您的位置: 首页 > 2025年7月 第40卷 第7期 > 文字全文
2023年7月 第38卷 第7期11
目录

减重药物对眼部的影响

The effects of the weight-loss drugs on the eyes

来源期刊: 眼科学报 | 2025年7月 第40卷 第7期 585-594 发布时间:2025-07-28 收稿时间:2025/7/22 12:41:55 阅读量:30
作者:
关键词:
肥胖超重减重药物眼部影响
obesity overweight weight-loss drugs eye effects
DOI:
10.12419/25011002
收稿时间:
2025-01-11 
修订日期:
2025-02-22 
接收日期:
2025-03-27 
全球范围内,肥胖或超重问题持续加剧,据《2024年世界肥胖报告》及近期数据,预计2035年受超重或肥胖影响的成年人将达33亿,我国成人肥胖或超重患病率已超50%且呈上升趋势。肥胖会增加2型糖尿病、心血管疾病等多种疾病风险,减轻5%~15%体重可改善相关并发症,因此减重关注度日益提升,除运动和饮食控制外,减重药物与手术等手段不断涌现。然而减重药物在减轻体质量(体重)的同时,其潜在的危害不容忽视,有研究表明减重药物可对眼部产生不良影响:导致眼压升高使患者出现眼睛疼痛、视力模糊的症状;影响眼部血液循环和营养供应,发生炎症感染;出现眼睛疲劳干涩,对糖尿病性视网膜病变产生影响等。本文聚焦目前主流的三类减重药物——非中枢性减重药物(以脂肪酶抑制剂为代表)、中枢性减重药物(含拟儿茶酚胺类制剂和5-羟色胺受体激动剂)、兼有减重效果的降糖药物(包括GLP-1RA、GLP-1/GIP双受体激动剂、二甲双胍等),详细论述其应用及对眼部的不良反应。同时,也提及部分药物可能对眼部产生的益处,如二甲双胍、GLP-1RA或对青光眼、糖尿病视网膜病变有潜在保护作用。本文旨在为用药人群、相关医护及从业人员提供理论指导,强调使用减重药物时需警惕眼部风险,平衡疗效与安全性。
Globally, the problem of obesity or overweight continues to intensify. According to the "2024 World Obesity Report" and recent data, it is estimated that by 2035, the number of adults affected by overweight or obesity will reach 3.3 billion. In China, the prevalence of obesity or overweight among adults has exceeded 50% and is on the rise. Obesity increases the risk of various diseases such as type 2 diabetes and cardiovascular diseases. Reducing body weight by 5% to 15% can improve related complications. Therefore, the focus on weight loss is increasing. Besides exercise and dietary control, weight loss drugs and surgeries are constantly emerging. However, while weight loss drugs can reduce body weight, their potential harms should not be ignored. Studies have shown that weight loss drugs can have adverse effects on the eyes: causing increased intraocular pressure, leading to symptoms such as eye pain and blurred vision; affecting blood circulation and nutrient supply to the eyes, resulting in inflammation and infection; causing eye fatigue and dryness, and having an impact on diabetic retinopathy, etc. This article focuses on the three main types of weight loss drugs currently available - non-central weight loss drugs (represented by fat enzyme inhibitors), central weight loss drugs (including catecholamine-like preparations and 5-hydroxytryptamine receptor agonists), and hypoglycemic drugs with weight loss effects (including GLP-1RA, GLP-1/GIP dual receptor agonists, metformin, etc.), and elaborates on their applications and adverse reactions to the eyes. At the same time, it also mentions the potential benefits that some drugs may have on the eyes, such as metformin and GLP-1RA, which may have a protective effect on glaucoma and diabetic retinopathy. This article aims to provide theoretical guidance for drug users, related medical staff, and professionals, emphasizing the need to be vigilant about eye risks when using weight loss drugs and to balance efficacy and safety.

文章亮点

1. 关键发现

•   明确主流减重药物 ( 非中枢性、中枢性、兼有减重效果的降糖药 ) 对眼部存在双重影响,既可能引发干涩、炎症、眼 压升高等不良反应,也可能对青光眼、糖尿病视网膜病变有潜在益处,且不同药物影响机制各异。

2. 已知与发现

•   已知减重药物有减重、调节代谢等作用,新发现其对眼部影响复杂:如奥利司他致干眼症,托吡酯关联青光眼;同时 二甲双胍、GLP-1RA 可能降低青光眼风险,GLP-1RA 对糖尿病视网膜病变影响存在争议。

3. 意义与改变

•   为用药人群、医护人员提供理论指导,助力临床制定个体化监测方案,强调多学科协作平衡疗效与安全性,推动未来 减重药物研发向高效低毒方向发展,完善特殊人群用药安全数据库。

        据《2024年世界肥胖报告》及近期发布的数据, 全球受到超重或肥胖影响的成年人数预计将从2020年 的22亿增加至2035年的33亿,目前超重或肥胖已经成为全球性的流行病[1] 。在我国,超重或肥胖问题同样严重。据统计,我国成人肥胖或超重的患病率已超过 50%,且呈上升趋势。研究表明,肥胖会增加患各种疾病的风险,如2型糖尿病、高血压、高血脂、非酒精性脂肪性肝病、心血管疾病、代谢综合征,甚至癌症等[2-6] 。减轻5%~15%的体质量(体重)可以改善许多与肥胖相关的并发症[7] 。随着健康意识的提升,越来越多人开始重视减重和保持健康体重。减重手段也越来越多,除了传统的运动和饮食控制外,还出现了各种减重药物和减重手术。然而减轻体重和保持长期体重减轻方面存在很多挑战,例如减肥药物不正确地使用将导致诸多不良事件。减重药物虽可在短期内使体重下降,但其潜在的危害不容忽视,例如腹泻、肝肾损伤、心血管影响等。同时有研究表明减重药物亦可对眼部产生不良影响,例如影响视力调节、导致眼部干涩和疲劳、产生眼部炎症、使眼压升高、影响糖尿病视网膜病变等,因此研究减重药物的眼部不良反应 及其机制有重要临床意义。本文主要探讨三类减重药物,即非中枢性减重药物、中枢性减重药物、兼有减重效果的降糖药物,就药物的主要眼部不良反应进行 讨论,旨在为医护人员以及相关从业人员提供参考, 并提醒广大群众谨慎使用减重药物。

