1、Mohammed MS, Sendra S, Lloret J, et al. Systems and WBANs for
controlling obesity[ J]. J Healthc Eng, 2018, 2018: 1564748. DOI:
10.1155/2018/1564748.Mohammed MS, Sendra S, Lloret J, et al. Systems and WBANs for
controlling obesity[ J]. J Healthc Eng, 2018, 2018: 1564748. DOI:
10.1155/2018/1564748.
2、Lingvay I, Sumithran P, Cohen RV, et al. Obesity management as
a primary treatment goal for type 2 diabetes: time to reframe the
conversation[ J]. Lancet, 2022, 399(10322): 394-405. DOI: 10.1016/
S0140-6736(21)01919-X.Lingvay I, Sumithran P, Cohen RV, et al. Obesity management as
a primary treatment goal for type 2 diabetes: time to reframe the
conversation[ J]. Lancet, 2022, 399(10322): 394-405. DOI: 10.1016/
S0140-6736(21)01919-X.
3、Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular
disease: a scientific statement from the American heart association[ J].
Circulation, 2021, 143(21): e984-e1010. DOI: 10.1161/cir.0000
000000000973.Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular
disease: a scientific statement from the American heart association[ J].
Circulation, 2021, 143(21): e984-e1010. DOI: 10.1161/cir.0000
000000000973.
4、Avgerinos KI, Spyrou N, Mantzoros CS, et al. Obesity and cancer risk:
Emerging biological mechanisms and perspectives[ J]. Metabolism, 2019, 92: 121-135. DOI: 10.1016/j.metabol.2018.11.001.Avgerinos KI, Spyrou N, Mantzoros CS, et al. Obesity and cancer risk:
Emerging biological mechanisms and perspectives[ J]. Metabolism, 2019, 92: 121-135. DOI: 10.1016/j.metabol.2018.11.001.
5、Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic
fatty liver disease: From pathophysiology to therapeutics[ J].
Metabolism, 2019, 92: 82-97. DOI: 10.1016/j.metabol.2018.11.014.Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic
fatty liver disease: From pathophysiology to therapeutics[ J].
Metabolism, 2019, 92: 82-97. DOI: 10.1016/j.metabol.2018.11.014.
6、Litwin%20M%2C%20Ku%C5%82aga%20Z.%20Obesity%2C%20metabolic%20syndrome%2C%20and%20primary%20%0Ahypertension%5B%20J%5D.%20Pediatr%20Nephrol%2C%202021%2C%2036(4)%3A%20825-837.%20DOI%3A%20%0A10.1007%2Fs00467-020-04579-3.Litwin%20M%2C%20Ku%C5%82aga%20Z.%20Obesity%2C%20metabolic%20syndrome%2C%20and%20primary%20%0Ahypertension%5B%20J%5D.%20Pediatr%20Nephrol%2C%202021%2C%2036(4)%3A%20825-837.%20DOI%3A%20%0A10.1007%2Fs00467-020-04579-3.
7、Ard J, Fitch A, Fruh S, et al. Weight loss and maintenance related to the
mechanism of action of glucagon-like Peptide1 receptor agonists[ J].
Adv Ther, 2021, 38(6): 2821-2839. DOI: 10.1007/s12325-021-01710-0.Ard J, Fitch A, Fruh S, et al. Weight loss and maintenance related to the
mechanism of action of glucagon-like Peptide1 receptor agonists[ J].
Adv Ther, 2021, 38(6): 2821-2839. DOI: 10.1007/s12325-021-01710-0.
8、谭莺, 雷普润, 唐齐, 等. 中国肥胖症药物治疗的现状及效果分
析[ J]. 中国预防医学杂志, 2024, 25(4): 413-418. DOI: 10.16506/
j.1009-6639.2024.04.005.
Tan Y, Lei PR, Tang Q, et al. Current status and effect analysis of
pharmacological treatment for obesity in China[ J]. Chin Prev Med,
2024, 25(4): 413-418. DOI: 10.16506/j.1009-6639.2024.04.005.Tan Y, Lei PR, Tang Q, et al. Current status and effect analysis of
pharmacological treatment for obesity in China[ J]. Chin Prev Med,
2024, 25(4): 413-418. DOI: 10.16506/j.1009-6639.2024.04.005.
