1、Causes of blindness and vision impairment in 2020 and trends over
30 years, and prevalence of avoidable blindness in relation to VISION
2020: the Right to Sight: an analysis for the Global Burden of Disease
Study[ J]. Lancet Glob Health, 2021, 9(2): e144-e160. DOI: 10.1016/
s2214-109x(20)30489-7.Causes of blindness and vision impairment in 2020 and trends over
30 years, and prevalence of avoidable blindness in relation to VISION
2020: the Right to Sight: an analysis for the Global Burden of Disease
Study[ J]. Lancet Glob Health, 2021, 9(2): e144-e160. DOI: 10.1016/
s2214-109x(20)30489-7.
2、Pesudovs K, Lansingh VC, Kempen JH, et al. Global estimates on the
number of people blind or visually impaired by cataract: a meta-analysis
from 2000 to 2020[ J]. Eye, 2024, 38(11): 2156-2172. DOI: 10.1038/
s41433-024-02961-1.Pesudovs K, Lansingh VC, Kempen JH, et al. Global estimates on the
number of people blind or visually impaired by cataract: a meta-analysis
from 2000 to 2020[ J]. Eye, 2024, 38(11): 2156-2172. DOI: 10.1038/
s41433-024-02961-1.
3、Lou L, Wang J, Xu P, et al. Socioeconomic Disparity in Global Burden
of Cataract: an Analysis for 2013 With Time Trends Since 1990[ J]. Am
J Ophthalmol, 2017, 180: 91-96. DOI: 10.1016/j.ajo.2017.04.008.Lou L, Wang J, Xu P, et al. Socioeconomic Disparity in Global Burden
of Cataract: an Analysis for 2013 With Time Trends Since 1990[ J]. Am
J Ophthalmol, 2017, 180: 91-96. DOI: 10.1016/j.ajo.2017.04.008.
4、Wang W, Yan W, Müller A, et al. A Global View on Output and
Outcomes of Cataract Surgery With National Indices of Socioeconomic
Development[ J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3669-3676.
DOI: 10.1167/iovs.17-21489.Wang W, Yan W, Müller A, et al. A Global View on Output and
Outcomes of Cataract Surgery With National Indices of Socioeconomic
Development[ J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3669-3676.
DOI: 10.1167/iovs.17-21489.
5、Augusteyn RC. On the growth and internal structure of the human
lens[ J]. Exp Eye Res, 2010, 90(6): 643-654. DOI: 10.1016/
j.exer.2010.01.013.Augusteyn RC. On the growth and internal structure of the human
lens[ J]. Exp Eye Res, 2010, 90(6): 643-654. DOI: 10.1016/
j.exer.2010.01.013.
6、Michael R, van Marle J, Vrensen GF, et al. Changes in the refractive
index of lens fibre membranes during maturation--impact on lens
transparency[ J]. Exp Eye Res, 2003, 77(1): 93-99. DOI: 10.1016/
s0014-4835(03)00065-4.Michael R, van Marle J, Vrensen GF, et al. Changes in the refractive
index of lens fibre membranes during maturation--impact on lens
transparency[ J]. Exp Eye Res, 2003, 77(1): 93-99. DOI: 10.1016/
s0014-4835(03)00065-4.
7、Gayraud L, Mortamais M, Schweitzer C, et al. Ambient air pollution
exposure and incidence of cataract surgery: The prospective 3CityAlienor study[ J]. Acta Ophthalmol, 2025, 103(3): e192-e199. DOI:
10.1111/aos.16790.Gayraud L, Mortamais M, Schweitzer C, et al. Ambient air pollution
exposure and incidence of cataract surgery: The prospective 3CityAlienor study[ J]. Acta Ophthalmol, 2025, 103(3): e192-e199. DOI:
10.1111/aos.16790.
8、de Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet Light Induced
Generation of Reactive Oxygen Species[ J]. Adv Exp Med Biol, 2017, 996: 15-23. DOI: 10.1007/978-3-319-56017-5_2.de Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet Light Induced
Generation of Reactive Oxygen Species[ J]. Adv Exp Med Biol, 2017, 996: 15-23. DOI: 10.1007/978-3-319-56017-5_2.
9、Guo C, Ning X, Zhang J, et al. Ultraviolet B radiation induces oxidative
stress and apoptosis in human lens epithelium cells by activating
NF-κB signaling to down-regulate sodium vitamin C transporter 2
(SVCT2) expression[ J]. Cell Cycle, 2023, 22(12): 1450-1462. DOI:
10.1080/15384101.2023.2215084.Guo C, Ning X, Zhang J, et al. Ultraviolet B radiation induces oxidative
stress and apoptosis in human lens epithelium cells by activating
NF-κB signaling to down-regulate sodium vitamin C transporter 2
(SVCT2) expression[ J]. Cell Cycle, 2023, 22(12): 1450-1462. DOI:
10.1080/15384101.2023.2215084.
10、Kulbay M, Wu KY, Nirwal GK, et al. Oxidative Stress and Cataract
Formation: Evaluating the Efficacy of Antioxidant Therapies[ J].
Biomolecules, 2024, 14(9): 1055. DOI: 10.3390/biom14091055.Kulbay M, Wu KY, Nirwal GK, et al. Oxidative Stress and Cataract
Formation: Evaluating the Efficacy of Antioxidant Therapies[ J].
Biomolecules, 2024, 14(9): 1055. DOI: 10.3390/biom14091055.
11、Ruan Y, Jiang S, Musayeva A, et al. Oxidative Stress and Vascular
Dysfunction in the Retina: Therapeutic Strategies[ J]. Antioxidants
(Basel), 2020, 9(8): 761. DOI: 10.3390/antiox9080761.Ruan Y, Jiang S, Musayeva A, et al. Oxidative Stress and Vascular
Dysfunction in the Retina: Therapeutic Strategies[ J]. Antioxidants
(Basel), 2020, 9(8): 761. DOI: 10.3390/antiox9080761.