1 减重药物的概述

1.1 减重药物的类别

       目前,全球用于治疗肥胖的药物主要有三类:
1)非中枢性减重药物,以脂肪酶抑制剂为代表,通过减少脂质的吸收而达到减重的目的。 2)中枢性减 重药物,主要包括拟儿茶酚胺类制剂和5-羟色胺(5- hydroxytryptamine, 5-HT)受体激动剂,儿茶酚胺类制剂的代表药物为盐酸芬特明和安非他酮,5-HT受体激动剂的代表药物是氯卡色林。3)兼有减重效果的降糖减重药物,包括胰高血糖素样肽-1受体激动剂(glucagon- like peptide-1 receptor agonist, GLP-1RA,)、胰高血糖素样肽-1/胃抑制多肽(glucagon-like peptide-1/,gastric inhibitory polypeptide GLP-1/GIP)双受体激动剂、二甲双胍等,可以增加饱腹感、抑制食欲从而发挥减重作用[8]
       1.1.1   非中枢性减重药物
       1.1.1.1   脂肪酶抑制剂
       代表药物包括奥利司他和塞那肽等。脂肪酶是一种丝氨酸水解酶,可以催化各种脂质的水解,如胆固醇酯、甘油三酯、二甘油酯、单甘油酯、磷脂和神经酰胺等。肥胖的发生与体内脂质代谢密切相关,而脂肪酶在脂质代谢过程中发挥重要作用。因此,抑制脂肪酶可限制饮食中脂质的摄取和吸收,从而达到减重降脂的有效策略[9]。
       1.1.2  中枢性减重药物
       1.1.2.1  儿茶酚胺类制剂
       代表药物包括芬氟特明、‌芬特明、纳曲酮、安非他酮等。
       芬氟特明和‌芬特明可以通过加强去甲肾上腺素和多巴胺的神经传递来产生抑制食欲的作用,从而达到减重的效果。20世纪90年代末,芬特明与芬氟拉明联合使用形成了广受欢迎的“芬-芬”减重组合,其减重效果远超传统减重药。但“芬-芬”减重组合会导致严重的不良反应,例如引起心血管疾病问题和肺动脉高压[10]。由于芬氟拉明是引发这些不良反应的主要原因,1997年美国食品药品监督管理局(FDA)将其列为禁用药物,2012年FDA批准了VIVUS公司推出的芬特明-托吡酯缓释片。芬特明-托吡酯缓释片有明显的减重效果[11]。然而,芬特明存在一定的潜在成瘾性[12],长期高剂量使用可能会引起滥用以及服用者的心率加快和血压升高等不良反应[13]
       纳曲酮和安非他酮是通过加快能量消耗进而达到减重效果的主要药物。2014年被FDA批准用于体质量指数(body mass index,BMI)≥ 30 kg/m2 或≥ 27 kg/m2并有肥胖相关病的患者治疗。但此类药物有诸多不良反应,限制了临床应用:1)纳曲酮和安非他酮在服药过程中伴随着较多的不良反应,如排便异常、疑似自杀等[14];2)Onakpoyao等[15]报道纳曲酮和安非他酮在减重治疗过程中对于体重减轻≥5%的人群可能会增加肠胃不适、神经精神症状及心血管等不良事件的发生率。
       1.1.2.2  5-羟色胺受体激动剂
      代表药物有西布曲明、氯卡色林等。5-HT受体激动剂是通过影响神经递质5-HT的功能来减少食欲和食物摄入量从而减轻体重。西布曲明有明显的减重作用,同时可以降低患者的低密度脂蛋白胆固醇,但西布曲明除头痛、头晕、幻听、幻想等不良反应之外,还可能增加严重、非致命性心血管事件的风险以及脑卒中或心脏病发作等[16]。氯卡色林是一种选择性5-HT2C受体激动剂。盐酸氯卡色林最常见的不良反应有头痛、头晕、疲劳,恶心、口干、便秘,还有注意力不集中和健忘,严重不良反应为血清素综合征,尤其是和一些升高5-HT药物和5-HT受体激动剂联用时。
       1.1.3  兼有减重效果的降糖减重药物
       1.1.3.1  胰高血糖素样肽-1受体激动剂
      代表药物为利拉鲁肽和司美格鲁肽。GLP-1受体广泛分布于全身多个器官或组织,包括胰腺、肾脏、心脏、血管内皮、胃肠道、肺部、垂体、中枢神经系统等。因此,GLP-1RA具有多种生物学效应。GLP-1RA可通过3种途径发挥减重作用:1)GLP-1RA可以作用于胃肠道,延缓胃排空和胃肠蠕动,从而增加饱腹感并减少食物的摄入[17]。在药理学试验中,GLP-1RA治疗已被证明可延缓胃排空[18]。2)GLP-1RA可以作用于下丘脑,参与调节食物摄入[19],使饥饿感减少。饥饿感减少与大脑中特定区域(孤束核、下丘脑、丘脑)之间的功能连接增强有关[20]。3)GLP-1RA可以直接刺激POMC/CART神经元,并间接抑制神经肽Y(neuropeptide y, NPY)和黑皮质素相关肽(agouti-related protein, AgRP),从而增加饱腹感并减少饥饿感[21-22]。GLP-1RA还具有调节血糖的作用,它能促进胰岛素分泌并抑制胰高血糖素分泌。GLP-1 的这些作用可以促进减重、调节血糖,并帮助健康、糖尿病和肥胖人群减轻体重。2023年,医药市场上火出圈的非“减重神药”GLP-1RA莫属。
       1.1.3.2  GLP-1/GIP 双受体激动剂
       代表药物为替尔泊肽。替尔泊肽是一种新型的GLP-1和GIP双受体激动剂。GIP是一种由十二指肠和空肠近端上的K细胞分泌的肠促胰岛素,在进食时分泌增加。GIP可通过2种途径发挥减重作用:1)作用于中枢降低摄食量;2)增强GLP-1的厌食作用。此外,GIP还能通过葡萄糖依赖性地刺激胰岛素分泌来改善血糖[23]。替尔泊肽于2022年5月在美国获批准上市用于成人2型糖尿病(type 2 diabetes mellitus, T2DM)治疗,2023年11月获批用于成年超重肥胖患者的减重治疗。
       代表药物为替尔泊肽。替尔泊肽是一种新型的 GLP-1 和 GIP 双受体激动剂。GIP 是一种肠促胰素,由十二指肠和空肠近端上的 K 细胞分泌,在进食时分泌增加,通过葡萄糖依赖性地刺激胰岛素分泌改善血糖,改善胰岛素敏感性,通过作用于中枢降低摄食量来控制体重,还能增强 GLP-1 的厌食作用[24]。替尔泊肽于2022年5月在美国获批准上市用于成人 T2DM 治疗,2023 年 11 月获批用于成年超重肥胖患者的减重治疗。
       1.1.3.3   二甲双胍
       传统上认为,二甲双胍可参与多种能量调节途径来改善体内脂肪的合成和代谢。新兴的证据表明,
与二甲双胍相关的体重减轻是由于下丘脑食欲调节中心的调节和肠道微生物组的改变[25],减轻肥胖患者体重,是肥胖或超重T2DM患者的首选治疗用药[26]