9、胡幸华,张紫佳.脂肪酶抑制剂的研究进展[ J].药学研究, 2024,
43(9): 903-908+921. DOI: 10.13506/j.cnki.jpr.2024.09.012.
Hu XH, Zhang ZJ. Research Progress of Lipase Inhibitors[ J]. Journal
of Pharmaceutical Research, 2024, 43(9): 903-908 + 921. DOI:
10.13506/j.cnki.jpr.2024.09.012.Hu XH, Zhang ZJ. Research Progress of Lipase Inhibitors[ J]. Journal
of Pharmaceutical Research, 2024, 43(9): 903-908 + 921. DOI:
10.13506/j.cnki.jpr.2024.09.012.
10、Patel M, Daboul J, Iftikhar S, et al. Weight loss supplement-induced
pulmonar y hy pertension: a decades delayed presentation of
fenfluramine-phentermine[ J]. Am J Ther, 2023, 30(3): e300-e301.
DOI: 10.1097/mjt.0000000000001387.Patel M, Daboul J, Iftikhar S, et al. Weight loss supplement-induced
pulmonar y hy pertension: a decades delayed presentation of
fenfluramine-phentermine[ J]. Am J Ther, 2023, 30(3): e300-e301.
DOI: 10.1097/mjt.0000000000001387.
11、Hendricks EJ, Srisurapanont M, Schmidt SL, et al. Addiction potential
of phentermine prescribed during long-term treatment of obesity[ J].
Int J Obes (Lond), 2014, 38(2): 292-298. DOI: 10.1038/ijo.2013.74.Hendricks EJ, Srisurapanont M, Schmidt SL, et al. Addiction potential
of phentermine prescribed during long-term treatment of obesity[ J].
Int J Obes (Lond), 2014, 38(2): 292-298. DOI: 10.1038/ijo.2013.74.
12、Elmaleh- Sachs A , Schwartz JL, Bramante CT, et al. Obesity
management in adults: a review[ J]. JAMA, 2023, 330(20): 2000-2015.
DOI: 10.1001/jama.2023.19897.Elmaleh- Sachs A , Schwartz JL, Bramante CT, et al. Obesity
management in adults: a review[ J]. JAMA, 2023, 330(20): 2000-2015.
DOI: 10.1001/jama.2023.19897.
13、Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological
obesity treatments: focus on adverse side-effect profiles[ J]. Diabetes
Obes Metab, 2016, 18(6): 558-570. DOI: 10.1111/dom.12657.Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological
obesity treatments: focus on adverse side-effect profiles[ J]. Diabetes
Obes Metab, 2016, 18(6): 558-570. DOI: 10.1111/dom.12657.
14、Lu R, Jiang Y, Du Z, et al. Multidimensional assessment of adverse
events of bupropion: a large-scale data analysis from the FAERS
database[ J]. J Affect Disord, 2024, 354: 649-655. DOI: 10.1016/
j.jad.2024.03.085.Lu R, Jiang Y, Du Z, et al. Multidimensional assessment of adverse
events of bupropion: a large-scale data analysis from the FAERS
database[ J]. J Affect Disord, 2024, 354: 649-655. DOI: 10.1016/
j.jad.2024.03.085.
15、Onakpoya IJ, Lee JJ, Mahtani KR , et al. Naltrexone-bupropion
(mysimba) in management of obesity: a systematic review and metaanalysis of unpublished clinical study reports[ J]. Br J Clin Pharmacol,
2020, 86(4): 646-667. DOI: 10.1111/bcp.14210.Onakpoya IJ, Lee JJ, Mahtani KR , et al. Naltrexone-bupropion
(mysimba) in management of obesity: a systematic review and metaanalysis of unpublished clinical study reports[ J]. Br J Clin Pharmacol,
2020, 86(4): 646-667. DOI: 10.1111/bcp.14210.