12、B%C3%B6hm%20EW%2C%20Buonfiglio%20F%2C%20Voigt%20AM%2C%20et%20al.%20Oxidative%20stress%20in%20the%20eye%20and%20%0Aits%20role%20in%20the%20pathophysiology%20of%20ocular%20diseases%5B%20J%5D.%20Redox%20Biol%2C%202023%2C%20%0A68%3A%20102967.%20DOI%3A%2010.1016%2Fj.redox.2023.102967.B%C3%B6hm%20EW%2C%20Buonfiglio%20F%2C%20Voigt%20AM%2C%20et%20al.%20Oxidative%20stress%20in%20the%20eye%20and%20%0Aits%20role%20in%20the%20pathophysiology%20of%20ocular%20diseases%5B%20J%5D.%20Redox%20Biol%2C%202023%2C%20%0A68%3A%20102967.%20DOI%3A%2010.1016%2Fj.redox.2023.102967.
13、Brennan LA, McGreal RS, Kantorow M. Oxidative stress defense and
repair systems of the ocular lens[ J]. Front Biosci (Elite Ed), 2012, 4(1):
141-155. DOI: 10.2741/365.Brennan LA, McGreal RS, Kantorow M. Oxidative stress defense and
repair systems of the ocular lens[ J]. Front Biosci (Elite Ed), 2012, 4(1):
141-155. DOI: 10.2741/365.
14、Wei Z, Hao C, Radeen KR, et al. Deficiency in glutathione peroxidase
4 (GPX4) results in abnormal lens development and newborn
cataract[ J]. Proc Natl Acad Sci U S A, 2024, 121(48): e2407842121.
DOI: 10.1073/pnas.2407842121.Wei Z, Hao C, Radeen KR, et al. Deficiency in glutathione peroxidase
4 (GPX4) results in abnormal lens development and newborn
cataract[ J]. Proc Natl Acad Sci U S A, 2024, 121(48): e2407842121.
DOI: 10.1073/pnas.2407842121.
15、Zheng XY, Xu J, Chen XI, et al. Attenuation of oxygen fluctuationinduced endoplasmic reticulum stress in human lens epithelial
cells[ J]. Exp Ther Med, 2015, 10(5): 1883-1887. DOI: 10.3892/
etm.2015.2725.Zheng XY, Xu J, Chen XI, et al. Attenuation of oxygen fluctuationinduced endoplasmic reticulum stress in human lens epithelial
cells[ J]. Exp Ther Med, 2015, 10(5): 1883-1887. DOI: 10.3892/
etm.2015.2725.
16、Wang C, Wang S, Zhang G, et al. HUWE1-mediated ubiquitination
and degradation of oxidative damage repair gene ATM maintains
mitochondrial quality control system in lens epithelial cells[ J]. Biochim
Biophys Acta Mol Basis Dis, 2025, 1871(5): 167796. DOI: 10.1016/
j.bbadis.2025.167796.Wang C, Wang S, Zhang G, et al. HUWE1-mediated ubiquitination
and degradation of oxidative damage repair gene ATM maintains
mitochondrial quality control system in lens epithelial cells[ J]. Biochim
Biophys Acta Mol Basis Dis, 2025, 1871(5): 167796. DOI: 10.1016/
j.bbadis.2025.167796.
17、Liu J, Tang Y, Li J, et al. TRB3 Promotes Cataract Progression through
Endoplasmic Reticulum Stress-mediated Mitochondrial Dysfunction
and Cell Apoptosis[ J]. Cell Biochem Biophys, 2025, 83(1): 391-402.
DOI: 10.1007/s12013-024-01470-y.Liu J, Tang Y, Li J, et al. TRB3 Promotes Cataract Progression through
Endoplasmic Reticulum Stress-mediated Mitochondrial Dysfunction
and Cell Apoptosis[ J]. Cell Biochem Biophys, 2025, 83(1): 391-402.
DOI: 10.1007/s12013-024-01470-y.
18、Tian F, Zhao J, Bu S, et al. KLF6 Induces Apoptosis in Human Lens
Epithelial Cells Through the ATF4-ATF3-CHOP Axis[ J]. Drug Des
Devel Ther, 2020, 14: 1041-1055. DOI: 10.2147/dddt.S218467.Tian F, Zhao J, Bu S, et al. KLF6 Induces Apoptosis in Human Lens
Epithelial Cells Through the ATF4-ATF3-CHOP Axis[ J]. Drug Des
Devel Ther, 2020, 14: 1041-1055. DOI: 10.2147/dddt.S218467.
19、Wang Q, Zhang C, Yu B, et al. FABP3 promotes cell apoptosis
and oxidative stress by regulating ferroptosis in lens epithelial
cells[ J]. Free Radic Res, 2025, 59(3): 250-261. DOI: 10.1080/
10715762.2025.2475390.Wang Q, Zhang C, Yu B, et al. FABP3 promotes cell apoptosis
and oxidative stress by regulating ferroptosis in lens epithelial
cells[ J]. Free Radic Res, 2025, 59(3): 250-261. DOI: 10.1080/
10715762.2025.2475390.
20、Cvekl A, McGreal R, Liu W. Lens Development and Crystallin Gene Expression[ J]. Prog Mol Biol Transl Sci, 2015, 134: 129-167. DOI:
10.1016/bs.pmbts.2015.05.001.Cvekl A, McGreal R, Liu W. Lens Development and Crystallin Gene Expression[ J]. Prog Mol Biol Transl Sci, 2015, 134: 129-167. DOI:
10.1016/bs.pmbts.2015.05.001.
21、Wang L, Li X, Men X, et al. Research progress on antioxidants and
protein aggregation inhibitors in cataract prevention and therapy
(Review)[ J]. Molecular Medicine Reports, 2024, 31(1): 22. DOI:
10.3892/mmr.2024.13387.Wang L, Li X, Men X, et al. Research progress on antioxidants and
protein aggregation inhibitors in cataract prevention and therapy
(Review)[ J]. Molecular Medicine Reports, 2024, 31(1): 22. DOI:
10.3892/mmr.2024.13387.