1.2  减重药物的应用

       1.2.1  减重和调节脂肪含量与分布
       前述3类减重药物不但可以通过减少脂肪吸收、增加饱腹感、抑制食欲、促进能量消耗等方式发挥减重作用,还可以在一定程度上改善体内脂肪含量,减少肝脏、胰脏等内脏器官的脂肪含量。
       1.2.2  预防和治疗糖尿病
       肥胖与糖尿病密切相关。首先,超重/肥胖人群的2型糖尿病患病率高于体重正常人群[27],控制或减轻体重是预防2型糖尿病的首要措施。其次,有研究结果显示,只要达到1%以上的体重幅度降低,糖尿病微血管并发症就有统计学意义的改善[28]。另外,肥胖者在T2DM自然病程早期常表现有胰岛素抵抗(insulin resistance, IR)和糖调节受损[29]。因此,减轻体重有助于控制血糖、降低DM并发症发生率和死亡率,肥胖的T2DM患者在选择降糖药物时,要同时考虑降糖和减重。
       1.2.3  保护心血管健康
       在心血管方面,减重药物可以改善糖脂代谢,降低基础和负荷后胰岛素水平,降低甘油三酯、低密度脂蛋白胆固醇、游离脂肪酸水平,降低脑钠肽、高敏C反应蛋白等心血管危险标志物水平,可起到直接或间接起到心血管保护、心血管疾病预防的作用[30]。例如,有学者认为替尔泊肽在心血管疾病中有潜在应用价值[31]
       1.2.4  有益于眼睛
       减重药物对于眼睛的有益作用,也有不少报道:1)降低开角型青光眼(open-angle glaucoma,OAG)的风险,Lin等[32]在一项大型回顾性队列研究发现,在40岁及以上且既往无开角型青光眼的糖尿病患者中,服用二甲双胍最高四分位数的患者与未服用二甲双胍的患者相比,OAG风险降低了25%。二甲双胍的保护作用来源于它对血糖的控制及血管健康的有益作用。Stein等[33]在一项回顾性分析显示,在新诊断为OAG的≥35岁患者中,与未使用安非他酮的患者相比,每增加1个月的安非他酮使用与OAG的风险降低0.6%相关。大型横断面研究报告表明,使用安非他酮超过1年的患者与未使用安非他酮或使用时间少于1年的患者相比,被诊断为青光眼的概率降低了[34]。2)治疗青光眼,Cui等研究证明,GLP-1RA是通过假设的GLP-1胶质细胞/巨噬细胞介导机制,起到抗炎和保护神经的作用,可以治疗神经退行性病变[35]。这可能成为治疗阿尔茨海默病和高血压青光眼的药物新靶点。也有研究证明,对于2型糖尿病合并青光眼的患者,超过3年的长期治疗,GLP-1RA与较低的青光眼风险有关[36]。3)控制糖尿病视网膜病变(diabetic retinopathy,DR),一项回顾性队列研究在1626例2型糖尿病患者中发现GLP-1RA在控制DR方面效果优于其他降糖药[37]。这项研究还揭示,GLP-1RA通过抑制干扰素基因刺激蛋白(stimulator of interferon genes,STING)诱导的炎症信号通路,在保护糖尿病视网膜血管方面有新的作用。

2  减重药物引起的眼部不良反应

2.1  眼部干涩

       眼部干涩的常见因素有2类:1)疾病因素,眼泪分泌不足、眼睛保护膜缺失、油脂分泌异常等;2)药物因素,长期服用帮助排尿的药物、抗过敏药、频繁使用眼药水等。减重药物可以通过影响代谢和影响食欲、饱腹感来达到减重的目的,其中部分影响代谢的减重药物可能会影响身体的水分代谢,促使身体排出过多的水分。当身体处于缺水状态时,泪液分泌会减少,从而导致眼部干涩。例如,脂肪酶抑制剂奥利司他能抑制胃肠道脂肪酶的活性,减少饮食中脂肪的吸收。这会使大量未被吸收的脂肪随粪便排出,引发脂肪泻,导致肠道渗透压改变,水分被动进入肠道,从粪便中丢失增加。同时,脂肪吸收减少干扰脂肪代谢相关激素调节,间接影响肾脏对水和电解质的重吸收功能,使尿液生成增多,从而产生利尿效果。

2.2  眼部炎症

       眼部炎症的常见因素有5类:不良生活习惯、过敏反应、病原体感染、眼部自身免疫性疾病和眼部外伤。减重药物可以通过影响代谢和影响中枢神经系统两方面对眼部免疫产生影响。脂肪酶抑制剂奥利司他可能会导致代谢出现紊乱,从而影响眼部的血液循环和营养供应,使眼部组织变得脆弱,容易受到感染和炎症的侵袭。含有托吡酯的减重药物(芬特明-托吡酯缓释片)可以导致葡萄膜炎[38],其机制主要与影响神经系统导致免疫反应异常有关。

2.3  眼压升高

       眼压的高低主要与房水有关。减重药物可能通过以下3种原因引起眼压升高:1)影响代谢,一些作用于中枢、影响代谢途径的减重药可能会干扰人体代谢平衡。例如,儿茶酚胺类制剂芬特明可能会影响肾上腺皮质激素的分泌而影响眼压的调节。肾上腺皮质激素增多可通过影响小梁网组织细胞外基质和眼内血管通透性,导致房水流出受阻和房水生成增加,使眼压升高。2)激素水平异常,当激素水平异常时,房水的生成和排出可能会失衡,进而导致眼压升高[39]。3)血液循环障碍,减重药导致眼部血液循环不畅,可能会影响房水的排出,进而影响眼压的调节。

2.4  视力障碍

       视力可受视觉器官(眼球视觉神经、大脑视觉中心)、眼球调节、视觉传导通路、营养缺乏等多种因素影响。减重药一方面通过中枢抑制食欲,一方面通过外周抑制消化吸收与增加能量消耗起作用。中枢性减重药物,例如西布曲明可以通过影响视觉器官而导致视觉障碍,有文献报道,西布曲明可通过对肾上腺素的调节引起上眼睑回缩[40]。包含托吡酯片的减重药物(芬特明-托吡酯缓释片)可能会引起眼外肌麻痹、对视觉传导通路上的神经细胞产生抑制作用等,从而引起复视和视力模糊等不良反应。影响脂质吸收的减重药物,例如奥利司他可导致“营养性夜盲症”,Mcduffie等[41]研究表明青少年服用奥利司他后可能引起脂溶性维生素A、D、E缺乏,而且即使补充多种维生素及均衡营养饮食,维生素D水平也明显降低,需要警惕。

2.5  青光眼

       青光眼主要分为3种类型:1)原发性青光眼,根据前房角的解剖结构不同,主要分为开角型青光眼和闭角型青光眼;2)先天性青光眼;3)继发性青光眼。此外,还有混合型青光眼和其他特殊类型青光眼。青光眼的病理机制有4种[42],分别为眼压升高、血管因素和神经血管单元的改变、氧化应激和线粒体功能障碍、神经炎症。减重药物多通过影响眼压和血管而造成青光眼,且多被报道与闭角型青光眼有关。有文献证明,含有托吡酯的减重药与闭角型青光眼相关[43-44]。在一项托吡酯治疗癫痫的大型病例对照研究中,年龄小于40岁的患者服用托吡酯的患者发生闭角性青光眼的风险是未服用托吡酯的患者的5倍[45]。托吡酯可增加血管通透性从而引起双眼脉络膜脱离、急性闭角型青光眼以及睫状体脉络膜渗漏综合征。西布曲明作为5-HT受体激动剂,可以激动血管平滑肌上的5-HT受体使血管扩张,而脉络膜由大量的血管组成,血管急剧扩张后易造成脉络膜脱离,进而使睫状体移位导致房角变窄甚至关闭,引起闭角型青光眼。安非拉酮作为中枢性减重药物,可能影响自主神经系统的功能。自主神经系统失衡会干扰眼内压的正常调节机制,使房水生成和排出失衡。当房水生成过多或排出受阻时,会导致眼内压升高,压迫周边虹膜,造成房角变窄甚至关闭,引发闭角型青光眼从而威胁视力[46]。芬特明作为一种拟交感胺类药物,可促进去甲肾上腺素等神经递质释放,使交感神经兴奋,进而引起瞳孔扩大、房角关闭。

