您的位置: 首页 > 2025年7月 第40卷 第7期 > 文字全文
2023年7月 第38卷 第7期11
目录

新西兰兔硒性白内障模型的建立与验证

Establishment and validation of selenium-induced cataract model in New Zealand rabbits

来源期刊: 眼科学报 | 2025年7月 第40卷 第7期 557-564 发布时间:2025-07-28 收稿时间:2025/7/23 16:53:43 阅读量:29
作者:
关键词:
硒性白内障新西兰兔吡诺克辛滴眼液晶状体混浊度晶状体透明度
selenium cataract New Zealand rabbit pinoxine eye drops lens turbidity transparency of the lens
DOI:
10.12419/25042204
收稿时间:
2025-04-23 
修订日期:
2025-05-14 
接收日期:
2025-06-03 
目的:通过前房注射亚硒酸钠溶液建立新西兰兔硒性白内障模型,并评估验证其在药效试验中的应用。方法:采用前房注射10 mmol/L亚硒酸钠溶液(0.1 mL/只)对动物右眼进行造模,于造模第3天根据晶状体混浊度评分选取成模动物分为模型组、吡诺克辛滴眼液(pirenoxine sodium eye drops, PSED)0.05 mg/mL组,以模型组动物左眼作为空白组,每组8只眼;分组后对各组动物眼进行滴眼给药,50 µL/眼/次,3 次/天,连续给药17 d。于给药前、给药第7、17天进行裂隙灯检查拍照在体评估晶状体混浊度,末次给药后完整分离各组动物晶状体,体外评估晶状体透明度,然后将各组动物晶状体匀浆,用于过氧化物酶(peroxidase, POD)及谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)活力测定。结果:与空白组相比,模型组给药前、给药第7、17天晶状体混浊度评分均升高,给药结束后晶状体透明度评分升高,晶状体中GSH-PX和POD活力均降低;与模型组相比,PSED 0.05 mg/mL组给药17d晶状体混浊度和透明度评分均降低,晶状体中GSH-PX活力升高,POD无变化。结论:前房注射亚硒酸钠溶液可诱导新西兰兔发展出稳定的白内障模型症状,适用于药物药效作用的评价。
Objective: To establish a selenium-induced cataract model in New Zealand rabbits by anterior chamber injection of sodium selenite solution and evaluate and verify its application in pharmacodynamic trials. Methods: The right eyes of the animals were modeled by anterior chamber injection of 10 mmol/L sodium selenite solution (0.1 mL per animal). On the third day of modeling, the modeled animals were selected and divided into the model group and the pirenoxine sodium eye drops (PSED) 0.05 mg/mL group based on the lens turbidity score. The left eyes of the animals in the model group were taken as the blank group, with 8 eyes in each group. After grouping, eye drops were administered to the eyes of each group of animals. The dosage was 50 µL per eye each time, three times a day, for 17 consecutive days. Slit lamp examination and photography were conducted on the 7th and 17th days of administration to evaluate the turbidity of the lenses in vivo. After the last administration, the lenses of each group of animals were completely isolated, and the transparency of the lenses was evaluated in vitro. Then, the lenses of each group of animals were homogenized. It is used for the determination of peroxidase (POD) and glutathione peroxidase (GSH-Px) activities. Results: Compared with the blank group, the lens turbidity scores of the model group were significantly increased before administration, on the 7th and 17th days of administration, the lens transparency scores were significantly increased after the end of administration, and the activities of GSH-PX and POD in the lens were significantly decreased. Compared with the model group, the scores of lens turbidity and transparency in the PSED 0.05 mg/mL group and 17 days after administration were significantly decreased, the activity of GSH-PX in the lens was significantly increased, and there was no change in POD. Conclusions: Anterior chamber injection of sodium selenite solution can induce the development of stable cataract model symptoms in New Zealand rabbits and is suitable for the screening and evaluation of drug efficacy.