22、Budnar P, Tangirala R , Bakthisaran R , et al. Protein Aggregation
and Cataract: Role of Age-Related Modifications and Mutations in
α-Crystallins[ J]. Biochemistry (Mosc), 2022, 87(3): 225-241. DOI:
10.1134/s000629792203004x.Budnar P, Tangirala R , Bakthisaran R , et al. Protein Aggregation
and Cataract: Role of Age-Related Modifications and Mutations in
α-Crystallins[ J]. Biochemistry (Mosc), 2022, 87(3): 225-241. DOI:
10.1134/s000629792203004x.
23、Moreau KL, King JA. Protein misfolding and aggregation in cataract
disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5):
273-282. DOI: 10.1016/j.molmed.2012.03.005.Moreau KL, King JA. Protein misfolding and aggregation in cataract
disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5):
273-282. DOI: 10.1016/j.molmed.2012.03.005.
24、Bloemendal H, de Jong W, Jaenicke R , et al. Ageing and vision:
structure, stability and function of lens crystallins[ J]. Prog Biophys Mol
Biol, 2004, 86(3): 407-485. DOI: 10.1016/j.pbiomolbio.2003.11.012.Bloemendal H, de Jong W, Jaenicke R , et al. Ageing and vision:
structure, stability and function of lens crystallins[ J]. Prog Biophys Mol
Biol, 2004, 86(3): 407-485. DOI: 10.1016/j.pbiomolbio.2003.11.012.
25、Khan M, Verma L. Crosstalk between signaling pathways (Rho/ROCK,
TGF-β and Wnt/β-Catenin pathways/ PI3K-AKT-mTOR) in
cataract: a mechanistic exploration and therapeutic strategy[ J]. Gene,
2025, 947: 149338. DOI: 10.1016/j.gene.2025.149338.Khan M, Verma L. Crosstalk between signaling pathways (Rho/ROCK,
TGF-β and Wnt/β-Catenin pathways/ PI3K-AKT-mTOR) in
cataract: a mechanistic exploration and therapeutic strategy[ J]. Gene,
2025, 947: 149338. DOI: 10.1016/j.gene.2025.149338.
26、Yang H, Ping X, Zhou J, et al. Reversible cold-induced lens opacity in
a hibernator reveals a molecular target for treating cataracts[ J]. J Clin
Invest, 2024, 134(18): e169666. DOI: 10.1172/jci169666.Yang H, Ping X, Zhou J, et al. Reversible cold-induced lens opacity in
a hibernator reveals a molecular target for treating cataracts[ J]. J Clin
Invest, 2024, 134(18): e169666. DOI: 10.1172/jci169666.
27、Diaz-Torres S, Lee SS-Y, García-Marín LM, et al. Uncovering genetic
loci and biological pathways associated with age-related cataracts
through GWAS meta-analysis[ J]. Nature Communications, 2024,
15(1): 9116. DOI: 10.1038/s41467-024-53212-6.Diaz-Torres S, Lee SS-Y, García-Marín LM, et al. Uncovering genetic
loci and biological pathways associated with age-related cataracts
through GWAS meta-analysis[ J]. Nature Communications, 2024,
15(1): 9116. DOI: 10.1038/s41467-024-53212-6.
28、Rana D, Sharma R, Kumar A. Comparative potential of hydrocortisone,
deoxycorticosterone and dexamethasone in the prevention of cataract:
an in silico and in vitro study[ J]. Oriental Pharmacy and Experimental
Medicine, 2018, 18(4): 403-422. DOI: 10.1007/s13596-018-0332-z.Rana D, Sharma R, Kumar A. Comparative potential of hydrocortisone,
deoxycorticosterone and dexamethasone in the prevention of cataract:
an in silico and in vitro study[ J]. Oriental Pharmacy and Experimental
Medicine, 2018, 18(4): 403-422. DOI: 10.1007/s13596-018-0332-z.
29、Karakosta C, Samiotaki M, Bisoukis A, et al. Differential signaling
pathways identified in aqueous humor, anterior capsule, and crystalline
lens of age-related, diabetic, and post-vitrectomy cataract[ J].
Proteomes, 2025, 13(1): 7. DOI: 10.3390/proteomes13010007.Karakosta C, Samiotaki M, Bisoukis A, et al. Differential signaling
pathways identified in aqueous humor, anterior capsule, and crystalline
lens of age-related, diabetic, and post-vitrectomy cataract[ J].
Proteomes, 2025, 13(1): 7. DOI: 10.3390/proteomes13010007.
30、Zhu Y, Li N, Yao K, et al. A novel GJA3 mutation causing autosomal
dominant congenital perinuclear cataracts[ J]. BMC Ophthalmol, 2025,
25(1): 164. DOI: 10.1186/s12886-025-03978-0.Zhu Y, Li N, Yao K, et al. A novel GJA3 mutation causing autosomal
dominant congenital perinuclear cataracts[ J]. BMC Ophthalmol, 2025,
25(1): 164. DOI: 10.1186/s12886-025-03978-0.
31、Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and
cataracts[ J]. Antioxid Redox Signal, 2009, 11(2): 339-353. DOI:
10.1089/ars.2008.2119.Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and
cataracts[ J]. Antioxid Redox Signal, 2009, 11(2): 339-353. DOI:
10.1089/ars.2008.2119.
32、Babizhayev MA, Yegorov YE. Reactive Oxygen Species and the Aging
Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced
Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted
Antioxidants With Broad Therapeutic Potential for Redox Regulation
and Detoxification of Oxidants in Eye Diseases[ J]. Am J Ther, 2016,
23(1): e98-117. DOI: 10.1097/MJT.0b013e3181ea31ff.Babizhayev MA, Yegorov YE. Reactive Oxygen Species and the Aging
Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced
Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted
Antioxidants With Broad Therapeutic Potential for Redox Regulation
and Detoxification of Oxidants in Eye Diseases[ J]. Am J Ther, 2016,
23(1): e98-117. DOI: 10.1097/MJT.0b013e3181ea31ff.