16、Caterson ID, Finer N, Coutinho W, et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine
Cardiovascular OUTcomes (SCOUT) trial[ J]. Diabetes Obes Metab,
2012, 14(6): 523-530. DOI: 10.1111/j.1463-1326.2011.01554.x.Caterson ID, Finer N, Coutinho W, et al. Maintained intentional weight loss reduces cardiovascular outcomes: results from the Sibutramine
Cardiovascular OUTcomes (SCOUT) trial[ J]. Diabetes Obes Metab,
2012, 14(6): 523-530. DOI: 10.1111/j.1463-1326.2011.01554.x.
17、Nauck MA, Meier JJ. Incretin hormones: Their role in health and
disease[ J]. Diabetes Obes Metab, 2018, 20(Suppl 1): 5-21. DOI:
10.1111/dom.13129.Nauck MA, Meier JJ. Incretin hormones: Their role in health and
disease[ J]. Diabetes Obes Metab, 2018, 20(Suppl 1): 5-21. DOI:
10.1111/dom.13129.
18、Hjerpsted JB, Flint A , Brooks A , et al. Semaglutide improves
postprandial glucose and lipid metabolism, and delays first-hour gastric
emptying in subjects with obesity[ J]. Diabetes Obes Metab, 2018,
20(3): 610-619. DOI: 10.1111/dom.13120.Hjerpsted JB, Flint A , Brooks A , et al. Semaglutide improves
postprandial glucose and lipid metabolism, and delays first-hour gastric
emptying in subjects with obesity[ J]. Diabetes Obes Metab, 2018,
20(3): 610-619. DOI: 10.1111/dom.13120.
19、Kim KS, Park JS, Hwang E, et al. GLP-1 increases preingestive satiation
via hypothalamic circuits in mice and humans[ J]. Science, 2024,
385(6707): 438-446. DOI: 10.1126/science.adj2537.Kim KS, Park JS, Hwang E, et al. GLP-1 increases preingestive satiation
via hypothalamic circuits in mice and humans[ J]. Science, 2024,
385(6707): 438-446. DOI: 10.1126/science.adj2537.
20、Coveleskie K, Kilpatrick LA, Gupta A, et al. The effect of the GLP-1
analogue Exenatide on functional connectivity within an NTS-based
network in women with and without obesity[ J]. Obes Sci Pract, 2017,
3(4): 434-445. DOI: 10.1002/osp4.124.Coveleskie K, Kilpatrick LA, Gupta A, et al. The effect of the GLP-1
analogue Exenatide on functional connectivity within an NTS-based
network in women with and without obesity[ J]. Obes Sci Pract, 2017,
3(4): 434-445. DOI: 10.1002/osp4.124.
21、Webster AN, Becker JJ, Li C, et al. Molecular connectomics reveals
a glucagon-like peptide 1-sensitive neural circuit for satiety[ J]. Nat
Metab, 2024, 6(12): 2354-2373. DOI: 10.1038/s42255-024-01168-8.Webster AN, Becker JJ, Li C, et al. Molecular connectomics reveals
a glucagon-like peptide 1-sensitive neural circuit for satiety[ J]. Nat
Metab, 2024, 6(12): 2354-2373. DOI: 10.1038/s42255-024-01168-8.
22、Dong Y, Carty J, Goldstein N, et al. Time and metabolic statedependent effects of GLP-1R agonists on NPY/AgRP and POMC
neuronal activity in vivo[ J]. Mol Metab, 2021, 54: 101352. DOI:
10.1016/j.molmet.2021.101352.Dong Y, Carty J, Goldstein N, et al. Time and metabolic statedependent effects of GLP-1R agonists on NPY/AgRP and POMC
neuronal activity in vivo[ J]. Mol Metab, 2021, 54: 101352. DOI:
10.1016/j.molmet.2021.101352.
23、Nauck MA, Müller TD. Incretin hormones and type 2 diabetes[ J].
Diabetologia, 2023, 66(10): 1780-1795. DOI: 10.1007/s00125-023-
05956-x.Nauck MA, Müller TD. Incretin hormones and type 2 diabetes[ J].
Diabetologia, 2023, 66(10): 1780-1795. DOI: 10.1007/s00125-023-
05956-x.
24、Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly
for the treatment of obesity[ J]. N Engl J Med, 2022, 387(3): 205-216.
DOI: 10.1056/nejmoa2206038.Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly
for the treatment of obesity[ J]. N Engl J Med, 2022, 387(3): 205-216.
