.
29、Barbosa FL, Xiao Y, Bian F, et al. Goblet cells contribute to ocular surface immune tolerance-implications for dry eye disease[J]. Int J Mol Sci, 2017, 18(5): 978. DOI: 10.3390/ijms18050978.Barbosa FL, Xiao Y, Bian F, et al. Goblet cells contribute to ocular surface immune tolerance-implications for dry eye disease[J]. Int J Mol Sci, 2017, 18(5): 978. DOI: 10.3390/ijms18050978.
30、Xiao Y, de Paiva CS, Yu Z, et al. Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells[J]. Int Immunol, 2018, 30(10): 457-470. DOI: 10.1093/intimm/dxy045. Xiao Y, de Paiva CS, Yu Z, et al. Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells[J]. Int Immunol, 2018, 30(10): 457-470. DOI: 10.1093/intimm/dxy045.
31、Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva[J]. Ocul Surf, 2020, 18(2): 326-334. DOI: 10.1016/j.jtos.2019.12.006. Alam J, de Paiva CS, Pflugfelder SC. Immune - Goblet cell interaction in the conjunctiva[J]. Ocul Surf, 2020, 18(2): 326-334. DOI: 10.1016/j.jtos.2019.12.006.
32、Periman LM, Perez VL, Saban DR, et al. The immunological basis of dry eye disease and current topical treatment options[J]. J Ocul Pharmacol Ther, 2020, 36(3): 137-146. DOI: 10.1089/jop.2019.0060.Periman LM, Perez VL, Saban DR, et al. The immunological basis of dry eye disease and current topical treatment options[J]. J Ocul Pharmacol Ther, 2020, 36(3): 137-146. DOI: 10.1089/jop.2019.0060.
33、Hu S, Di G, Cao X, et al. Lacrimal gland homeostasis is maintained by the AQP5 pathway by attenuating endoplasmic reticulum stress inflammation in the lacrimal gland of AQP5 knockout mice[J]. Mol Vis, 2021, 27: 679-690. Hu S, Di G, Cao X, et al. Lacrimal gland homeostasis is maintained by the AQP5 pathway by attenuating endoplasmic reticulum stress inflammation in the lacrimal gland of AQP5 knockout mice[J]. Mol Vis, 2021, 27: 679-690.
34、刘意, 余曼. Th17细胞分化调控在干眼治疗中的研究现状[J]. 中国眼耳鼻喉科杂志, 2023, 23(6): 502-506. DOI: 10.14166/j.issn.1671-2420.2023.06.019.
Liu Y, Yu M. Present state of research on the regulation of Th17 cells differentiation in dry eye treatment[J]. Chin J Ophthalmol Otorhinolaryngol, 2023, 23(6): 502-506. DOI: 10.14166/j.issn.1671-2420.2023.06.019. Liu Y, Yu M. Present state of research on the regulation of Th17 cells differentiation in dry eye treatment[J]. Chin J Ophthalmol Otorhinolaryngol, 2023, 23(6): 502-506. DOI: 10.14166/j.issn.1671-2420.2023.06.019.
35、Wei Y, Asbell PA. sPLA2-IIa participates in ocular surface inflammation in humans with dry eye disease[J]. Exp Eye Res, 2020, 201: 108209. DOI: 10.1016/j.exer.2020.108209. Wei Y, Asbell PA. sPLA2-IIa participates in ocular surface inflammation in humans with dry eye disease[J]. Exp Eye Res, 2020, 201: 108209. DOI: 10.1016/j.exer.2020.108209.
36、Menon NG, Goyal R, Lema C, et al. Proteoglycan 4 (PRG4) expression and function in dry eye associated inflammation[J]. Exp Eye Res, 2021, 208: 108628. DOI: 10.1016/j.exer.2021.108628. Menon NG, Goyal R, Lema C, et al. Proteoglycan 4 (PRG4) expression and function in dry eye associated inflammation[J]. Exp Eye Res, 2021, 208: 108628. DOI: 10.1016/j.exer.2021.108628.
37、Ma B, Zhou Y, Liu R, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease[J]. Ocul Surf, 2021, 20: 70-85. DOI: 10.1016/j.jtos.2020.12.007. Ma B, Zhou Y, Liu R, et al. Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease[J]. Ocul Surf, 2021, 20: 70-85. DOI: 10.1016/j.jtos.2020.12.007.
38、%20Soyfoo%20MS%2C%20Nicaise%20C.%20Pathophysiologic%20role%20of%20interleukin-33%2FST2%20in%20sj%C3%B6gren%E2%80%99s%20syndrome%5BJ%5D.%20Autoimmun%20Rev%2C%202021%2C%2020(3)%3A%20102756.%20DOI%3A%2010.1016%2Fj.autrev.2021.102756.%20%20Soyfoo%20MS%2C%20Nicaise%20C.%20Pathophysiologic%20role%20of%20interleukin-33%2FST2%20in%20sj%C3%B6gren%E2%80%99s%20syndrome%5BJ%5D.%20Autoimmun%20Rev%2C%202021%2C%2020(3)%3A%20102756.%20DOI%3A%2010.1016%2Fj.autrev.2021.102756.%20
39、Galor A, Levitt RC, Felix ER, et al. Neuropathic ocular pain: an important yet underevaluated feature of dry eye[J]. Eye (Lond), 2015, 29(3): 301-312. DOI: 10.1038/eye.2014.263. Galor A, Levitt RC, Felix ER, et al. Neuropathic ocular pain: an important yet underevaluated feature of dry eye[J]. Eye (Lond), 2015, 29(3): 301-312. DOI: 10.1038/eye.2014.263.
40、Belmonte C, Carmen Acosta M, Gallar J. Neural basis of sensation in intact and injured corneas[J]. Exp Eye Res, 2004, 78(3): 513-525. DOI: 10.1016/j.exer.2003.09.023. Belmonte C, Carmen Acosta M, Gallar J. Neural basis of sensation in intact and injured corneas[J]. Exp Eye Res, 2004, 78(3): 513-525. DOI: 10.1016/j.exer.2003.09.023.
41、Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection[J]. J Anat, 2005, 206(3): 271-285. DOI: 10.1111/j.1469-7580.2005.00394.x. Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection[J]. J Anat, 2005, 206(3): 271-285. DOI: 10.1111/j.1469-7580.2005.00394.x.
42、Wu X, Ma Y, Zhang Z, et al. New targets of nascent lymphatic vessels in ocular diseases[J]. Front Physiol, 2024, 15: 1374627. DOI: 10.3389/fphys.2024.1374627.Wu X, Ma Y, Zhang Z, et al. New targets of nascent lymphatic vessels in ocular diseases[J]. Front Physiol, 2024, 15: 1374627. DOI: 10.3389/fphys.2024.1374627.
43、Clahsen T, Hadrian K, Notara M, et al. The novel role of lymphatic vessels in the pathogenesis of ocular diseases[J]. Prog Retin Eye Res, 2023, 96: 101157. DOI: 10.1016/j.preteyeres.2022.101157. Clahsen T, Hadrian K, Notara M, et al. The novel role of lymphatic vessels in the pathogenesis of ocular diseases[J]. Prog Retin Eye Res, 2023, 96: 101157. DOI: 10.1016/j.preteyeres.2022.101157.
44、Tracey KJ. The inflammatory reflex[J]. Nature, 2002, 420(6917): 853-859. DOI: 10.1038/nature01321. Tracey KJ. The inflammatory reflex[J]. Nature, 2002, 420(6917): 853-859. DOI: 10.1038/nature01321.