33、Atalay%20E%2C%20O%C4%9Furel%20T%2C%20Derici%20MK.%20The%20role%20of%20oxidative%20damage%20in%20%0Acataract%20etiopathogenesis%5B%20J%5D.%20Ther%20Adv%20Ophthalmol%2C%202023%2C%2015%3A%20%0A25158414231168813.%20DOI%3A%2010.1177%2F25158414231168813.Atalay%20E%2C%20O%C4%9Furel%20T%2C%20Derici%20MK.%20The%20role%20of%20oxidative%20damage%20in%20%0Acataract%20etiopathogenesis%5B%20J%5D.%20Ther%20Adv%20Ophthalmol%2C%202023%2C%2015%3A%20%0A25158414231168813.%20DOI%3A%2010.1177%2F25158414231168813.
34、Lu A, Duan P, Xie J, et al. Recent progress and research trend of anticataract pharmacology therapy: A bibliometric analysis and literature
review[ J]. Eur J Pharmacol, 2022, 934: 175299. DOI: 10.1016/
j.ejphar.2022.175299.Lu A, Duan P, Xie J, et al. Recent progress and research trend of anticataract pharmacology therapy: A bibliometric analysis and literature
review[ J]. Eur J Pharmacol, 2022, 934: 175299. DOI: 10.1016/
j.ejphar.2022.175299.
35、Ye J, Cheng J, Xiong R, et al. Effects and Mechanisms of Lutein on
Aging and Age-Related Diseases[ J]. Antioxidants (Basel), 2024, 13(9):
1114. DOI: 10.3390/antiox13091114.Ye J, Cheng J, Xiong R, et al. Effects and Mechanisms of Lutein on
Aging and Age-Related Diseases[ J]. Antioxidants (Basel), 2024, 13(9):
1114. DOI: 10.3390/antiox13091114.
36、Li N, Wu X, Zhuang W, et al. Green leafy vegetable and lutein intake
and multiple health outcomes[ J]. Food Chem, 2021, 360: 130145.
DOI: 10.1016/j.foodchem.2021.130145.Li N, Wu X, Zhuang W, et al. Green leafy vegetable and lutein intake
and multiple health outcomes[ J]. Food Chem, 2021, 360: 130145.
DOI: 10.1016/j.foodchem.2021.130145.
37、Manayi A, Abdollahi M, Raman T, et al. Lutein and cataract: from
bench to bedside[ J]. Crit Rev Biotechnol, 2016, 36(5): 829-839. DOI:
10.3109/07388551.2015.1049510.Manayi A, Abdollahi M, Raman T, et al. Lutein and cataract: from
bench to bedside[ J]. Crit Rev Biotechnol, 2016, 36(5): 829-839. DOI:
10.3109/07388551.2015.1049510.
38、Jiang H, Yin Y, Wu CR, et al. Dietary vitamin and carotenoid intake and
risk of age-related cataract[ J]. Am J Clin Nutr, 2019, 109(1): 43-54.
DOI: 10.1093/ajcn/nqy270.Jiang H, Yin Y, Wu CR, et al. Dietary vitamin and carotenoid intake and
risk of age-related cataract[ J]. Am J Clin Nutr, 2019, 109(1): 43-54.
DOI: 10.1093/ajcn/nqy270.
39、Karppi J, Laukkanen JA, Kurl S. Plasma lutein and zeaxanthin and
the risk of age-related nuclear cataract among the elderly Finnish
population[ J]. Br J Nutr, 2012, 108(1): 148-154. DOI: 10.1017/
s0007114511005332.Karppi J, Laukkanen JA, Kurl S. Plasma lutein and zeaxanthin and
the risk of age-related nuclear cataract among the elderly Finnish
population[ J]. Br J Nutr, 2012, 108(1): 148-154. DOI: 10.1017/
s0007114511005332.
40、Ma L, Hao ZX, Liu RR, et al. A dose-response meta-analysis of dietary
lutein and zeaxanthin intake in relation to risk of age-related cataract[ J].
Graefes Arch Clin Exp Ophthalmol, 2014, 252(1): 63-70. DOI:
10.1007/s00417-013-2492-3.Ma L, Hao ZX, Liu RR, et al. A dose-response meta-analysis of dietary
lutein and zeaxanthin intake in relation to risk of age-related cataract[ J].
Graefes Arch Clin Exp Ophthalmol, 2014, 252(1): 63-70. DOI:
10.1007/s00417-013-2492-3.
41、Ali SS, Ahsan H, Zia MK , et al. Understanding oxidants and
antioxidants: classical team with new players[ J]. J Food Biochem, 2020,
44(3): e13145. DOI: 10.1111/jfbc.13145.Ali SS, Ahsan H, Zia MK , et al. Understanding oxidants and
antioxidants: classical team with new players[ J]. J Food Biochem, 2020,
44(3): e13145. DOI: 10.1111/jfbc.13145.
42、Li B, Kim JY, Martis RM, et al. Characterisation of Glutathione Export
from Human Donor Lenses[ J]. Transl Vis Sci Technol, 2020, 9(8): 37.
DOI: 10.1167/tvst.9.8.37.Li B, Kim JY, Martis RM, et al. Characterisation of Glutathione Export
from Human Donor Lenses[ J]. Transl Vis Sci Technol, 2020, 9(8): 37.
DOI: 10.1167/tvst.9.8.37.
43、Reddy VN. Glutathione and its function in the lens-an overview[ J].
Exp Eye Res, 1990, 50(6): 771-778. DOI: 10.1016/0014-
4835(90)90127-g.Reddy VN. Glutathione and its function in the lens-an overview[ J].
Exp Eye Res, 1990, 50(6): 771-778. DOI: 10.1016/0014-
4835(90)90127-g.