DOI: 10.1056/nejmoa2206038.
25、Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity
and weight loss[ J]. Curr Obes Rep, 2019, 8(2): 156-164. DOI:
10.1007/s13679-019-00335-3.Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity
and weight loss[ J]. Curr Obes Rep, 2019, 8(2): 156-164. DOI:
10.1007/s13679-019-00335-3.
26、曹原, 司继刚. 可减轻体重的降糖药物研究进展[ J]. 中国老
年学杂志, 2017, 37(18): 4673-4677. DOI: 10.3969/j.issn.1005-
9202.2017.18.114.
Cao Y, Si JG. Research Progress on Antidiabetic Drugs with WeightLoss Effects [ J]. Chinese Journal of Geriatrics, 2017, 37(18): 4673-
467. DOI: 10.3969/j.issn.1005-9202.2017.18.114.Cao Y, Si JG. Research Progress on Antidiabetic Drugs with WeightLoss Effects [ J]. Chinese Journal of Geriatrics, 2017, 37(18): 4673-
467. DOI: 10.3969/j.issn.1005-9202.2017.18.114.
27、郭凯明, 伊娜, 赵振平, 等. 中国成人BMI和腹型肥胖与T2DM发
病关系的前瞻性研究[ J].中华疾病控制杂志, 2023, 27(11): 1342-
1349. DOI: 10.16462/j.cnki.zhjbkz.2023.11.016.
Guo KM, Yi N, Zhao ZP, et al. A prospective study on the relationship between adult BMI and abdominal obesity and the incidence of T2DM
in China[ J]. Chin J Dis Control, 2023, 27(11): 1342-1349. DOI:
10.16462/j.cnki.zhjbkz.2023.11.016.Guo KM, Yi N, Zhao ZP, et al. A prospective study on the relationship between adult BMI and abdominal obesity and the incidence of T2DM
in China[ J]. Chin J Dis Control, 2023, 27(11): 1342-1349. DOI:
10.16462/j.cnki.zhjbkz.2023.11.016.
28、Polemiti E, Baudry J, Kuxhaus O, et al. BMI and BMI change following
incident type 2 diabetes and risk of microvascular and macrovascular
complications: the EPIC-Potsdam study[ J]. Diabetologia, 2021, 64(4):
814-825. DOI: 10.1007/s00125-020-05362-7.Polemiti E, Baudry J, Kuxhaus O, et al. BMI and BMI change following
incident type 2 diabetes and risk of microvascular and macrovascular
complications: the EPIC-Potsdam study[ J]. Diabetologia, 2021, 64(4):
814-825. DOI: 10.1007/s00125-020-05362-7.
29、Varra FN, Varras M, Varra VK, et al. Molecular and pathophysiological
relationship between obesity and chronic inflammation in the
manifestation of metabolic dysfunctions and their inflammationmediating treatment options (Review)[ J]. Mol Med Rep, 2024, 29(6):
95. DOI: 10.3892/mmr.2024.13219.Varra FN, Varras M, Varra VK, et al. Molecular and pathophysiological
relationship between obesity and chronic inflammation in the
manifestation of metabolic dysfunctions and their inflammationmediating treatment options (Review)[ J]. Mol Med Rep, 2024, 29(6):
95. DOI: 10.3892/mmr.2024.13219.
30、Wei J, Yang B, Wang R, et al. Risk of stroke and retinopathy during
GLP-1 receptor agonist cardiovascular outcome trials: an eight RCTs
meta-analysis[ J]. Front Endocrinol (Lausanne), 2022, 13: 1007980.
DOI: 10.3389/fendo.2022.1007980.Wei J, Yang B, Wang R, et al. Risk of stroke and retinopathy during
GLP-1 receptor agonist cardiovascular outcome trials: an eight RCTs
meta-analysis[ J]. Front Endocrinol (Lausanne), 2022, 13: 1007980.
DOI: 10.3389/fendo.2022.1007980.
31、Forzano I, Varzideh F, Avvisato R, et al. Tirzepatide: a systematic
update[ J]. Int J Mol Sci, 2022, 23(23): 14631. DOI: 10.3390/
ijms232314631.Forzano I, Varzideh F, Avvisato R, et al. Tirzepatide: a systematic
update[ J]. Int J Mol Sci, 2022, 23(23): 14631. DOI: 10.3390/
ijms232314631.