2.6  白内障

       白内障是晶状体透明度降低或颜色改变导致的视力下降,可由晶状体损伤或代谢异常引起。二硝基酚(dinitrophenol, DNP)在20世纪30年代曾用于减肥,是唯一有明确证据的减重相关致白内障药物,但因其严重毒性已禁用。DNP可通过干扰线粒体能量代谢,导致晶状体蛋白氧化损伤,引发白内障。多项病例报告显示,长期或过量使用DNP的患者出现快速进展的白内障[47-48]。芬氟拉明曾作为“芬芬”组合用于减肥,早期动物实验提示芬氟拉明可能增加晶状体混浊风险,但人类临床数据有限。目前无明确证据支持其直接导致白内障,风险可能较低[49-50]

2.7  糖尿病性视网膜病变

      DR是糖尿病最常见的微血管并发症,也是导致视力丧失和失明的主要原因之一[51]。它是一种由高血糖引起的慢性进行性眼部疾病,损害视网膜微血管系统,导致血管通透性增加、视网膜缺血、新生血管形成、视网膜脱离和失明。
       国内上市的GLP-1RA有艾塞那肽、利拉鲁肽、利司那肽、贝那鲁肽、度拉糖肽和司美格鲁肽,常用于T2DM合并肥胖症的治疗。虽然二甲双胍仍然是大多数糖尿病患者的一线治疗方法[52],但GLP-1RA因其在降低糖化血红蛋白方面的优越功效而越来越受欢迎[53],同时其对心血管和心肾疾病有益处[54],特别适合肥胖的患者[55]。GLP-1RA对DR的影响存在争议。一方面,已有研究表明GLP-1R在人类视网膜中表达,GLP-1RA可通过改善视网膜屏障(blood-retinal barrier, BRB)功能和减少神经元凋亡对糖尿病视网膜具有潜在的保护作用[56-57]。还有研究证明,GLP-1RA虽然可使2型糖尿病患者发生复合微血管事件的发生率下降[58]。而另一方面,Yoshida等[59]在一项系统回顾及荟萃分析中发现,GLP-1RA被认为与DR现象的早期恶化有关。分析产生这种结果的原因,可能与短时间内显著降低糖化血红蛋白有关。强化血糖控制干预,导致体重快速下降,可能会降低血管内渗透压,在细胞外和细胞内腔室之间产生渗透梯度,从而使组织液中的水分逆浓度差移动到高渗透的血管,从而加重视网膜的水肿,增加进展为严重非增殖性或增殖性DR的风险。DR恶化伴全身血糖控制的突然快速改善这一矛盾现象是公认的。由于考虑到GLP-1RA对血糖水平改善的规模和速度,以及预先存在的DR的显著和短暂进展,不应低估GLP-1RA与DR之间伙伴关系的必要性,如GLP-1RA对体重管理和糖化血红蛋白改善产生了类似的显著影响[60],故应对DR筛查保持警惕。

表 1 眼部不良反应的机制和相关减重药物
Table 1 Mechanisms of ocular adverse reactions and related weight loss drugs

眼部不良反应

机制

举例

眼睛干涩

影响身体水分代谢

奥利司他引起脂肪泻和影响肾脏对水分的重吸收,使机体排水增加

眼部炎症

影响眼部免疫功能

1)奥利司影响眼部血液循环和营养供应使眼部组织易受侵袭

2)含有托吡酯的减重药物通过影响中枢神经系统使眼部免疫异常

眼压升高

影响房水的生成和排出

芬特明通过影响肾上腺皮质激素使房水生成增加和流出受阻

视力障碍

影响视觉器官、眼球调节、视觉传导通路和营养

1)西布曲明会引起上睑回缩

2)含有托吡酯的减重药物会引起眼外肌麻痹并影响视觉传导通路

3)奥利司他引起脂溶性维生素A、D、E缺乏

青光眼

使眼压升高和血管扩张

1)含有托吡酯的减重药物可增加血管通透性从而引起急性闭角型青光眼

2)西布曲明激动血管平滑肌上的5-HT受体使血管扩张造成睫状体移位导致房角变窄

3)安非拉酮影响自主神经系统从而干扰房水的生成与排出造成眼压升高并向周边压迫

4)芬特明使交感神经兴奋引起扩瞳和房角关闭

白内障

可能造成晶状体损伤和代谢异常

1)二硝基酚会导致晶状体氧化损伤

2)氯芬特明会引起晶状体中枢脂质代谢紊乱

糖尿病视网膜病变

影响视网膜血管

GLP-1RA引起短期显著糖化血红蛋白降低与糖尿病视网膜病变早期恶化有关

3  结论与展望

       本文系统综述了减重药物对眼部的双重影响:一方面,部分药物可能引发视力调节异常、干眼症、眼压升高及DR恶化等不良反应;另一方面,某些药物(如二甲双胍、GLP-1RA)可能通过调控代谢或神经保护机制对青光眼或DR产生潜在益处。然而,现有研究存在显著局限性:首先,多数证据来源于观察性研究或回顾性分析,缺乏高质量随机对照试验支持,难以排除混杂因素干扰;其次,对新型药物(如GLP-1/GIP双受体激动剂替尔泊肽)的眼部作用机制研究不足,且司美格鲁肽等药物的长期安全性数据匮乏;此外,特殊人群(青少年、老年人、不同种族)的用药反应差异尚未明确,剂量-效应关系亦未系统建立,导致临床风险分层与用药决策缺乏精准依据。
       从临床实践角度,需针对不同药物类别制定个体化眼部监测方案(如中枢性药物使用者定期筛查眼压,GLP-1RA用药者加强眼底检查),同时强化患者教育以识别早期症状(如视力模糊、眼痛)。对于肥胖合并糖尿病患者,内分泌科与眼科的多学科协作至关重要,需平衡减重疗效与眼部安全性,例如在DR活动期优先选择二甲双胍而非GLP-1RA。此外,药师参与可优化药物联用方案,规避血清素综合征等风险。
       未来减重药物研发需突破现有疗效与安全性的矛盾。2024年Petersen等[61]报道了以GLP-1导向N-甲基-D-天冬氨酸(n-methyl-d-aspartic acid receptor,NMDA)受体双重拮抗剂为代表的新型药物,通过同时靶向GLP-1受体与NMDA受体,可能协同调控食欲中枢与神经代谢网络,在高效减重的同时减少传统GLP-1RA的不良反应(如DR恶化风险)。此类多靶点药物为肥胖治疗提供了新思路,但其眼部安全性仍需进一步验证。此外,需通过前瞻性研究阐明减重药物分子机制与剂量-效应模型,开展针对特殊人群的随机对照试验以完善安全性数据库。
       总之,减重药物的临床应用需整合循证医学证据、个体化监测与动态风险评估。随着对肥胖病理机制的深入探索及新型药物的开发,未来有望涌现更多高效低毒的减重疗法,为全球肥胖患者提供更安全的治疗选择。

