1、Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159. DOI: 10.1016/S0140-6736(18)31550-2.
2、Azuma K, Suzuki T, Kobayashi K, et al. Retinal pigment epithelium-specific ablation of GPx4 in adult mice recapitulates key features of geographic atrophy in age-related macular degeneration[J]. Cell Death Dis, 2024, 15(10): 763. DOI: 10.1038/s41419-024-07150-2.Azuma K, Suzuki T, Kobayashi K, et al. Retinal pigment epithelium-specific ablation of GPx4 in adult mice recapitulates key features of geographic atrophy in age-related macular degeneration[J]. Cell Death Dis, 2024, 15(10): 763. DOI: 10.1038/s41419-024-07150-2.
3、Girgis S, Lee LR. Treatment of dry age-related macular degeneration: a review[J]. Clin Exp Ophthalmol, 2023, 51(8): 835-852. DOI: 10.1111/ceo.14294. Girgis S, Lee LR. Treatment of dry age-related macular degeneration: a review[J]. Clin Exp Ophthalmol, 2023, 51(8): 835-852. DOI: 10.1111/ceo.14294.
4、Guymer RH, Campbell TG. Age-related macular degeneration[J]. Lancet, 2023, 401(10386): 1459-1472. DOI: 10.1016/S0140-6736(22)02609-5. Guymer RH, Campbell TG. Age-related macular degeneration[J]. Lancet, 2023, 401(10386): 1459-1472. DOI: 10.1016/S0140-6736(22)02609-5.
5、王灿宇, 杨锐煜, 邵毅, 等. 氧化应激在眼部疾病中的作用机制及治疗策略研究[J]. 眼科新进展, 2025, 45(3): 247-252. DOI: 10.13389/j.cnki.rao.2025.0044.
Wang CY, Yang RY, Shao Y, et al. Study on the mechanism of oxidative stress in ocular diseases and therapeutic strategies[J]. Recent Adv Ophthalmol, 2025, 45(3): 247-252. DOI: 10.13389/j.cnki.rao.2025.0044. Wang CY, Yang RY, Shao Y, et al. Study on the mechanism of oxidative stress in ocular diseases and therapeutic strategies[J]. Recent Adv Ophthalmol, 2025, 45(3): 247-252. DOI: 10.13389/j.cnki.rao.2025.0044.
6、Chaudhary MR, Chaudhary S, Sharma Y, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies[J]. Biogerontology, 2023, 24(5): 609-662. DOI: 10.1007/s10522-023-10050-1. Chaudhary MR, Chaudhary S, Sharma Y, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies[J]. Biogerontology, 2023, 24(5): 609-662. DOI: 10.1007/s10522-023-10050-1.
7、Kushwah N, Bora K, Maurya M, et al. Oxidative stress and antioxidants in age-related macular degeneration[J]. Antioxidants (Basel), 2023, 12(7): 1379. DOI: 10.3390/antiox12071379. Kushwah N, Bora K, Maurya M, et al. Oxidative stress and antioxidants in age-related macular degeneration[J]. Antioxidants (Basel), 2023, 12(7): 1379. DOI: 10.3390/antiox12071379.
8、侯慧敏, 常雪柯, 张乐颖, 等. 新型抗VEGF疗法在新生血管性年龄相关性黄斑变性中的研究进展[J]. 药学前沿, 2024, 27(10): 268-277.
Hou HM, Chang XK, Zhang LY, et al. Research progress of novel anti-VEGF therapy in the treatment of neovascular age-related macular degeneration with novel drugs[J]. Front Pharm Sci, 2024, 27(10): 268-277. Hou HM, Chang XK, Zhang LY, et al. Research progress of novel anti-VEGF therapy in the treatment of neovascular age-related macular degeneration with novel drugs[J]. Front Pharm Sci, 2024, 27(10): 268-277.
9、Tang S, Yang J, Xiao B, et al. Aberrant lipid metabolism and complement activation in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2024, 65(12): 20. DOI: 10.1167/iovs.65.12.20. Tang S, Yang J, Xiao B, et al. Aberrant lipid metabolism and complement activation in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2024, 65(12): 20. DOI: 10.1167/iovs.65.12.20.
10、Du H, Xiao X, Stiles T, et al. Novel mechanistic interplay between products of oxidative stress and components of the complement system in AMD pathogenesis[J]. Open J Ophthalmol, 2016, 6(1): 43-50. DOI: 10.4236/ojoph.2016.61006.Du H, Xiao X, Stiles T, et al. Novel mechanistic interplay between products of oxidative stress and components of the complement system in AMD pathogenesis[J]. Open J Ophthalmol, 2016, 6(1): 43-50. DOI: 10.4236/ojoph.2016.61006.
11、Somasundaran S, Constable IJ, Mellough CB, et al. Retinal pigment epithelium and age-related macular degeneration: a review of major disease mechanisms[J]. Clin Exp Ophthalmol, 2020, 48(8): 1043-1056. DOI: 10.1111/ceo.13834.Somasundaran S, Constable IJ, Mellough CB, et al. Retinal pigment epithelium and age-related macular degeneration: a review of major disease mechanisms[J]. Clin Exp Ophthalmol, 2020, 48(8): 1043-1056. DOI: 10.1111/ceo.13834.
12、陈雄, 陈惠媚, 汤钰, 等. 氧化应激在年龄相关性眼病中的作用机制研究进展[J]. 疑难病杂志, 2024, 23(6): 764-768.