32、Lin HC, Stein JD, Nan B, et al. Association of geroprotective effects of
metformin and risk of open-angle glaucoma in persons with diabetes
mellitus[ J]. JAMA Ophthalmol, 2015, 133(8): 915-923. DOI:
10.1001/jamaophthalmol.2015.1440.Lin HC, Stein JD, Nan B, et al. Association of geroprotective effects of
metformin and risk of open-angle glaucoma in persons with diabetes
mellitus[ J]. JAMA Ophthalmol, 2015, 133(8): 915-923. DOI:
10.1001/jamaophthalmol.2015.1440.
33、Stein JD, Talwar N, Kang JH, et al. Bupropion use and risk of openangle glaucoma among enrollees in a large U.S. managed care
network[ J]. PLoS One, 2015, 10(4): e0123682. DOI: 10.1371/
journal.pone.0123682.Stein JD, Talwar N, Kang JH, et al. Bupropion use and risk of openangle glaucoma among enrollees in a large U.S. managed care
network[ J]. PLoS One, 2015, 10(4): e0123682. DOI: 10.1371/
journal.pone.0123682.
34、Masís M, Kakigi C, Singh K, et al. Association between self-reported
bupropion use and glaucoma: a population-based study[ J]. Br J
Ophthalmol, 2017, 101(4): 525-529. DOI: 10.1136/bjophthalmol-
2016-308846.Masís M, Kakigi C, Singh K, et al. Association between self-reported
bupropion use and glaucoma: a population-based study[ J]. Br J
Ophthalmol, 2017, 101(4): 525-529. DOI: 10.1136/bjophthalmol-
2016-308846.
35、Cui QN, Stein LM, Fortin SM, et al. The role of glia in the physiology
and pharmacology of glucagon-like peptide-1: implications for obesity,
diabetes, neurodegeneration and glaucoma[ J]. Br J Pharmacol, 2022,
179(4): 715-726. DOI: 10.1111/bph.15683.Cui QN, Stein LM, Fortin SM, et al. The role of glia in the physiology
and pharmacology of glucagon-like peptide-1: implications for obesity,
diabetes, neurodegeneration and glaucoma[ J]. Br J Pharmacol, 2022,
179(4): 715-726. DOI: 10.1111/bph.15683.
36、Niazi S, Gnesin F, Thein AS, et al. Association between glucagon-like
peptide-1 receptor agonists and the risk of glaucoma in individuals with
type 2 diabetes[ J]. Ophthalmology, 2024, 131(9): 1056-1063. DOI:
10.1016/j.ophtha.2024.03.004.Niazi S, Gnesin F, Thein AS, et al. Association between glucagon-like
peptide-1 receptor agonists and the risk of glaucoma in individuals with
type 2 diabetes[ J]. Ophthalmology, 2024, 131(9): 1056-1063. DOI:
10.1016/j.ophtha.2024.03.004.
37、He X, Wen S, Tang X, et al. Glucagon-like peptide-1 receptor agonists
rescued diabetic vascular endothelial damage through suppression of
aberrant STING signaling[ J]. Acta Pharm Sin B, 2024, 14(6): 2613-
2630. DOI: 10.1016/j.apsb.2024.03.011.He X, Wen S, Tang X, et al. Glucagon-like peptide-1 receptor agonists
rescued diabetic vascular endothelial damage through suppression of
aberrant STING signaling[ J]. Acta Pharm Sin B, 2024, 14(6): 2613-
2630. DOI: 10.1016/j.apsb.2024.03.011.
38、Richa S, Yazbek JC. Ocular adverse effects of common psychotropic
agents: a review[ J]. CNS Drugs, 2010, 24(6): 501-526. DOI:
10.2165/11533180-000000000-00000.Richa S, Yazbek JC. Ocular adverse effects of common psychotropic
agents: a review[ J]. CNS Drugs, 2010, 24(6): 501-526. DOI:
10.2165/11533180-000000000-00000.
39、Aftab OM, Khan H, Khouri AS. Blind spots in therapy unveiling
drug-induced angle-closure glaucoma through a national analysis[ J].