声明

在本作品的准备过程中,作者使用了DeepSeek来总结文章亮点、优化文章语句,审核引用参考文献的准确性。使用此工具后,作者根据需要对内容进行了审查和编辑,并对出版物的内容承担全部责任。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。
1、Mohammed MS, Sendra S, Lloret J, et al. Systems and WBANs for controlling obesity[ J]. J Healthc Eng, 2018, 2018: 1564748. DOI: 10.1155/2018/1564748.Mohammed MS, Sendra S, Lloret J, et al. Systems and WBANs for controlling obesity[ J]. J Healthc Eng, 2018, 2018: 1564748. DOI: 10.1155/2018/1564748.
2、Lingvay I, Sumithran P, Cohen RV, et al. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation[ J]. Lancet, 2022, 399(10322): 394-405. DOI: 10.1016/ S0140-6736(21)01919-X.Lingvay I, Sumithran P, Cohen RV, et al. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation[ J]. Lancet, 2022, 399(10322): 394-405. DOI: 10.1016/ S0140-6736(21)01919-X.
3、Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American heart association[ J]. Circulation, 2021, 143(21): e984-e1010. DOI: 10.1161/cir.0000 000000000973.Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American heart association[ J]. Circulation, 2021, 143(21): e984-e1010. DOI: 10.1161/cir.0000 000000000973.
4、Avgerinos KI, Spyrou N, Mantzoros CS, et al. Obesity and cancer risk: Emerging biological mechanisms and perspectives[ J]. Metabolism, 2019, 92: 121-135. DOI: 10.1016/j.metabol.2018.11.001.Avgerinos KI, Spyrou N, Mantzoros CS, et al. Obesity and cancer risk: Emerging biological mechanisms and perspectives[ J]. Metabolism, 2019, 92: 121-135. DOI: 10.1016/j.metabol.2018.11.001.
5、Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics[ J]. Metabolism, 2019, 92: 82-97. DOI: 10.1016/j.metabol.2018.11.014.Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics[ J]. Metabolism, 2019, 92: 82-97. DOI: 10.1016/j.metabol.2018.11.014.
6、Litwin%20M%2C%20Ku%C5%82aga%20Z.%20Obesity%2C%20metabolic%20syndrome%2C%20and%20primary%20%0Ahypertension%5B%20J%5D.%20Pediatr%20Nephrol%2C%202021%2C%2036(4)%3A%20825-837.%20DOI%3A%20%0A10.1007%2Fs00467-020-04579-3.Litwin%20M%2C%20Ku%C5%82aga%20Z.%20Obesity%2C%20metabolic%20syndrome%2C%20and%20primary%20%0Ahypertension%5B%20J%5D.%20Pediatr%20Nephrol%2C%202021%2C%2036(4)%3A%20825-837.%20DOI%3A%20%0A10.1007%2Fs00467-020-04579-3.
7、Ard J, Fitch A, Fruh S, et al. Weight loss and maintenance related to the mechanism of action of glucagon-like Peptide1 receptor agonists[ J]. Adv Ther, 2021, 38(6): 2821-2839. DOI: 10.1007/s12325-021-01710-0.Ard J, Fitch A, Fruh S, et al. Weight loss and maintenance related to the mechanism of action of glucagon-like Peptide1 receptor agonists[ J]. Adv Ther, 2021, 38(6): 2821-2839. DOI: 10.1007/s12325-021-01710-0.
8、谭莺, 雷普润, 唐齐, 等. 中国肥胖症药物治疗的现状及效果分 析[ J]. 中国预防医学杂志, 2024, 25(4): 413-418. DOI: 10.16506/ j.1009-6639.2024.04.005.
Tan Y, Lei PR, Tang Q, et al. Current status and effect analysis of pharmacological treatment for obesity in China[ J]. Chin Prev Med, 2024, 25(4): 413-418. DOI: 10.16506/j.1009-6639.2024.04.005.
Tan Y, Lei PR, Tang Q, et al. Current status and effect analysis of pharmacological treatment for obesity in China[ J]. Chin Prev Med, 2024, 25(4): 413-418. DOI: 10.16506/j.1009-6639.2024.04.005.
9、胡幸华,张紫佳.脂肪酶抑制剂的研究进展[ J].药学研究, 2024, 43(9): 903-908+921. DOI: 10.13506/j.cnki.jpr.2024.09.012.
Hu XH, Zhang ZJ. Research Progress of Lipase Inhibitors[ J]. Journal of Pharmaceutical Research, 2024, 43(9): 903-908 + 921. DOI: 10.13506/j.cnki.jpr.2024.09.012.
Hu XH, Zhang ZJ. Research Progress of Lipase Inhibitors[ J]. Journal of Pharmaceutical Research, 2024, 43(9): 903-908 + 921. DOI: 10.13506/j.cnki.jpr.2024.09.012.
10、Patel M, Daboul J, Iftikhar S, et al. Weight loss supplement-induced pulmonar y hy pertension: a decades delayed presentation of fenfluramine-phentermine[ J]. Am J Ther, 2023, 30(3): e300-e301. DOI: 10.1097/mjt.0000000000001387.Patel M, Daboul J, Iftikhar S, et al. Weight loss supplement-induced pulmonar y hy pertension: a decades delayed presentation of fenfluramine-phentermine[ J]. Am J Ther, 2023, 30(3): e300-e301. DOI: 10.1097/mjt.0000000000001387.
11、Hendricks EJ, Srisurapanont M, Schmidt SL, et al. Addiction potential of phentermine prescribed during long-term treatment of obesity[ J]. Int J Obes (Lond), 2014, 38(2): 292-298. DOI: 10.1038/ijo.2013.74.Hendricks EJ, Srisurapanont M, Schmidt SL, et al. Addiction potential of phentermine prescribed during long-term treatment of obesity[ J]. Int J Obes (Lond), 2014, 38(2): 292-298. DOI: 10.1038/ijo.2013.74.
12、Elmaleh- Sachs A , Schwartz JL, Bramante CT, et al. Obesity management in adults: a review[ J]. JAMA, 2023, 330(20): 2000-2015. DOI: 10.1001/jama.2023.19897.Elmaleh- Sachs A , Schwartz JL, Bramante CT, et al. Obesity management in adults: a review[ J]. JAMA, 2023, 330(20): 2000-2015. DOI: 10.1001/jama.2023.19897.
13、Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles[ J]. Diabetes Obes Metab, 2016, 18(6): 558-570. DOI: 10.1111/dom.12657.Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles[ J]. Diabetes Obes Metab, 2016, 18(6): 558-570. DOI: 10.1111/dom.12657.
14、Lu R, Jiang Y, Du Z, et al. Multidimensional assessment of adverse events of bupropion: a large-scale data analysis from the FAERS database[ J]. J Affect Disord, 2024, 354: 649-655. DOI: 10.1016/ j.jad.2024.03.085.Lu R, Jiang Y, Du Z, et al. Multidimensional assessment of adverse events of bupropion: a large-scale data analysis from the FAERS database[ J]. J Affect Disord, 2024, 354: 649-655. DOI: 10.1016/ j.jad.2024.03.085.
15、Onakpoya IJ, Lee JJ, Mahtani KR , et al. Naltrexone-bupropion (mysimba) in management of obesity: a systematic review and metaanalysis of unpublished clinical study reports[ J]. Br J Clin Pharmacol, 2020, 86(4): 646-667. DOI: 10.1111/bcp.14210.Onakpoya IJ, Lee JJ, Mahtani KR , et al. Naltrexone-bupropion (mysimba) in management of obesity: a systematic review and metaanalysis of unpublished clinical study reports[ J]. Br J Clin Pharmacol, 2020, 86(4): 646-667. DOI: 10.1111/bcp.14210.