文章亮点

1. 关键发现

 • 通过前房注射 10 mmol/L 亚硒酸钠溶液 (0.1 mL/ 只 ) 建立稳定的新西兰兔硒性白内障模型,可用于药物药效学评价。

2. 已知与发现

 • 目前,文献中报道的硒性白内障动物模型实验系统多为大鼠,但因大鼠晶状体过小,实验中检查、取材等相关操作较困难。
 • 造模 3 天起模型动物晶状体混浊度评分升高;造模 17 天后模型动物晶状体透明度评分升高,晶状体中 GSH-PX 和 POD活力均降低。

3. 意义与改变

 • 弥补了文献资料中关于新西兰兔硒性白内障模型的空缺,为相关研究者提供更多动物模型选择。

        白内障(cataract)是一种由遗传和环境等因素引起的以晶状体混浊为特征的眼科疾病,在致盲性眼科疾病中居于全球首位[1],据2021年中华医学会眼科学分会的统计数据,中国60岁以上人群白内障发病率约为80%[2]。目前治疗白内障的唯一有效手段是手术摘除白内障晶状体,但高昂的手术费用及术后并发症等难题仍限制大部分人群的诊治,因此,早期应用药物预防或治疗白内障具有重要意义[3]。白内障动物模型是研究白内障发病机制及筛选有效物质的重要手段,理想的模型需具有解剖相似性、操作可行性及病理可重复性[4]。目前,啮齿类动物(如小鼠、大鼠及豚鼠等)因晶状体过小限制手术模拟,而灵长类动物则面临伦理与成本约束[5]。相比之下,新西兰兔凭借其大尺寸晶状体、与人相似的房水代谢系统及稳定的诱导反应,成为白内障研究的优选动物模型[6]。本研究以新西兰兔为研究对象,建立亚硒酸钠诱发的白内障模型,对模型的晶状体混浊度和透明度进行评分及氧化指标检测,并采用吡诺克辛滴眼液(pirenoxine sodium eye drops, PSED)考察模型的适用性,为白内障治疗药物开发提供合适的模型工具。

1 材料和方法

1.1 主要试剂和仪器

        吡诺克辛滴眼液(日本参天制药株式会社,KRU8546);亚硒酸钠(Sigma公司,BCCJ4773),POD试剂盒(南京建成生物工程研究所,批号20190110);GSH-PX试剂盒(南京建成生物工程研究所,批号20190121);裂隙灯显微镜(上海博览光电仪器有限公司,BL-88);可见分光光度计(上海菁华科技仪器有限公司,722N)。

1.2 实验动物

        选取健康且眼科检查合格的普通级新西兰兔16只,雌雄各半,2~2.5月龄,体质量1.5~2.5 kg,购自青岛大生物科技有限公司,实验动物生产许可证号:SCXK(鲁)2016-0002。动物饲养于广东莱恩医药研究院有限公司普通级兔/豚鼠动物房,实验动物使用许可证号:SYXK(粤)2015-0146。动物实验证明号:No.00208709。动物在饲养环境内自由摄食、饮水,环境温度16~26 ℃,相对湿度40%~70%,本研究已经获得广东莱恩医药研究院有限公司动物伦理研究委员会批准(伦理号:IA-EL2018015-01)。

1.3 方法

        1.3.1 造模
        采用肌内注射30mg/kg氯胺酮联合3 mg/kg盐酸赛拉嗪注射液对造模动物进行麻醉,选择右眼为造模眼,对造模眼角膜靠近中央处进行前房穿刺,抽取约0.1 mL房水,再用微量注射器于颞侧角巩膜缘行前房穿刺,缓慢注射10 mmol/L亚硒酸钠溶液0.1mL。造模后每天3次滴眼给予妥布霉素滴眼液抗感染,持续3d。
        1.3.2 分组
        于造模第3天根据晶状体混浊度评分和性别将成模动物随机均衡分为2组,即模型组、PSED 0.05 mg/mL组,每组8只,雌雄各半,另以模型组动物左眼作为本次试验空白组。
        1.3.3 给药
        分组后对各组动物眼进行滴眼给药,50 µL/眼/次,3次/天,每次间隔约3 h,连续给药17 d。每次滴眼后被动闭合眼睑至少10 s,模型组右眼给予等体积的生理盐水。
        1.3.4 晶状体混浊程度评分
       分别于造模第3天(给药前)及给药第7、17天进行裂隙灯观察和拍照,参照临床晶状体混浊分级系统Ⅲ(lens opacity classification systemⅢ, LOCS Ⅲ)[7]对裂隙灯拍摄的晶状体照片进行混浊程度评分,具体评分标准见表1。