Ophthalmol Glaucoma, 2024, 7(5): 485-490. DOI: 10.1016/j.ogla.
2024.04.006.Aftab OM, Khan H, Khouri AS. Blind spots in therapy unveiling
drug-induced angle-closure glaucoma through a national analysis[ J].
Ophthalmol Glaucoma, 2024, 7(5): 485-490. DOI: 10.1016/j.ogla.
2024.04.006.
40、Feijó ED, Matayoshi S. Effect of sibutramine on upper eyelid
position[ J]. Ophthalmic Plast Reconstr Surg, 2018, 34(4): 397-398.
DOI: 10.1097/iop.0000000000001153.Feijó ED, Matayoshi S. Effect of sibutramine on upper eyelid
position[ J]. Ophthalmic Plast Reconstr Surg, 2018, 34(4): 397-398.
DOI: 10.1097/iop.0000000000001153.
41、McDuffie JR, Calis KA, Booth SL, et al. Effects of orlistat on fat-soluble
vitamins in obese adolescents[ J]. Pharmacotherapy, 2002, 22(7): 814-
822. DOI: 10.1592/phco.22.11.814.33627.McDuffie JR, Calis KA, Booth SL, et al. Effects of orlistat on fat-soluble
vitamins in obese adolescents[ J]. Pharmacotherapy, 2002, 22(7): 814-
822. DOI: 10.1592/phco.22.11.814.33627.
42、曹迎雪, 麦小妹, 石乐, 等. 青光眼中神经退行性病变的机制
研究和治疗进展[ J]. 眼科学报, 2024, 39(08): 402-408. DOI:
10.12419/24070205.
Cao YX, Mai XM, Shi L, et al. Research on the Mechanism of
Neurodegenerative Lesions in Glaucoma and Therapeutic Advances[ J].
Yan Ke Xue Bao, 2024, 39(08): 402-408. DOI: 10.12419/24070205.Cao YX, Mai XM, Shi L, et al. Research on the Mechanism of
Neurodegenerative Lesions in Glaucoma and Therapeutic Advances[ J].
Yan Ke Xue Bao, 2024, 39(08): 402-408. DOI: 10.12419/24070205.
43、Grewal DS, Goldstein DA , Khatana AK , et al. Bilateral angle
closure following use of a weight loss combination agent containing
topiramate[ J]. J Glaucoma, 2015, 24(5): e132-6. DOI: 10.1097/
ijg.0000000000000157.Grewal DS, Goldstein DA , Khatana AK , et al. Bilateral angle
closure following use of a weight loss combination agent containing
topiramate[ J]. J Glaucoma, 2015, 24(5): e132-6. DOI: 10.1097/
ijg.0000000000000157.
44、Wu SN, Chen XD, Yan D, et al. Drug-associated glaucoma: a realworld study based on the Food and Drug Administration adverse event
reporting system database[ J]. Clin Exp Ophthalmol, 2025, 53(2): 140-
160. DOI: 10.1111/ceo.14454.Wu SN, Chen XD, Yan D, et al. Drug-associated glaucoma: a realworld study based on the Food and Drug Administration adverse event
reporting system database[ J]. Clin Exp Ophthalmol, 2025, 53(2): 140-
160. DOI: 10.1111/ceo.14454.
45、Symes RJ, Etminan M, Mikelberg FS. Risk of angle-closure glaucoma
with bupropion and topiramate[ J]. JAMA Ophthalmol, 2015, 133(10):
1187-1189. DOI: 10.1001/jamaophthalmol.2015.2180.Symes RJ, Etminan M, Mikelberg FS. Risk of angle-closure glaucoma
with bupropion and topiramate[ J]. JAMA Ophthalmol, 2015, 133(10):
1187-1189. DOI: 10.1001/jamaophthalmol.2015.2180.
46、Murphy RM, Bakir B, O'Brien C, et al. Drug-induced bilateral secondary
angle-closure glaucoma: a literature synthesis[ J]. J Glaucoma, 2016,
25(2): e99-105. DOI: 10.1097/ijg.0000000000000270.Murphy RM, Bakir B, O'Brien C, et al. Drug-induced bilateral secondary
angle-closure glaucoma: a literature synthesis[ J]. J Glaucoma, 2016,
25(2): e99-105. DOI: 10.1097/ijg.0000000000000270.