16、Caterson ID, Finer N, Coutinho W, et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial[ J]. Diabetes Obes Metab, 2012, 14(6): 523-530. DOI: 10.1111/j.1463-1326.2011.01554.x.Caterson ID, Finer N, Coutinho W, et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine Cardiovascular OUTcomes (SCOUT) trial[ J]. Diabetes Obes Metab, 2012, 14(6): 523-530. DOI: 10.1111/j.1463-1326.2011.01554.x.
17、Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease[ J]. Diabetes Obes Metab, 2018, 20(Suppl 1): 5-21. DOI: 10.1111/dom.13129.Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease[ J]. Diabetes Obes Metab, 2018, 20(Suppl 1): 5-21. DOI: 10.1111/dom.13129.
18、Hjerpsted JB, Flint A , Brooks A , et al. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity[ J]. Diabetes Obes Metab, 2018, 20(3): 610-619. DOI: 10.1111/dom.13120.Hjerpsted JB, Flint A , Brooks A , et al. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity[ J]. Diabetes Obes Metab, 2018, 20(3): 610-619. DOI: 10.1111/dom.13120.
19、Kim KS, Park JS, Hwang E, et al. GLP-1 increases preingestive satiation via hypothalamic circuits in mice and humans[ J]. Science, 2024, 385(6707): 438-446. DOI: 10.1126/science.adj2537.Kim KS, Park JS, Hwang E, et al. GLP-1 increases preingestive satiation via hypothalamic circuits in mice and humans[ J]. Science, 2024, 385(6707): 438-446. DOI: 10.1126/science.adj2537.
20、Coveleskie K, Kilpatrick LA, Gupta A, et al. The effect of the GLP-1 analogue Exenatide on functional connectivity within an NTS-based network in women with and without obesity[ J]. Obes Sci Pract, 2017, 3(4): 434-445. DOI: 10.1002/osp4.124.Coveleskie K, Kilpatrick LA, Gupta A, et al. The effect of the GLP-1 analogue Exenatide on functional connectivity within an NTS-based network in women with and without obesity[ J]. Obes Sci Pract, 2017, 3(4): 434-445. DOI: 10.1002/osp4.124.
21、Webster AN, Becker JJ, Li C, et al. Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety[ J]. Nat Metab, 2024, 6(12): 2354-2373. DOI: 10.1038/s42255-024-01168-8.Webster AN, Becker JJ, Li C, et al. Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety[ J]. Nat Metab, 2024, 6(12): 2354-2373. DOI: 10.1038/s42255-024-01168-8.
22、Dong Y, Carty J, Goldstein N, et al. Time and metabolic statedependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo[ J]. Mol Metab, 2021, 54: 101352. DOI: 10.1016/j.molmet.2021.101352.Dong Y, Carty J, Goldstein N, et al. Time and metabolic statedependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo[ J]. Mol Metab, 2021, 54: 101352. DOI: 10.1016/j.molmet.2021.101352.
23、Nauck MA, Müller TD. Incretin hormones and type 2 diabetes[ J]. Diabetologia, 2023, 66(10): 1780-1795. DOI: 10.1007/s00125-023- 05956-x.Nauck MA, Müller TD. Incretin hormones and type 2 diabetes[ J]. Diabetologia, 2023, 66(10): 1780-1795. DOI: 10.1007/s00125-023- 05956-x.
24、Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity[ J]. N Engl J Med, 2022, 387(3): 205-216. DOI: 10.1056/nejmoa2206038.Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity[ J]. N Engl J Med, 2022, 387(3): 205-216. DOI: 10.1056/nejmoa2206038.
25、Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity and weight loss[ J]. Curr Obes Rep, 2019, 8(2): 156-164. DOI: 10.1007/s13679-019-00335-3.Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity and weight loss[ J]. Curr Obes Rep, 2019, 8(2): 156-164. DOI: 10.1007/s13679-019-00335-3.
26、曹原, 司继刚. 可减轻体重的降糖药物研究进展[ J]. 中国老 年学杂志, 2017, 37(18): 4673-4677. DOI: 10.3969/j.issn.1005- 9202.2017.18.114.
Cao Y, Si JG. Research Progress on Antidiabetic Drugs with WeightLoss Effects [ J]. Chinese Journal of Geriatrics, 2017, 37(18): 4673- 467. DOI: 10.3969/j.issn.1005-9202.2017.18.114.
Cao Y, Si JG. Research Progress on Antidiabetic Drugs with WeightLoss Effects [ J]. Chinese Journal of Geriatrics, 2017, 37(18): 4673- 467. DOI: 10.3969/j.issn.1005-9202.2017.18.114.
27、郭凯明, 伊娜, 赵振平, 等. 中国成人BMI和腹型肥胖与T2DM发 病关系的前瞻性研究[ J].中华疾病控制杂志, 2023, 27(11): 1342- 1349. DOI: 10.16462/j.cnki.zhjbkz.2023.11.016.
Guo KM, Yi N, Zhao ZP, et al. A prospective study on the relationship between adult BMI and abdominal obesity and the incidence of T2DM in China[ J]. Chin J Dis Control, 2023, 27(11): 1342-1349. DOI: 10.16462/j.cnki.zhjbkz.2023.11.016.
Guo KM, Yi N, Zhao ZP, et al. A prospective study on the relationship between adult BMI and abdominal obesity and the incidence of T2DM in China[ J]. Chin J Dis Control, 2023, 27(11): 1342-1349. DOI: 10.16462/j.cnki.zhjbkz.2023.11.016.
28、Polemiti E, Baudry J, Kuxhaus O, et al. BMI and BMI change following incident type 2 diabetes and risk of microvascular and macrovascular complications: the EPIC-Potsdam study[ J]. Diabetologia, 2021, 64(4): 814-825. DOI: 10.1007/s00125-020-05362-7.Polemiti E, Baudry J, Kuxhaus O, et al. BMI and BMI change following incident type 2 diabetes and risk of microvascular and macrovascular complications: the EPIC-Potsdam study[ J]. Diabetologia, 2021, 64(4): 814-825. DOI: 10.1007/s00125-020-05362-7.
29、Varra FN, Varras M, Varra VK, et al. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammationmediating treatment options (Review)[ J]. Mol Med Rep, 2024, 29(6): 95. DOI: 10.3892/mmr.2024.13219.Varra FN, Varras M, Varra VK, et al. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammationmediating treatment options (Review)[ J]. Mol Med Rep, 2024, 29(6): 95. DOI: 10.3892/mmr.2024.13219.
30、Wei J, Yang B, Wang R, et al. Risk of stroke and retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: an eight RCTs meta-analysis[ J]. Front Endocrinol (Lausanne), 2022, 13: 1007980. DOI: 10.3389/fendo.2022.1007980.Wei J, Yang B, Wang R, et al. Risk of stroke and retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: an eight RCTs meta-analysis[ J]. Front Endocrinol (Lausanne), 2022, 13: 1007980. DOI: 10.3389/fendo.2022.1007980.
31、Forzano I, Varzideh F, Avvisato R, et al. Tirzepatide: a systematic update[ J]. Int J Mol Sci, 2022, 23(23): 14631. DOI: 10.3390/ ijms232314631.Forzano I, Varzideh F, Avvisato R, et al. Tirzepatide: a systematic update[ J]. Int J Mol Sci, 2022, 23(23): 14631. DOI: 10.3390/ ijms232314631.