表 1 晶状体混浊程度评分标准
Table 1 Lens opacity grading criteria

晶状体特征(裂隙灯下观察)

分值

无混浊,晶状体透明清亮

1

轻度混浊,晶状体周边出现空泡

2

中度混浊,晶状体周边部空泡向中心区扩展,核出现雾状混浊

3

高度混浊,空泡扩展到核区,核区雾状混浊加重

4

核混浊,成熟晶状体,晶状体核及周边部均出现深度混浊

5

        1.3.5 晶状体透明度评分
        于末次给药结束后对各组动物进行安乐死,然后解剖取出动物眼球,完整分离出包含囊膜的晶状体,将其置于2.12mm×2.12 mm方格纸上,光镜下观察和拍照以显示透过晶状体所拍摄方格的清晰度,并通过清晰度进行晶状体混浊度等级评分,评分标准参照Olga E Makri等[8]的研究,具体评分标准见表2。

表 2 晶状体透明程度评分标准
Table 2 Lens transparency grading criteria

晶状体特征(光镜下观察)

分值

无混浊,方格内十字线清晰可辨

1

轻度混浊,方格内十字线轻度歪斜

2

中度混浊,方格内十字线重度歪斜,轻度模糊并被遮挡

3

高度混浊(白色),方格内的十字线完全被遮挡

4

高度混浊(淡黄色),方格内的十字线完全被遮挡

5

         1.3.6 氧化指标检测
        晶状体透明度评分结束后将各组动物晶状体进行匀浆,使用比色法通过测定酶促反应下还原性谷胱甘肽的消耗来检测晶状体中谷胱甘肽过氧化物酶(glutathioneperoxidase,GSH-PX)活力,使用比色法通过催化过氧化氢反应检测晶状体中过氧化物酶(peroxidase,POD)活力。

1.4 统计学处理

        采用SPSS25.0进行数据分析,结果用x±s表示。试验数据均采用One-way ANOVA来评价整体性的差异,方差齐性时,用LSD-t来检验组间的差异;方差不齐时,用Dunnett's T3检验组间的差异。以P < 0.05表示差异具有统计学意义。

2 结果

2.1 白内障兔模型晶状体混浊度的变化和评分

        分别于给药前、给药第7、17天进行裂隙灯检查拍照,在体评估晶状体混浊度评分,结果显示,给药前、给药第7、17天空白组动物晶状体正常透明,而模型组晶状体皮质与核无明显分界,呈现出大面积白色混浊(图1A),晶状体混浊度评分升高(图1B、C、D);与模型组相比,PSED 0.05 mg/mL组动物给药17d后晶状体混浊度有明显改善,表现出弥散性絮状混浊(图1A),晶状体混浊度评分亦降低(图1B、C、D)。

图1 亚硝酸钠诱导新西兰兔白内障模型晶状体混浊度变化和评分
Figure 1 Changes and scores of lens turbidity induced by sodium nitrite in New Zealand rabbit cataract model

20250730163950_5767.png
(A)给药前、给药第7、17天各组动物的裂隙灯照片;(B)给药前各组动物晶状体混浊度评分;(C)给药第7天晶状体混浊度评分变化;(D)给药第17天晶状体混浊度评分变化。n=8,##表示P < 0.01,*表示< 0.05,ns表示> 0.05。
(A)Slit lamp photos of animals in each group before administration, on the 7th and 17th days of administration; (B) Lens turbidity score of each group of animals before dosing; (C) The change of lens turbidity score on the 7th day of medication; (D) The change of lens turbidity score on the 17th day of treatment. n=8, ## means P < 0.01, * means P < 0.05, ns means P > 0.05.

2.2 白内障兔模型晶状体透明度变化

        末次给药后完整分离各组动物晶状体在光镜下观察和拍照,体外对晶状体透明度进行评分,结果显示,空白组晶状体正常透明,而模型组晶状体出现透光率下降,网格线几乎被覆盖,其晶状体透明度评分升高;与模型组相比,PSED 0.05 mg/mL组动物晶状体表现出透光率增加,中央区域可清晰观察到主要网格线(图2A),晶状体透明度评分亦降低(图2B)。

图2 亚硝酸钠诱导新西兰兔白内障模型晶状体透明度变化
Figure 2 Changes in lens transparency induced by sodium nitrite in New Zealand rabbit cataract model

20250730164006_9519.png
(A)给药17天各组动物的体外晶状体图片;(B)白内障兔模型对晶状体透明度评分的变化。n=8,##表示P < 0.01,*表示P < 0.05。
(A) Lens pictures of animals in each group on 17 days of administration in vitro; (B) Changes in lens transparency scores in New Zealand rabbit models of cataracts. n=8,## means P < 0.01,* means P < 0.05.