44、Calvin HI, Medvedovsky C, Worgul BV. Near-total glutathione
depletion and age-specific cataracts induced by buthionine sulfoximine in mice[ J]. Science, 1986, 233(4763): 553-555. DOI: 10.1126/
science.3726547.Calvin HI, Medvedovsky C, Worgul BV. Near-total glutathione
depletion and age-specific cataracts induced by buthionine sulfoximine in mice[ J]. Science, 1986, 233(4763): 553-555. DOI: 10.1126/
science.3726547.
45、Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant:
From Direct Antioxidant Effects to Protective Action in Various
Toxicological Models[ J]. Antioxidants (Basel), 2021, 10(12): 1876.
DOI: 10.3390/antiox10121876.Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant:
From Direct Antioxidant Effects to Protective Action in Various
Toxicological Models[ J]. Antioxidants (Basel), 2021, 10(12): 1876.
DOI: 10.3390/antiox10121876.
46、Sevin G, Kerry Z, Sozer N, et al. Taurine supplementation protects lens
against glutathione depletion[ J]. Eur Rev Med Pharmacol Sci, 2021,
25(13): 4520-4526. DOI: 10.26355/eurrev_202107_26244.Sevin G, Kerry Z, Sozer N, et al. Taurine supplementation protects lens
against glutathione depletion[ J]. Eur Rev Med Pharmacol Sci, 2021,
25(13): 4520-4526. DOI: 10.26355/eurrev_202107_26244.
47、Hsu YW, Yeh SM, Chen YY, et al. Protective effects of taurine against
alloxan-induced diabetic cataracts and refraction changes in New
Zealand White rabbits[ J]. Exp Eye Res, 2012, 103: 71-77. DOI:
10.1016/j.exer.2012.08.001.Hsu YW, Yeh SM, Chen YY, et al. Protective effects of taurine against
alloxan-induced diabetic cataracts and refraction changes in New
Zealand White rabbits[ J]. Exp Eye Res, 2012, 103: 71-77. DOI:
10.1016/j.exer.2012.08.001.
48、Ch o u d har y R , B o d a k h e SH . Mag n es i u m tau rate p revent s
cataractogenesis via restoration of lenticular oxidative damage
and ATPase function in cadmium chloride-induced hypertensive
experimental animals[ J]. Biomed Pharmacother, 2016, 84: 836-844.
DOI: 10.1016/j.biopha.2016.10.012.Ch o u d har y R , B o d a k h e SH . Mag n es i u m tau rate p revent s
cataractogenesis via restoration of lenticular oxidative damage
and ATPase function in cadmium chloride-induced hypertensive
experimental animals[ J]. Biomed Pharmacother, 2016, 84: 836-844.
DOI: 10.1016/j.biopha.2016.10.012.
49、Bejarano E, Whitcomb EA, Pfeiffer RL, et al. Unbalanced redox status
network as an early pathological event in congenital cataracts[ J]. Redox
Biol, 2023, 66: 102869. DOI: 10.1016/j.redox.2023.102869.Bejarano E, Whitcomb EA, Pfeiffer RL, et al. Unbalanced redox status
network as an early pathological event in congenital cataracts[ J]. Redox
Biol, 2023, 66: 102869. DOI: 10.1016/j.redox.2023.102869.
50、Upaphong P, Thonusin C, Choovuthayakorn J, et al. The Possible
Positive Mechanisms of Pirenoxine in Cataract Formation[ J]. Int J Mol
Sci, 2022, 23(16): 9431. DOI: 10.3390/ijms23169431.Upaphong P, Thonusin C, Choovuthayakorn J, et al. The Possible
Positive Mechanisms of Pirenoxine in Cataract Formation[ J]. Int J Mol
Sci, 2022, 23(16): 9431. DOI: 10.3390/ijms23169431.
51、张晓融, 宋秀君. 白内障药物治疗进展[ J]. 河北医药, 2004,
26(07): 578-579.
Zhang X, Song X. Progress in pharmacotherapy for cataracts[ J]. Hebei
Medical Journal, 2004, 26(07): 578-579.Zhang X, Song X. Progress in pharmacotherapy for cataracts[ J]. Hebei
Medical Journal, 2004, 26(07): 578-579.
52、Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress
in diabetic cataract[ J]. Faseb j, 1999, 13(1): 23-30. DOI: 10.1096/
fasebj.13.1.23.Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress
in diabetic cataract[ J]. Faseb j, 1999, 13(1): 23-30. DOI: 10.1096/
fasebj.13.1.23.
53、Ahmad S, Ahmad MFA, Khan S, et al. Exploring aldose reductase
inhibitors as promising therapeutic targets for diabetes-linked
disabilities[ J]. Int J Biol Macromol, 2024, 280(Pt 2): 135761. DOI:
10.1016/j.ijbiomac.2024.135761.Ahmad S, Ahmad MFA, Khan S, et al. Exploring aldose reductase
inhibitors as promising therapeutic targets for diabetes-linked
disabilities[ J]. Int J Biol Macromol, 2024, 280(Pt 2): 135761. DOI:
10.1016/j.ijbiomac.2024.135761.
54、Collins JG, Corder CN. Aldose reductase and sorbitol dehydrogenase
distribution in substructures of normal and diabetic rat lens[ J]. Invest
Ophthalmol Vis Sci, 1977, 16(3): 242-243.Collins JG, Corder CN. Aldose reductase and sorbitol dehydrogenase
distribution in substructures of normal and diabetic rat lens[ J]. Invest
Ophthalmol Vis Sci, 1977, 16(3): 242-243.
55、Grewal AS, Bhardwaj S, Pandita D, et al. Updates on Aldose Reductase
Inhibitors for Management of Diabetic Complications and Nondiabetic Diseases[ J]. Mini Rev Med Chem, 2016, 16(2): 120-162.
DOI: 10.2174/1389557515666150909143737.Grewal AS, Bhardwaj S, Pandita D, et al. Updates on Aldose Reductase
Inhibitors for Management of Diabetic Complications and Nondiabetic Diseases[ J]. Mini Rev Med Chem, 2016, 16(2): 120-162.