32、Lin HC, Stein JD, Nan B, et al. Association of geroprotective effects of metformin and risk of open-angle glaucoma in persons with diabetes mellitus[ J]. JAMA Ophthalmol, 2015, 133(8): 915-923. DOI: 10.1001/jamaophthalmol.2015.1440.Lin HC, Stein JD, Nan B, et al. Association of geroprotective effects of metformin and risk of open-angle glaucoma in persons with diabetes mellitus[ J]. JAMA Ophthalmol, 2015, 133(8): 915-923. DOI: 10.1001/jamaophthalmol.2015.1440.
33、Stein JD, Talwar N, Kang JH, et al. Bupropion use and risk of openangle glaucoma among enrollees in a large U.S. managed care network[ J]. PLoS One, 2015, 10(4): e0123682. DOI: 10.1371/ journal.pone.0123682.Stein JD, Talwar N, Kang JH, et al. Bupropion use and risk of openangle glaucoma among enrollees in a large U.S. managed care network[ J]. PLoS One, 2015, 10(4): e0123682. DOI: 10.1371/ journal.pone.0123682.
34、Masís M, Kakigi C, Singh K, et al. Association between self-reported bupropion use and glaucoma: a population-based study[ J]. Br J Ophthalmol, 2017, 101(4): 525-529. DOI: 10.1136/bjophthalmol- 2016-308846.Masís M, Kakigi C, Singh K, et al. Association between self-reported bupropion use and glaucoma: a population-based study[ J]. Br J Ophthalmol, 2017, 101(4): 525-529. DOI: 10.1136/bjophthalmol- 2016-308846.
35、Cui QN, Stein LM, Fortin SM, et al. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma[ J]. Br J Pharmacol, 2022, 179(4): 715-726. DOI: 10.1111/bph.15683.Cui QN, Stein LM, Fortin SM, et al. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma[ J]. Br J Pharmacol, 2022, 179(4): 715-726. DOI: 10.1111/bph.15683.
36、Niazi S, Gnesin F, Thein AS, et al. Association between glucagon-like peptide-1 receptor agonists and the risk of glaucoma in individuals with type 2 diabetes[ J]. Ophthalmology, 2024, 131(9): 1056-1063. DOI: 10.1016/j.ophtha.2024.03.004.Niazi S, Gnesin F, Thein AS, et al. Association between glucagon-like peptide-1 receptor agonists and the risk of glaucoma in individuals with type 2 diabetes[ J]. Ophthalmology, 2024, 131(9): 1056-1063. DOI: 10.1016/j.ophtha.2024.03.004.
37、He X, Wen S, Tang X, et al. Glucagon-like peptide-1 receptor agonists rescued diabetic vascular endothelial damage through suppression of aberrant STING signaling[ J]. Acta Pharm Sin B, 2024, 14(6): 2613- 2630. DOI: 10.1016/j.apsb.2024.03.011.He X, Wen S, Tang X, et al. Glucagon-like peptide-1 receptor agonists rescued diabetic vascular endothelial damage through suppression of aberrant STING signaling[ J]. Acta Pharm Sin B, 2024, 14(6): 2613- 2630. DOI: 10.1016/j.apsb.2024.03.011.
38、Richa S, Yazbek JC. Ocular adverse effects of common psychotropic agents: a review[ J]. CNS Drugs, 2010, 24(6): 501-526. DOI: 10.2165/11533180-000000000-00000.Richa S, Yazbek JC. Ocular adverse effects of common psychotropic agents: a review[ J]. CNS Drugs, 2010, 24(6): 501-526. DOI: 10.2165/11533180-000000000-00000.
39、Aftab OM, Khan H, Khouri AS. Blind spots in therapy unveiling drug-induced angle-closure glaucoma through a national analysis[ J]. Ophthalmol Glaucoma, 2024, 7(5): 485-490. DOI: 10.1016/j.ogla. 2024.04.006.Aftab OM, Khan H, Khouri AS. Blind spots in therapy unveiling drug-induced angle-closure glaucoma through a national analysis[ J]. Ophthalmol Glaucoma, 2024, 7(5): 485-490. DOI: 10.1016/j.ogla. 2024.04.006.
40、Feijó ED, Matayoshi S. Effect of sibutramine on upper eyelid position[ J]. Ophthalmic Plast Reconstr Surg, 2018, 34(4): 397-398. DOI: 10.1097/iop.0000000000001153.Feijó ED, Matayoshi S. Effect of sibutramine on upper eyelid position[ J]. Ophthalmic Plast Reconstr Surg, 2018, 34(4): 397-398. DOI: 10.1097/iop.0000000000001153.
41、McDuffie JR, Calis KA, Booth SL, et al. Effects of orlistat on fat-soluble vitamins in obese adolescents[ J]. Pharmacotherapy, 2002, 22(7): 814- 822. DOI: 10.1592/phco.22.11.814.33627.McDuffie JR, Calis KA, Booth SL, et al. Effects of orlistat on fat-soluble vitamins in obese adolescents[ J]. Pharmacotherapy, 2002, 22(7): 814- 822. DOI: 10.1592/phco.22.11.814.33627.
42、曹迎雪, 麦小妹, 石乐, 等. 青光眼中神经退行性病变的机制 研究和治疗进展[ J]. 眼科学报, 2024, 39(08): 402-408. DOI: 10.12419/24070205.
Cao YX, Mai XM, Shi L, et al. Research on the Mechanism of Neurodegenerative Lesions in Glaucoma and Therapeutic Advances[ J]. Yan Ke Xue Bao, 2024, 39(08): 402-408. DOI: 10.12419/24070205.
Cao YX, Mai XM, Shi L, et al. Research on the Mechanism of Neurodegenerative Lesions in Glaucoma and Therapeutic Advances[ J]. Yan Ke Xue Bao, 2024, 39(08): 402-408. DOI: 10.12419/24070205.
43、Grewal DS, Goldstein DA , Khatana AK , et al. Bilateral angle closure following use of a weight loss combination agent containing topiramate[ J]. J Glaucoma, 2015, 24(5): e132-6. DOI: 10.1097/ ijg.0000000000000157.Grewal DS, Goldstein DA , Khatana AK , et al. Bilateral angle closure following use of a weight loss combination agent containing topiramate[ J]. J Glaucoma, 2015, 24(5): e132-6. DOI: 10.1097/ ijg.0000000000000157.
44、Wu SN, Chen XD, Yan D, et al. Drug-associated glaucoma: a realworld study based on the Food and Drug Administration adverse event reporting system database[ J]. Clin Exp Ophthalmol, 2025, 53(2): 140- 160. DOI: 10.1111/ceo.14454.Wu SN, Chen XD, Yan D, et al. Drug-associated glaucoma: a realworld study based on the Food and Drug Administration adverse event reporting system database[ J]. Clin Exp Ophthalmol, 2025, 53(2): 140- 160. DOI: 10.1111/ceo.14454.
45、Symes RJ, Etminan M, Mikelberg FS. Risk of angle-closure glaucoma with bupropion and topiramate[ J]. JAMA Ophthalmol, 2015, 133(10): 1187-1189. DOI: 10.1001/jamaophthalmol.2015.2180.Symes RJ, Etminan M, Mikelberg FS. Risk of angle-closure glaucoma with bupropion and topiramate[ J]. JAMA Ophthalmol, 2015, 133(10): 1187-1189. DOI: 10.1001/jamaophthalmol.2015.2180.
46、Murphy RM, Bakir B, O'Brien C, et al. Drug-induced bilateral secondary angle-closure glaucoma: a literature synthesis[ J]. J Glaucoma, 2016, 25(2): e99-105. DOI: 10.1097/ijg.0000000000000270.Murphy RM, Bakir B, O'Brien C, et al. Drug-induced bilateral secondary angle-closure glaucoma: a literature synthesis[ J]. J Glaucoma, 2016, 25(2): e99-105. DOI: 10.1097/ijg.0000000000000270.