2.3 白内障兔模型晶状体中氧化应激对抗能力检测

       将各组动物晶状体匀浆后进行POD及GSH-Px活力测定,结果显示,与空白组相比,模型组动物晶状体内GSH-PX和POD活力均降低;与模型组相比,PSED 0.05 mg/mL组动物晶状体中GSH-PX活力升高,POD活力无变化(图3A、B)。

图3 亚硝酸钠诱导白内障新西兰兔晶状体中氧化应激对抗能力检测
Figure 3 Oxidative stress resistance in the lens of New Zealand rabbits induced by sodium nitrite

20250730164019_1864.png
(A)白内障兔模型对晶状体GSH-PX活力变化;(B)白内障兔模型对晶状体POD活力变化。n=8,##表示< 0.01,#表示< 0.05,*表示< 0.05,ns表示P > 0.05。
(A) Changes of GSH-PX activity in lens of New Zealand rabbit model with cataract; (B) Changes in POD activity of lens in New Zealand rabbit model with cataract. n=8, ## means P < 0.01, # means P < 0.05, * means P < 0.05, ns means > 0.05.

3 讨论

         白内障是世界范围内致盲的首要原因,其最基本的病理变化为高分子量蛋白聚集或晶状体微结构破坏,根据混浊区域可分为皮质性白内障、核性白内障和后囊下白内障[9-10]。目前,临床上唯一确定的治疗方法是手术摘除不透明晶状体,但由于术后晶状体自身的结构被破坏,而且其自身的调节能力丧失,可能引起多种并发症,如复视、黄斑囊样水肿、眼内压升高,甚至会使视网膜脱落的可能性增加[11-12]。药物治疗主要是为了防止和阻断白内障迅速进展,减缓患者视力下降,早期的预防对疾病的控制有着重要的作用[13-14]。PSED滴眼液为醌类化合物,临床上对早期老年性白内障有较明显的疗效,其作用机制主要基于“醌体学说”,即通过竞争性抑制醌类物质与晶状体蛋白结合,减少不可溶性蛋白聚集,从而延缓白内障进展,还具有潜在的抗氧化效应,减少自由基对晶状体的损伤[15-16]。因此,本研究选择使用PSED滴眼液验证所建立的新西兰兔硒性白内障模型是否可用于药物药效作用的评价。
         硒性白内障是由于过量的亚硒酸钠诱发大量的活性氧(reactive oxygen species, ROS)对晶状体的损伤所致,因其模型发展进程与人白内障具有高度相似性且造模方便快捷被广泛用于筛选和评价抗白内障药物[17-19]。本研究便通过对新西兰兔前房内注射亚硒酸钠溶液诱发白内障模型,对模型的晶状体混浊程度和透明程度进行评分及氧化指标检测,并采用PSED滴眼液考察模型的适用性。试验结果表明,于造模第3天起,裂隙灯下检查发现模型眼出现晶状体皮质与核无明显分界,呈现出大面积白色混浊,晶状体混浊程度评分均升高,给药结束后,光镜下观察亦发现空白组晶状体正常透明,而模型组晶状体出现透光率下降,网格线几乎被覆盖,晶状体透明程度评分降低,给予PSED 0.05 mg/mL滴眼液17 d后晶状体混浊有明显改善,表现出弥散性絮状混浊,晶状体表现出透光率增加,中央区域均可清晰地观察到主要网格线,晶状体混浊程度评分降低,透明程度评分升高。
        白内障的发病机制较为复杂,是体内外多种因素(如年龄、手术、代谢性疾病、辐射等)长期共同作用于晶状体的结果,而晶状体内产生的ROS所引起的氧化损伤是白内障形成的主要途径[20-21]。GSH-PX和POD是机体内主要的抗氧化酶,能抑制ROS产生,平衡人体的代谢,在预防各种慢性代谢性疾病中发挥重要作用[22, 23]。有研究表明,晶状体内抗氧化酶的减少是白内障前期发展中的重要特征,可严重削弱晶状体抗氧化能力,如晶状体内GSH-PX的减少可导致自由基氧化大量谷胱甘肽,使其变成氧化型谷胱甘肽,进而引起晶状体氧化损伤,最终诱发白内障的形成[24-26]。本研究于末次晶状体透明度评分结束后将各组动物晶状体匀浆进行POD及GSH-Px活力测定,结果显示,模型组动物晶状体内GSH-PX和POD活力较空白组均明显降低,滴眼给予PSED 0.05 mg/mL滴眼液17d后晶状体内抗氧化酶GSH-PX活力升高,提示PSED 0.05 mg/mL滴眼液可能通过提高晶状体的抗氧化能力来改善白内障动物的晶状体混浊。
        综上所述,本研究通过前房注射10 mmol/L亚硒酸钠溶液(0.1 mL/只)可诱导新西兰兔发展出稳定的白内障模型症状,通过阳性药物(PSED)长期滴眼治疗后验证了该模型适用于药物药效作用的评价。