DOI: 10.2174/1389557515666150909143737.
56、Zatechka%20DS%2C%20Jr.%2C%20Kador%20PF%2C%20Garcia-Casti%C3%B1eiras%20S%2C%20et%20al.%20Diabetes%20can%20alter%20the%20signal%20transduction%20pathways%20in%20the%20lens%20of%20rats%5B%20J%5D.%20Diabetes%2C%20%0A2003%2C%2052(4)%3A%201014-1022.%20DOI%3A%2010.2337%2Fdiabetes.52.4.1014.Zatechka%20DS%2C%20Jr.%2C%20Kador%20PF%2C%20Garcia-Casti%C3%B1eiras%20S%2C%20et%20al.%20Diabetes%20can%20alter%20the%20signal%20transduction%20pathways%20in%20the%20lens%20of%20rats%5B%20J%5D.%20Diabetes%2C%20%0A2003%2C%2052(4)%3A%201014-1022.%20DOI%3A%2010.2337%2Fdiabetes.52.4.1014.
57、Quattrini L, and La Motta C. Aldose reductase inhibitors:
2013-present[ J]. Expert Opinion on Therapeutic Patents, 2019, 29(3):
199-213. DOI: 10.1080/13543776.2019.1582646.Quattrini L, and La Motta C. Aldose reductase inhibitors:
2013-present[ J]. Expert Opinion on Therapeutic Patents, 2019, 29(3):
199-213. DOI: 10.1080/13543776.2019.1582646.
58、Chen T, Chen R, You A, et al. Search of inhibitors of aldose reductase
for treatment of diabetic cataracts using machine learning[ J]. Advances
in Ophthalmology Practice and Research, 2023, 3(4): 187-191. DOI:
10.1016/j.aopr.2023.09.002.Chen T, Chen R, You A, et al. Search of inhibitors of aldose reductase
for treatment of diabetic cataracts using machine learning[ J]. Advances
in Ophthalmology Practice and Research, 2023, 3(4): 187-191. DOI:
10.1016/j.aopr.2023.09.002.
59、陈曦, 毕宏生, 康砚澜. 基于中医古籍知识图谱的三种内障疾
病辨析 [ J]. 中医临床研究, 2022, 14(35): 35-37. DOI: 10.3969/
j.issn.1674-7860.2022.35.010.
Chen X, Bi H, Kang Y. The differentiation and analysis of three cataract
diseases based on the knowledge mapping in TCM ancient books[ J].
Clinical Journal of Chinese Medicine, 2022, 14(35): 35-37. DOI:
10.3969/j.issn.1674-7860.2022.35.010.Chen X, Bi H, Kang Y. The differentiation and analysis of three cataract
diseases based on the knowledge mapping in TCM ancient books[ J].
Clinical Journal of Chinese Medicine, 2022, 14(35): 35-37. DOI:
10.3969/j.issn.1674-7860.2022.35.010.
60、Liu XM, Shi H, Li W. Review on the potential roles of traditional
Chinese medicines in the prevention, treatment, and postoperative
recovery of age-related cataract[ J]. J Ethnopharmacol, 2024, 324:
117786. DOI: 10.1016/j.jep.2024.117786.Liu XM, Shi H, Li W. Review on the potential roles of traditional
Chinese medicines in the prevention, treatment, and postoperative
recovery of age-related cataract[ J]. J Ethnopharmacol, 2024, 324:
117786. DOI: 10.1016/j.jep.2024.117786.
61、Heruye SH, Maffofou Nkenyi LN, Singh NU, et al. Current Trends in
the Pharmacotherapy of Cataracts[ J]. Pharmaceuticals, 2020, 13(1):
1-41. DOI: 10.3390/ph13010015.Heruye SH, Maffofou Nkenyi LN, Singh NU, et al. Current Trends in
the Pharmacotherapy of Cataracts[ J]. Pharmaceuticals, 2020, 13(1):
1-41. DOI: 10.3390/ph13010015.
62、Babizhayev MA, Yermakova VN, Semiletov YA, et al. The natural
histidine-containing dipeptide Nalpha-acetylcarnosine as an
antioxidant for ophthalmic use[ J]. Biochemistry (Mosc), 2000, 65(5):
588-598.Babizhayev MA, Yermakova VN, Semiletov YA, et al. The natural
histidine-containing dipeptide Nalpha-acetylcarnosine as an
antioxidant for ophthalmic use[ J]. Biochemistry (Mosc), 2000, 65(5):
588-598.
63、Babizhayev MA. Rejuvenation of visual functions in older adult
drivers and drivers with cataract during a short-term administration
of N-acetylcarnosine lubricant eye drops[ J]. Rejuvenation Res, 2004,
7(3): 186-198. DOI: 10.1089/rej.2004.7.186.Babizhayev MA. Rejuvenation of visual functions in older adult
drivers and drivers with cataract during a short-term administration
of N-acetylcarnosine lubricant eye drops[ J]. Rejuvenation Res, 2004,
7(3): 186-198. DOI: 10.1089/rej.2004.7.186.
64、Williams DL, Munday P. The effect of a topical antioxidant formulation
including N-acetyl carnosine on canine cataract: a preliminary
study[ J]. Vet Ophthalmol, 2006, 9(5): 311-316. DOI: 10.1111/j.1463-
5224.2006.00492.x.Williams DL, Munday P. The effect of a topical antioxidant formulation
including N-acetyl carnosine on canine cataract: a preliminary
study[ J]. Vet Ophthalmol, 2006, 9(5): 311-316. DOI: 10.1111/j.1463-
5224.2006.00492.x.