47、Margo CE, Harman LE. Diet pills and the cataract outbreak of 1935: reflections on the evolution of consumer protection legislation[ J]. Surv Ophthalmol, 2014, 59(5): 568-573. DOI: 10.1016/j.survophthal. 2014.02.005.Margo CE, Harman LE. Diet pills and the cataract outbreak of 1935: reflections on the evolution of consumer protection legislation[ J]. Surv Ophthalmol, 2014, 59(5): 568-573. DOI: 10.1016/j.survophthal. 2014.02.005.
48、Wang F, Ma J, Han F, et al. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model[ J]. Sci Rep, 2016, 6: 19396. DOI: 10.1038/srep19396.Wang F, Ma J, Han F, et al. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model[ J]. Sci Rep, 2016, 6: 19396. DOI: 10.1038/srep19396.
49、Drenckhahn D. Anterior polar cataract and lysosomal alterations in the lens of rats treated with the amphiphilic lipidosis-inducing drugs chloroquine and chlorphentermine[ J]. Virchows Arch B, 1978, 27(1): 255-266. DOI: 10.1007/BF02889000.Drenckhahn D. Anterior polar cataract and lysosomal alterations in the lens of rats treated with the amphiphilic lipidosis-inducing drugs chloroquine and chlorphentermine[ J]. Virchows Arch B, 1978, 27(1): 255-266. DOI: 10.1007/BF02889000.
50、Drenckhahn D, Lüllmann-Rauch R. Lens opacities associated with lipidosis-like ultrastructural alterations in rats treated with chloroquine, chlorphentermine, or iprindole[ J]. Exp Eye Res, 1977, 24(6): 621-632. DOI: 10.1016/0014-4835(77)90120-8.Drenckhahn D, Lüllmann-Rauch R. Lens opacities associated with lipidosis-like ultrastructural alterations in rats treated with chloroquine, chlorphentermine, or iprindole[ J]. Exp Eye Res, 1977, 24(6): 621-632. DOI: 10.1016/0014-4835(77)90120-8.
51、Yang Z, Tan TE, Shao Y, et al. Classification of diabetic retinopathy: Past, present and future[ J]. Front Endocrinol (Lausanne), 2022, 13: 1079217. DOI: 10.3389/fendo.2022.1079217.Yang Z, Tan TE, Shao Y, et al. Classification of diabetic retinopathy: Past, present and future[ J]. Front Endocrinol (Lausanne), 2022, 13: 1079217. DOI: 10.3389/fendo.2022.1079217.
52、Baker%20C%2C%20Retzik-Stahr%20C%2C%20Singh%20V%2C%20et%20al.%20Should%20metformin%20remain%20%0Athe%20first-line%20therapy%20for%20treatment%20of%20type%202%20diabetes%3F%5B%20J%5D.%20Ther%20Adv%20%0AEndocrinol%20Metab%2C%202021%2C%2012%3A%202042018820980225.%20DOI%3A%2010.1177%2F%20%0A2042018820980225.Baker%20C%2C%20Retzik-Stahr%20C%2C%20Singh%20V%2C%20et%20al.%20Should%20metformin%20remain%20%0Athe%20first-line%20therapy%20for%20treatment%20of%20type%202%20diabetes%3F%5B%20J%5D.%20Ther%20Adv%20%0AEndocrinol%20Metab%2C%202021%2C%2012%3A%202042018820980225.%20DOI%3A%2010.1177%2F%20%0A2042018820980225.
53、Tsapas A, Avgerinos I, Karagiannis T, et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes: a systematic review and network meta-analysis[ J]. Ann Intern Med, 2020, 173(4): 278-286. DOI: 10.7326/m20-0864.Tsapas A, Avgerinos I, Karagiannis T, et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes: a systematic review and network meta-analysis[ J]. Ann Intern Med, 2020, 173(4): 278-286. DOI: 10.7326/m20-0864.
54、Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes[ J]. N Engl J Med, 2016, 375(4): 311-322. DOI: 10.1056/nejmoa1603827.Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes[ J]. N Engl J Med, 2016, 375(4): 311-322. DOI: 10.1056/nejmoa1603827.
55、Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity[ J]. N Engl J Med, 2021, 384(11): 989-1002. DOI: 10.1056/nejmoa2032183.Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity[ J]. N Engl J Med, 2021, 384(11): 989-1002. DOI: 10.1056/nejmoa2032183.
56、Hernández C, Bogdanov P, Corraliza L, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes[ J]. Diabetes, 2016, 65(1): 172-187. DOI: 10.2337/db15-0443.Hernández C, Bogdanov P, Corraliza L, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes[ J]. Diabetes, 2016, 65(1): 172-187. DOI: 10.2337/db15-0443.
57、Bain SC, Klufas MA, Ho A, et al. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review[ J]. Diabetes Obes Metab, 2019, 21(3): 454-466. DOI: 10.1111/dom. 13538.Bain SC, Klufas MA, Ho A, et al. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: a review[ J]. Diabetes Obes Metab, 2019, 21(3): 454-466. DOI: 10.1111/dom. 13538.
58、Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a doubleblind, randomised placebo-controlled trial[ J]. Lancet, 2019, 394(10193): 121-130. DOI: 10.1016/s0140-6736(19)31149-3.Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a doubleblind, randomised placebo-controlled trial[ J]. Lancet, 2019, 394(10193): 121-130. DOI: 10.1016/s0140-6736(19)31149-3.
59、Yoshida Y, Joshi P, Barri S, et al. Progression of retinopathy with glucagon-like peptide-1 receptor agonists with cardiovascular benefits in type 2 diabetes–A systematic review and meta-analysis[ J]. J Diabetes Complicat, 2022, 36(8): 108255. DOI: 10.1016/j.jdiacomp. 2022.108255.Yoshida Y, Joshi P, Barri S, et al. Progression of retinopathy with glucagon-like peptide-1 receptor agonists with cardiovascular benefits in type 2 diabetes–A systematic review and meta-analysis[ J]. J Diabetes Complicat, 2022, 36(8): 108255. DOI: 10.1016/j.jdiacomp. 2022.108255.
60、Yao H, Zhang A, Li D, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis[ J]. BMJ, 2024, 384: e076410. DOI: 10.1136/bmj-2023-076410.Yao H, Zhang A, Li D, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis[ J]. BMJ, 2024, 384: e076410. DOI: 10.1136/bmj-2023-076410.
61、Petersen J, Ludwig MQ, Juozaityte V, et al. GLP-1-directed NMDA receptor antagonism for obesity treatment[ J]. Nature, 2024, 629(8014): 1133-1141. DOI: 10.1038/s41586-024-07419-8.Petersen J, Ludwig MQ, Juozaityte V, et al. GLP-1-directed NMDA receptor antagonism for obesity treatment[ J]. Nature, 2024, 629(8014): 1133-1141. DOI: 10.1038/s41586-024-07419-8.
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
目录

点击右上角菜单,浏览器打开下载

我知道了