声明

在论文撰写中无使用生成式人工智能。在论文撰写中无使用生成式人工智能。论文撰写中的所有内容均由作者独立完成, 并对出版物的真实性和准确性承担全部责任。

利益冲突

所有作者均声明不存在利益冲突。

开放获取声明

本文适用于知识共享许可协议(Creative Commons),允许第三方用户按照署名(BY)-非商业性使用(NC)-禁止演绎(ND)(CC BY-NC-ND)的方式共享,即允许第三方对本刊发表的文章进行复制、发行、展览、表演、放映、广播或通过信息网络向公众传播,但在这些过程中必须保留作者署名、仅限于非商业性目的、不得进行演绎创作。
1、Filip A, Cozar BI, Floare CG, et al. Aggregation inhibitory effect of vitamin C on cataract-associated P23T γD-crystallin[ J]. Int J Biol Macromol, 2025, 302: 140579. DOI: 10.1016/j.ijbiomac.2025.140579.Filip A, Cozar BI, Floare CG, et al. Aggregation inhibitory effect of vitamin C on cataract-associated P23T γD-crystallin[ J]. Int J Biol Macromol, 2025, 302: 140579. DOI: 10.1016/j.ijbiomac.2025.140579.
2、中华医学会眼科学分会白内障及人工晶状体学组. 中国白内障 围手术期干眼防治专家共识(2021年)[ J].中华眼科杂志, 2021, 57(1): 6. DOI: 10.3760/cma.j.cn112142-20201013-00680.
Cataract Group of Ophthalmology Branch of Chinese Medical Association. Chinese expert consensus on prevention and treatment of dry eye during perioperative period of cataract surgery (2021)[ J]. Chin J Ophthalmol, 2021, 57(1): 17-22. DOI: 10.3760/cma.j.cn112142- 20201013-00680.
Cataract Group of Ophthalmology Branch of Chinese Medical Association. Chinese expert consensus on prevention and treatment of dry eye during perioperative period of cataract surgery (2021)[ J]. Chin J Ophthalmol, 2021, 57(1): 17-22. DOI: 10.3760/cma.j.cn112142- 20201013-00680.
3、Pedersini CA, Miller NP, Gandhi TK, et al. White matter plasticity following cataract surgery in congenitally blind patients[ J]. Proc Natl Acad Sci USA, 2023, 120(19): e2207025120. DOI: 10.1073/ pnas.2207025120.Pedersini CA, Miller NP, Gandhi TK, et al. White matter plasticity following cataract surgery in congenitally blind patients[ J]. Proc Natl Acad Sci USA, 2023, 120(19): e2207025120. DOI: 10.1073/ pnas.2207025120.
4、李诗怡, 扶乾芳, 黄菊, 等. 按病因分类的白内障动物模型制作 现状[ J]. 国际眼科杂志, 2023, 23(12): 1988-1993. DOI: 10.3980/ j.issn.1672-5123.2023.12.10.
Li SY, Fu GF, Huang J, et al. Current status of animal models of cataract classified by etiology[ J]. Int Eye Sci, 2023, 23(12): 1988-1993. DOI: 10.3980/j.issn.1672-5123.2023.12.10.
Li SY, Fu GF, Huang J, et al. Current status of animal models of cataract classified by etiology[ J]. Int Eye Sci, 2023, 23(12): 1988-1993. DOI: 10.3980/j.issn.1672-5123.2023.12.10.
5、Van Cruchten S, Vrolyk V, Perron Lepage MF, et al. Pre- and postnatal development of the eye: a species comparison[ J]. Birth Defects Res, 2017, 109(19): 1540-1567. DOI: 10.1002/bdr2.1100.Van Cruchten S, Vrolyk V, Perron Lepage MF, et al. Pre- and postnatal development of the eye: a species comparison[ J]. Birth Defects Res, 2017, 109(19): 1540-1567. DOI: 10.1002/bdr2.1100.
6、Zernii EY, Baksheeva VE, Iomdina EN, et al. Rabbit models of ocular diseases: new relevance for classical approaches[ J]. CNS Neurol Disord Drug Targets, 2016, 15(3): 267-291. DOI: 10.2174/18715273156661 51110124957.Zernii EY, Baksheeva VE, Iomdina EN, et al. Rabbit models of ocular diseases: new relevance for classical approaches[ J]. CNS Neurol Disord Drug Targets, 2016, 15(3): 267-291. DOI: 10.2174/18715273156661 51110124957.