65、Babizhayev MA, Guiotto A, Kasus-Jacobi A. N-Acetylcarnosine and
histidyl-hydrazide are potent agents for multitargeted ophthalmic
therapy of senile cataracts and diabetic ocular complications[ J]. J Drug
Target, 2009, 17(1): 36-63. DOI: 10.1080/10611860802438736.Babizhayev MA, Guiotto A, Kasus-Jacobi A. N-Acetylcarnosine and
histidyl-hydrazide are potent agents for multitargeted ophthalmic
therapy of senile cataracts and diabetic ocular complications[ J]. J Drug
Target, 2009, 17(1): 36-63. DOI: 10.1080/10611860802438736.
66、Babizhayev MA, Micans P, Guiotto A, et al. N-acetylcarnosine lubricant
eyedrops possess all-in-one universal antioxidant protective effects of
L-carnosine in aqueous and lipid membrane environments, aldehyde
scavenging, and transglycation activities inherent to cataracts: a clinical study of the new vision-saving drug N-acetylcarnosine eyedrop therapy
in a database population of over 50,500 patients[ J]. Am J Ther, 2009,
16(6): 517-533. DOI: 10.1097/MJT.0b013e318195e327.Babizhayev MA, Micans P, Guiotto A, et al. N-acetylcarnosine lubricant
eyedrops possess all-in-one universal antioxidant protective effects of
L-carnosine in aqueous and lipid membrane environments, aldehyde
scavenging, and transglycation activities inherent to cataracts: a clinical study of the new vision-saving drug N-acetylcarnosine eyedrop therapy
in a database population of over 50,500 patients[ J]. Am J Ther, 2009,
16(6): 517-533. DOI: 10.1097/MJT.0b013e318195e327.
67、Wang L, Liu W, Huang X. An approach to revolutionize cataract
treatment by enhancing dr ug probing through intraocular
cell line [ J] . Libyan J Med, 2018, 13 (1): 1500347. DOI:
10.1080/19932820.2018.1500347.Wang L, Liu W, Huang X. An approach to revolutionize cataract
treatment by enhancing dr ug probing through intraocular
cell line [ J] . Libyan J Med, 2018, 13 (1): 1500347. DOI:
10.1080/19932820.2018.1500347.
68、Kuboi T, Chuck RS, Pineda R, 2nd, et al. Subgroup Analysis from
a Phase 1/2 Randomized Clinical Trial of 2.6% EDTA Ophthalmic
Solution in Patients with Age-Related Cataract[ J]. Am J Ophthalmol,
2024, 268: 155-164. DOI: 10.1016/j.ajo.2024.07.038.Kuboi T, Chuck RS, Pineda R, 2nd, et al. Subgroup Analysis from
a Phase 1/2 Randomized Clinical Trial of 2.6% EDTA Ophthalmic
Solution in Patients with Age-Related Cataract[ J]. Am J Ophthalmol,
2024, 268: 155-164. DOI: 10.1016/j.ajo.2024.07.038.
69、Sinha Roy A. Comment on "Subgroup Analysis from a Phase 1/2
Randomized Clinical Trial of 2.6% EDTA Ophthalmic Solution in
Patients With Age-Related Cataract"[ J]. Am J Ophthalmol, 2025, 269:
497. DOI: 10.1016/j.ajo.2024.09.015.Sinha Roy A. Comment on "Subgroup Analysis from a Phase 1/2
Randomized Clinical Trial of 2.6% EDTA Ophthalmic Solution in
Patients With Age-Related Cataract"[ J]. Am J Ophthalmol, 2025, 269:
497. DOI: 10.1016/j.ajo.2024.09.015.
70、Kuboi T, Chuck RS, Pineda R , 2nd, et al. Reply to Comment on
Subgroup Analysis From a Phase 1/2 Randomized Clinical Trial of 2.6%
EDTA Ophthalmic Solution in Patients With Age-Related Cataract[ J].
Am J Ophthalmol, 2025, 269: 498. DOI: 10.1016/j.ajo.2024.09.016.Kuboi T, Chuck RS, Pineda R , 2nd, et al. Reply to Comment on
Subgroup Analysis From a Phase 1/2 Randomized Clinical Trial of 2.6%
EDTA Ophthalmic Solution in Patients With Age-Related Cataract[ J].
Am J Ophthalmol, 2025, 269: 498. DOI: 10.1016/j.ajo.2024.09.016.
71、Zhang M, Shoeb M, Liu P, et al. Topical metal chelation therapy
ameliorates oxidation-induced toxicity in diabetic cataract[ J]. J
Toxicol Environ Health A, 2011, 74(6): 380-391. DOI: 10.1080/
15287394.2011.538835.Zhang M, Shoeb M, Liu P, et al. Topical metal chelation therapy
ameliorates oxidation-induced toxicity in diabetic cataract[ J]. J
Toxicol Environ Health A, 2011, 74(6): 380-391. DOI: 10.1080/
15287394.2011.538835.
72、Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation
in cataracts[ J]. Nature, 2015, 523(7562): 607-611. DOI: 10.1038/
nature14650.Zhao L, Chen XJ, Zhu J, et al. Lanosterol reverses protein aggregation
in cataracts[ J]. Nature, 2015, 523(7562): 607-611. DOI: 10.1038/
nature14650.
73、Deguchi S, Kadowaki R, Otake H, et al. Combination of Lanosterol and
Nilvadipine Nanosuspensions Rescues Lens Opacification in SeleniteInduced Cataractic Rats[ J]. Pharmaceutics, 2022, 14(7): 1520. DOI:
10.3390/pharmaceutics14071520.Deguchi S, Kadowaki R, Otake H, et al. Combination of Lanosterol and
Nilvadipine Nanosuspensions Rescues Lens Opacification in SeleniteInduced Cataractic Rats[ J]. Pharmaceutics, 2022, 14(7): 1520. DOI:
10.3390/pharmaceutics14071520.
74、Zhang K , He W, Du Y, et al. Inhibitory effect of lanosterol on
cataractous lens of cynomolgus monkeys using a subconjunctival
drug release system[ J]. Precis Clin Med, 2022, 5(3): pbac021. DOI:
10.1093/pcmedi/pbac021.Zhang K , He W, Du Y, et al. Inhibitory effect of lanosterol on
cataractous lens of cynomolgus monkeys using a subconjunctival
drug release system[ J]. Precis Clin Med, 2022, 5(3): pbac021. DOI:
10.1093/pcmedi/pbac021.