47、Margo CE, Harman LE. Diet pills and the cataract outbreak of 1935:
reflections on the evolution of consumer protection legislation[ J].
Surv Ophthalmol, 2014, 59(5): 568-573. DOI: 10.1016/j.survophthal.
2014.02.005.Margo CE, Harman LE. Diet pills and the cataract outbreak of 1935:
reflections on the evolution of consumer protection legislation[ J].
Surv Ophthalmol, 2014, 59(5): 568-573. DOI: 10.1016/j.survophthal.
2014.02.005.
48、Wang F, Ma J, Han F, et al. DL-3-n-butylphthalide delays the onset
and progression of diabetic cataract by inhibiting oxidative stress in rat
diabetic model[ J]. Sci Rep, 2016, 6: 19396. DOI: 10.1038/srep19396.Wang F, Ma J, Han F, et al. DL-3-n-butylphthalide delays the onset
and progression of diabetic cataract by inhibiting oxidative stress in rat
diabetic model[ J]. Sci Rep, 2016, 6: 19396. DOI: 10.1038/srep19396.
49、Drenckhahn D. Anterior polar cataract and lysosomal alterations in
the lens of rats treated with the amphiphilic lipidosis-inducing drugs
chloroquine and chlorphentermine[ J]. Virchows Arch B, 1978, 27(1): 255-266. DOI: 10.1007/BF02889000.Drenckhahn D. Anterior polar cataract and lysosomal alterations in
the lens of rats treated with the amphiphilic lipidosis-inducing drugs
chloroquine and chlorphentermine[ J]. Virchows Arch B, 1978, 27(1): 255-266. DOI: 10.1007/BF02889000.
50、Drenckhahn D, Lüllmann-Rauch R. Lens opacities associated with
lipidosis-like ultrastructural alterations in rats treated with chloroquine,
chlorphentermine, or iprindole[ J]. Exp Eye Res, 1977, 24(6): 621-632.
DOI: 10.1016/0014-4835(77)90120-8.Drenckhahn D, Lüllmann-Rauch R. Lens opacities associated with
lipidosis-like ultrastructural alterations in rats treated with chloroquine,
chlorphentermine, or iprindole[ J]. Exp Eye Res, 1977, 24(6): 621-632.
DOI: 10.1016/0014-4835(77)90120-8.
51、Yang Z, Tan TE, Shao Y, et al. Classification of diabetic retinopathy:
Past, present and future[ J]. Front Endocrinol (Lausanne), 2022, 13:
1079217. DOI: 10.3389/fendo.2022.1079217.Yang Z, Tan TE, Shao Y, et al. Classification of diabetic retinopathy:
Past, present and future[ J]. Front Endocrinol (Lausanne), 2022, 13:
1079217. DOI: 10.3389/fendo.2022.1079217.
52、Baker%20C%2C%20Retzik-Stahr%20C%2C%20Singh%20V%2C%20et%20al.%20Should%20metformin%20remain%20%0Athe%20first-line%20therapy%20for%20treatment%20of%20type%202%20diabetes%3F%5B%20J%5D.%20Ther%20Adv%20%0AEndocrinol%20Metab%2C%202021%2C%2012%3A%202042018820980225.%20DOI%3A%2010.1177%2F%20%0A2042018820980225.Baker%20C%2C%20Retzik-Stahr%20C%2C%20Singh%20V%2C%20et%20al.%20Should%20metformin%20remain%20%0Athe%20first-line%20therapy%20for%20treatment%20of%20type%202%20diabetes%3F%5B%20J%5D.%20Ther%20Adv%20%0AEndocrinol%20Metab%2C%202021%2C%2012%3A%202042018820980225.%20DOI%3A%2010.1177%2F%20%0A2042018820980225.
53、Tsapas A, Avgerinos I, Karagiannis T, et al. Comparative effectiveness
of glucose-lowering drugs for type 2 diabetes: a systematic review and
network meta-analysis[ J]. Ann Intern Med, 2020, 173(4): 278-286.