7、Hall AB, Thompson JR, Deane JS, et al. LOCS III versus the Oxford Clinical Cataract Classification and Grading System for the assessment of nuclear, cortical and posterior subcapsular cataract[ J]. Ophthalmic Epidemiol, 1997, 4(4): 179-194. DOI: 10.3109/09286589709059192.Hall AB, Thompson JR, Deane JS, et al. LOCS III versus the Oxford Clinical Cataract Classification and Grading System for the assessment of nuclear, cortical and posterior subcapsular cataract[ J]. Ophthalmic Epidemiol, 1997, 4(4): 179-194. DOI: 10.3109/09286589709059192.
8、Lee B, Afshari NA, Shaw PX. Oxidative stress and antioxidants in cataract development[ J]. Curr Opin Ophthalmol, 2024, 35(1): 57-63. DOI: 10.1097/icu.0000000000001009.Lee B, Afshari NA, Shaw PX. Oxidative stress and antioxidants in cataract development[ J]. Curr Opin Ophthalmol, 2024, 35(1): 57-63. DOI: 10.1097/icu.0000000000001009.
9、Shiels A , Hejtmancik JF. Biolog y of inherited cataracts and opportunities for treatment[ J]. Annu Rev Vis Sci, 2019, 5: 123-149. DOI: 10.1146/annurev-vision-091517-034346.Shiels A , Hejtmancik JF. Biolog y of inherited cataracts and opportunities for treatment[ J]. Annu Rev Vis Sci, 2019, 5: 123-149. DOI: 10.1146/annurev-vision-091517-034346.
10、Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5): 273-282. DOI: 10.1016/j.molmed.2012.03.005.Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention[ J]. Trends Mol Med, 2012, 18(5): 273-282. DOI: 10.1016/j.molmed.2012.03.005.
11、Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing[ J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1278-1292. DOI: 10.1098/rstb.2010.0300.Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing[ J]. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1568): 1278-1292. DOI: 10.1098/rstb.2010.0300.
12、施毓琳, 徐国兴. 白内障术后人工晶状体眼黄斑囊样水肿的 研究进展[ J]. 国际眼科杂志, 2020, 20(09): 1539-1542. DOI: 10.3980/j.issn.1672-5123.2020.9.14. Shi YL, Xu GX. Research progress of pseudophakiccystoidsmacular edema[ J]. Int Eye Sci, 2020, 20(9): 1539-1542. DOI: 10.3980/j.issn.1672-5123.2020.9.14.Shi YL, Xu GX. Research progress of pseudophakiccystoidsmacular edema[ J]. Int Eye Sci, 2020, 20(9): 1539-1542. DOI: 10.3980/j.issn.1672-5123.2020.9.14.
13、Kristianslund O, Dalby M, Drolsum L. Dislocation of intraocular lens[ J]. Tidsskr Nor Laegeforen, 2020, 140(7): 10.4045. DOI: 10.4045/tidsskr.19.0526.Kristianslund O, Dalby M, Drolsum L. Dislocation of intraocular lens[ J]. Tidsskr Nor Laegeforen, 2020, 140(7): 10.4045. DOI: 10.4045/tidsskr.19.0526.
14、徐靖杰, 张颖, 姚克, 等. 白内障发病机制与防治策略的研究进展 [ J]. 中国科学:生命科学, 2022, 52(12): 1807-1814. DOI: 10.1360/ SSV-2022-0068.
Xu JJ, Zhang Y, Yao K , et al. Advances in pathogenesis and pharmacotherapy of cataract (inChinese)[ J]. Sci Sin Vitae, 2022, 52(12): 1807-1814. DOI: 10.1360/SSV-2022-0068.