75、Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological
chaperone for α-crystallin partially restores transparency in cataract
models[ J]. Science, 2015, 350(6261): 674-677. DOI: 10.1126/
science.aac9145.Makley LN, McMenimen KA, DeVree BT, et al. Pharmacological
chaperone for α-crystallin partially restores transparency in cataract
models[ J]. Science, 2015, 350(6261): 674-677. DOI: 10.1126/
science.aac9145.
76、Singh A, Mohd Zainal Abidin Shukri Y, Abd Rahim IN, et al. Saffron's
protective role against atherosclerosis-induced cataract progression
in New Zealand white rabbits with phytochemical analysis of saffron's
extract[ J]. Plos One, 2025, 20(1): e0315178. DOI: 10.1371/journal.
pone.0315178.Singh A, Mohd Zainal Abidin Shukri Y, Abd Rahim IN, et al. Saffron's
protective role against atherosclerosis-induced cataract progression
in New Zealand white rabbits with phytochemical analysis of saffron's
extract[ J]. Plos One, 2025, 20(1): e0315178. DOI: 10.1371/journal.
pone.0315178.
77、Zhou M-y, Liu B-q, Gao X, et al. Sagittaria sagittifolia polysaccharide
extract regulates Nrf2 to improve endoplasmic reticulum stressmediated apoptosis in rat cataracts and HLEB3 cells[ J]. International
Journal of Biological Macromolecules, 2025, 300: 140270. DOI:
10.1016/j.ijbiomac.2025.140270.Zhou M-y, Liu B-q, Gao X, et al. Sagittaria sagittifolia polysaccharide
extract regulates Nrf2 to improve endoplasmic reticulum stressmediated apoptosis in rat cataracts and HLEB3 cells[ J]. International
Journal of Biological Macromolecules, 2025, 300: 140270. DOI:
10.1016/j.ijbiomac.2025.140270.
78、Bryl A, Falkowski M, Zorena K, et al. The Role of Resveratrol in Eye
Diseases-A Review of the Literature[ J]. Nutrients, 2022, 14(14): 2974.
DOI: 10.3390/nu14142974.Bryl A, Falkowski M, Zorena K, et al. The Role of Resveratrol in Eye
Diseases-A Review of the Literature[ J]. Nutrients, 2022, 14(14): 2974.
DOI: 10.3390/nu14142974.
79、Singh A, Bodakhe SH. Biochemical Evidence Indicates the Preventive
Effect of Resveratrol and Nicotinamide in the Treatment of STZinduced Diabetic Cataract[ J]. Curr Eye Res, 2021, 46(1): 52-63. DOI:
10.1080/02713683.2020.1782941.Singh A, Bodakhe SH. Biochemical Evidence Indicates the Preventive
Effect of Resveratrol and Nicotinamide in the Treatment of STZinduced Diabetic Cataract[ J]. Curr Eye Res, 2021, 46(1): 52-63. DOI:
10.1080/02713683.2020.1782941.
80、Higashi Y, Higashi K, Mori A, et al. Anti-cataract Effect of Resveratrol
in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats[ J].
Biol Pharm Bull, 2018, 41(10): 1586-1592. DOI: 10.1248/bpb.b18-
00328.Higashi Y, Higashi K, Mori A, et al. Anti-cataract Effect of Resveratrol
in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats[ J].
Biol Pharm Bull, 2018, 41(10): 1586-1592. DOI: 10.1248/bpb.b18-
00328.
81、Chen Q, Gu P, Liu X, et al. Gold Nanoparticles Encapsulated
Resveratrol as an Anti-Aging Agent to Delay Cataract Development[ J]. Pharmaceuticals (Basel), 2022, 16(1): 26. DOI: 10.3390/ph16010026.Chen Q, Gu P, Liu X, et al. Gold Nanoparticles Encapsulated
Resveratrol as an Anti-Aging Agent to Delay Cataract Development[ J]. Pharmaceuticals (Basel), 2022, 16(1): 26. DOI: 10.3390/ph16010026.
82、彭后平, 孙丽萍, 李晓林, 等. 眼表局部给药的屏障及克服屏障的
方法研究进展[ J]. 药学进展, 2021, 45(11): 835-847.
Peng H, Sun L, Li X, et al. Progress of research on ocular barriers
of topical drug delivery and strategies to overcome the barriers[ J].
Progress in Pharmaceutical Sciences 2021, 45(11): 835-847.Peng H, Sun L, Li X, et al. Progress of research on ocular barriers
of topical drug delivery and strategies to overcome the barriers[ J].
Progress in Pharmaceutical Sciences 2021, 45(11): 835-847.
83、Chen X, Xi Q, Sun F, et al. Facile fabrication of redox nanoparticles
loaded with exosomal-miRNAs and resveratrol as glycation inhibitor
in alleviating the progression and development of diabetic cataract[ J].
Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 398(4):
4247-4263. DOI: 10.1007/s00210-024-03535-4.Chen X, Xi Q, Sun F, et al. Facile fabrication of redox nanoparticles
loaded with exosomal-miRNAs and resveratrol as glycation inhibitor
in alleviating the progression and development of diabetic cataract[ J].
Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 398(4):
4247-4263. DOI: 10.1007/s00210-024-03535-4.
84、Wang J, Zhang R , Xie H, et al. Metal-phenolic epigallocatechin
gallate-zinc antioxidant nanoparticles for cataract treatment[ J].
J Control Release, 2025, 383: 113798. DOI: 10.1016/
j.jconrel.2025.113798.Wang J, Zhang R , Xie H, et al. Metal-phenolic epigallocatechin
gallate-zinc antioxidant nanoparticles for cataract treatment[ J].
J Control Release, 2025, 383: 113798. DOI: 10.1016/
j.jconrel.2025.113798.