DOI: 10.7326/m20-0864.Tsapas A, Avgerinos I, Karagiannis T, et al. Comparative effectiveness
of glucose-lowering drugs for type 2 diabetes: a systematic review and
network meta-analysis[ J]. Ann Intern Med, 2020, 173(4): 278-286.
DOI: 10.7326/m20-0864.
54、Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and
cardiovascular outcomes in type 2 diabetes[ J]. N Engl J Med, 2016,
375(4): 311-322. DOI: 10.1056/nejmoa1603827.Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and
cardiovascular outcomes in type 2 diabetes[ J]. N Engl J Med, 2016,
375(4): 311-322. DOI: 10.1056/nejmoa1603827.
55、Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide
in adults with overweight or obesity[ J]. N Engl J Med, 2021, 384(11):
989-1002. DOI: 10.1056/nejmoa2032183.Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide
in adults with overweight or obesity[ J]. N Engl J Med, 2021, 384(11):
989-1002. DOI: 10.1056/nejmoa2032183.
56、Hernández C, Bogdanov P, Corraliza L, et al. Topical administration
of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes[ J]. Diabetes, 2016, 65(1): 172-187. DOI:
10.2337/db15-0443.Hernández C, Bogdanov P, Corraliza L, et al. Topical administration
of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes[ J]. Diabetes, 2016, 65(1): 172-187. DOI:
10.2337/db15-0443.
57、Bain SC, Klufas MA, Ho A, et al. Worsening of diabetic retinopathy
with rapid improvement in systemic glucose control: a review[ J].
Diabetes Obes Metab, 2019, 21(3): 454-466. DOI: 10.1111/dom.
13538.Bain SC, Klufas MA, Ho A, et al. Worsening of diabetic retinopathy
with rapid improvement in systemic glucose control: a review[ J].
Diabetes Obes Metab, 2019, 21(3): 454-466. DOI: 10.1111/dom.
13538.
58、Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and
cardiovascular outcomes in type 2 diabetes (REWIND): a doubleblind, randomised placebo-controlled trial[ J]. Lancet, 2019,
394(10193): 121-130. DOI: 10.1016/s0140-6736(19)31149-3.Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and
cardiovascular outcomes in type 2 diabetes (REWIND): a doubleblind, randomised placebo-controlled trial[ J]. Lancet, 2019,
394(10193): 121-130. DOI: 10.1016/s0140-6736(19)31149-3.
59、Yoshida Y, Joshi P, Barri S, et al. Progression of retinopathy with
glucagon-like peptide-1 receptor agonists with cardiovascular benefits
in type 2 diabetes–A systematic review and meta-analysis[ J]. J
Diabetes Complicat, 2022, 36(8): 108255. DOI: 10.1016/j.jdiacomp.
2022.108255.Yoshida Y, Joshi P, Barri S, et al. Progression of retinopathy with
glucagon-like peptide-1 receptor agonists with cardiovascular benefits
in type 2 diabetes–A systematic review and meta-analysis[ J]. J
Diabetes Complicat, 2022, 36(8): 108255. DOI: 10.1016/j.jdiacomp.
2022.108255.
60、Yao H, Zhang A, Li D, et al. Comparative effectiveness of GLP-1
receptor agonists on glycaemic control, body weight, and lipid profile
for type 2 diabetes: systematic review and network meta-analysis[ J].
BMJ, 2024, 384: e076410. DOI: 10.1136/bmj-2023-076410.Yao H, Zhang A, Li D, et al. Comparative effectiveness of GLP-1
receptor agonists on glycaemic control, body weight, and lipid profile
for type 2 diabetes: systematic review and network meta-analysis[ J].
BMJ, 2024, 384: e076410. DOI: 10.1136/bmj-2023-076410.
61、Petersen J, Ludwig MQ, Juozaityte V, et al. GLP-1-directed NMDA
receptor antagonism for obesity treatment[ J]. Nature, 2024,
629(8014): 1133-1141. DOI: 10.1038/s41586-024-07419-8.Petersen J, Ludwig MQ, Juozaityte V, et al. GLP-1-directed NMDA
receptor antagonism for obesity treatment[ J]. Nature, 2024,
629(8014): 1133-1141. DOI: 10.1038/s41586-024-07419-8.