Xu JJ, Zhang Y, Yao K , et al. Advances in pathogenesis and pharmacotherapy of cataract (inChinese)[ J]. Sci Sin Vitae, 2022, 52(12): 1807-1814. DOI: 10.1360/SSV-2022-0068.
15、宋亚玲, 张玉芳, 焦丽坤, 等. 复明片联合吡诺克辛滴眼液治疗 糖尿病并轻度白内障疗效及对生存质量的影响[ J]. 现代中西 医结合杂志, 2017, 26(36): 4053-4055. DOI: 10.3969/j. issn. 1008- 8849. 2017.36.020.
Song YL, Zhang YF, Jiao LK, et al. The efficacy of Fuming Tablets combined with Pinoxine Eye Drops in the treatment of diabetes mellitus with mild cataract and its influence on quality of life[ J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2017, 26(36): 4053-4055. DOI: 10.3969/j. issn. 1008- 8849. 2017.36.020.
Song YL, Zhang YF, Jiao LK, et al. The efficacy of Fuming Tablets combined with Pinoxine Eye Drops in the treatment of diabetes mellitus with mild cataract and its influence on quality of life[ J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2017, 26(36): 4053-4055. DOI: 10.3969/j. issn. 1008- 8849. 2017.36.020.
16、李超英, 杨辛欣, 李静, 等. 吡诺克辛钠滴眼液对大鼠诱导性糖 尿病白内障的防治作用[ J]. 眼科新进展, 2014, 34(11): 1017- 1019+1029. DOI: 10.13389/j.cnki.rao.2014.0282.
Li CY, Yang XX, Li J, et al. Curative effects of pirenoxinesodium eyedropson induced diabetic cataract in rats[ J]. Journal of ophthalmology, 2014 (11): 1017-1019 + 1029. DOI: 10.13389 / j.carolcarrollnkirao. 2014.0282.
Li CY, Yang XX, Li J, et al. Curative effects of pirenoxinesodium eyedropson induced diabetic cataract in rats[ J]. J Ophthalmol, 2014 (11): 1017-1019 + 1029. DOI: 10.13389 / j.carolcarrollnkirao. 2014.0282.
17、Chen Q, Gu P, Liu X , et al. Gold nanoparticles encapsulated resveratrol as an anti-aging agent to delay cataract development[ J]. Pharmaceuticals (Basel), 2022, 16(1): 26. DOI: 10.3390/ph16010026.Chen Q, Gu P, Liu X , et al. Gold nanoparticles encapsulated resveratrol as an anti-aging agent to delay cataract development[ J]. Pharmaceuticals (Basel), 2022, 16(1): 26. DOI: 10.3390/ph16010026.
18、Gao X, Li K, Huang Y, et al. Fe-curcumin nanozymes-mediated reactive oxygen species scavenging and anti-apoptotic effects on age-related cataracts[ J]. Mater Today Bio, 2025, 32: 101850. DOI: 10.1016/ j.mtbio.2025.101850.Gao X, Li K, Huang Y, et al. Fe-curcumin nanozymes-mediated reactive oxygen species scavenging and anti-apoptotic effects on age-related cataracts[ J]. Mater Today Bio, 2025, 32: 101850. DOI: 10.1016/ j.mtbio.2025.101850.
19、Asl AR , Ashrafi M, Aminlari M, et al. The protective effect of pomegranate peel aqueous extract on selenite-induced cataract in rats[ J]. J Food Biochem, 2022, 46(10): e14356. DOI: 10.1111/ jfbc.14356.Asl AR , Ashrafi M, Aminlari M, et al. The protective effect of pomegranate peel aqueous extract on selenite-induced cataract in rats[ J]. J Food Biochem, 2022, 46(10): e14356. DOI: 10.1111/ jfbc.14356.
20、Nakazawa Y, Aoki M, Ishiwa S, et al. Oral intake of α-glucosylhesperidin ameliorates selenite-induced cataract formation[ J]. Mol Med Rep, 2020, 21(3): 1258-1266. DOI: 10.3892/mmr.2020.10941.Nakazawa Y, Aoki M, Ishiwa S, et al. Oral intake of α-glucosylhesperidin ameliorates selenite-induced cataract formation[ J]. Mol Med Rep, 2020, 21(3): 1258-1266. DOI: 10.3892/mmr.2020.10941.
21、Schmitt C, Hockwin O. The mechanisms of cataract formation[ J]. J Inherit Metab Dis, 1990, 13(4): 501-508. DOI: 10.1007/BF01799507.Schmitt C, Hockwin O. The mechanisms of cataract formation[ J]. J Inherit Metab Dis, 1990, 13(4): 501-508. DOI: 10.1007/BF01799507.
22、Liu YC, Wilkins M, Kim T, et al. Cataracts[ J]. Lancet, 2017, 390(10094): 600-612. DOI: 10.1016/S0140-6736(17)30544-5.Liu YC, Wilkins M, Kim T, et al. Cataracts[ J]. Lancet, 2017, 390(10094): 600-612. DOI: 10.1016/S0140-6736(17)30544-5.
23、Hwang S, Lim DH, Hyun J, et al. Myopic shift after implantation of a novel diffractive trifocal intraocular lens in Korean eyes[ J]. Korean J Ophthalmol, 2018, 32(1): 16-22. DOI: 10.3341/kjo.2017.0060.Hwang S, Lim DH, Hyun J, et al. Myopic shift after implantation of a novel diffractive trifocal intraocular lens in Korean eyes[ J]. Korean J Ophthalmol, 2018, 32(1): 16-22. DOI: 10.3341/kjo.2017.0060.
24、Cockerham WC, Hamby BW, Oates GR. The social determinants of chronic disease[ J]. Am J Prev Med, 2017, 52(1): S5-S12. DOI: 10.1016/j.amepre.2016.09.010.Cockerham WC, Hamby BW, Oates GR. The social determinants of chronic disease[ J]. Am J Prev Med, 2017, 52(1): S5-S12. DOI: 10.1016/j.amepre.2016.09.010.
25、Peng J, Zheng TT, Liang Y, et al. p-coumaric acid protects human lens epithelial cells against oxidative stress-induced apoptosis by MAPK signaling[ J]. Oxid Med Cell Longev, 2018, 2018: 8549052. DOI: 10.1155/2018/8549052.Peng J, Zheng TT, Liang Y, et al. p-coumaric acid protects human lens epithelial cells against oxidative stress-induced apoptosis by MAPK signaling[ J]. Oxid Med Cell Longev, 2018, 2018: 8549052. DOI: 10.1155/2018/8549052.
26、Zhang J, Liang X, Li X, et al. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress[ J]. Drug Dev Ind Pharm, 2016, 42(4): 546-553. DOI: 10.3109/03639045.2015.1088867.Zhang J, Liang X, Li X, et al. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress[ J]. Drug Dev Ind Pharm, 2016, 42(4): 546-553. DOI: 10.3109/03639045.2015.1088867.
1、国家科技创业领军人才(SQ2024RA3E000198);广东省药物非临床评价与研究重点实验 室(2023B1212070029);广东省重大人才工程项目(2021TY060021)。
This work was supported by the National Leading Talent in Technology Entrepreneurship (SQ2024RA3E000198); Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research (2023B1212070029), Guangdong Provincial Significant Talent Project (2021TY060021).
This work was supported by the National Leading Talent in Technology Entrepreneurship (SQ2024RA3E000198); Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research (2023B1212070029), Guangdong Provincial Significant Talent Project (2021TY060021). ( )
上一篇
下一篇
其他期刊
  • 眼科学报

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
  • Eye Science

    主管:中华人民共和国教育部
    主办:中山大学
    承办:中山大学中山眼科中心
    主编:林浩添
    主管:中华人民共和国教育部
    主办:中山大学
    浏览
目录

点击右上角菜单,浏览器打开下载

我知道了