Chen X, Chen HM, Tang Y, et al. Research progress of oxidative stress in age-related eye diseases[J]. Chin J Difficult Complicat Cases, 2024, 23(6): 764-768. Chen X, Chen HM, Tang Y, et al. Research progress of oxidative stress in age-related eye diseases[J]. Chin J Difficult Complicat Cases, 2024, 23(6): 764-768.
13、Kulbay M, Wu KY, Nirwal GK, et al. The role of reactive oxygen species in age-related macular degeneration: a comprehensive review of antioxidant therapies[J]. Biomedicines, 2024, 12(7): 1579. DOI: 10.3390/biomedicines12071579. Kulbay M, Wu KY, Nirwal GK, et al. The role of reactive oxygen species in age-related macular degeneration: a comprehensive review of antioxidant therapies[J]. Biomedicines, 2024, 12(7): 1579. DOI: 10.3390/biomedicines12071579.
14、刘旭, 万鹏飞, 杨维佳, 等. PDE2A通过影响脉络膜血管生成和NADPH氧化酶/ROS/NF-κB通路参与年龄相关性黄斑变性[J]. 现代生物医学进展, 2023, 23(6): 1033-1040. DOI: 10.13241/j.cnki.pmb.2023.06.007.
Liu X, Wan PF, Yang WJ, et al. PDE2A participates in age-related macular degeneration by affecting choroidal angiogenesis and NADPH oxidase/ROS/NF-κB pathway[J]. Prog Mod Biomed, 2023, 23(6): 1033-1040. DOI: 10.13241/j.cnki.pmb.2023.06.007. Liu X, Wan PF, Yang WJ, et al. PDE2A participates in age-related macular degeneration by affecting choroidal angiogenesis and NADPH oxidase/ROS/NF-κB pathway[J]. Prog Mod Biomed, 2023, 23(6): 1033-1040. DOI: 10.13241/j.cnki.pmb.2023.06.007.
15、Zhang SM, Fan B, Li YL, et al. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative diseases[J]. Cell Mol Neurobiol, 2023, 43(7): 3265-3276. DOI: 10.1007/s10571-023-01383-z. Zhang SM, Fan B, Li YL, et al. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative diseases[J]. Cell Mol Neurobiol, 2023, 43(7): 3265-3276. DOI: 10.1007/s10571-023-01383-z.
16、Nordestgaard LT, Christoffersen M, Afzal S, et al. Genetic variants in the adenosine triphosphate-binding cassette transporter A1 and risk of age-related macular degeneration[J]. Eur J Epidemiol, 2023, 38(9): 985-994. DOI: 10.1007/s10654-023-01021-4.Nordestgaard LT, Christoffersen M, Afzal S, et al. Genetic variants in the adenosine triphosphate-binding cassette transporter A1 and risk of age-related macular degeneration[J]. Eur J Epidemiol, 2023, 38(9): 985-994. DOI: 10.1007/s10654-023-01021-4.
17、罗茂梅, 蔡善君. 脂褐素与年龄相关性黄斑变性[J]. 国际眼科杂志, 2019, 19(8): 1326-1329. DOI: 10.3980/j.issn.1672-5123.2019.8.14.
Luo MM, Cai SJ. Lipofuscin and age-related macular degeneration[J]. Int Eye Sci, 2019, 19(8): 1326-1329. DOI: 10.3980/j.issn.1672-5123.2019.8.14. Luo MM, Cai SJ. Lipofuscin and age-related macular degeneration[J]. Int Eye Sci, 2019, 19(8): 1326-1329. DOI: 10.3980/j.issn.1672-5123.2019.8.14.
18、Kaarniranta K, Blasiak J, Liton P, et al. Autophagy in age-related macular degeneration[J]. Autophagy, 2023, 19(2): 388-400. DOI: 10.1080/15548627.2022.2069437. Kaarniranta K, Blasiak J, Liton P, et al. Autophagy in age-related macular degeneration[J]. Autophagy, 2023, 19(2): 388-400. DOI: 10.1080/15548627.2022.2069437.
19、Ozawa Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration[J]. Redox Biol, 2020, 37: 101779. DOI: 10.1016/j.redox.2020.101779. Ozawa Y. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration[J]. Redox Biol, 2020, 37: 101779. DOI: 10.1016/j.redox.2020.101779.
20、Tang Y, Kang Y, Zhang X, et al. Mesenchymal stem cell exosomes as nanotherapeutics for dry age-related macular degeneration[J]. J Control Release, 2023, 357: 356-370. DOI: 10.1016/j.jconrel.2023.04.003.Tang Y, Kang Y, Zhang X, et al. Mesenchymal stem cell exosomes as nanotherapeutics for dry age-related macular degeneration[J]. J Control Release, 2023, 357: 356-370. DOI: 10.1016/j.jconrel.2023.04.003.
21、Zhang J, Jiang J, Zhou H, et al. LncRNA NORAD defects deteriorate the formation of age-related macular degeneration[J]. Aging (Albany NY), 2023, 15(15): 7513-7532. DOI: 10.18632/aging.204917. Zhang J, Jiang J, Zhou H, et al. LncRNA NORAD defects deteriorate the formation of age-related macular degeneration[J]. Aging (Albany NY), 2023, 15(15): 7513-7532. DOI: 10.18632/aging.204917.
22、师若迪, 徐晨, 高园园, 等. 探讨枸杞多糖基于PI3K/AKT/mTOR通路调控细胞自噬对视网膜色素上皮细胞光损伤的保护作用[J/OL].辽宁中医杂志, 1-16[2025-08-05].
Shi RD, Xu C, Gao YY, et al. Exploring the protective effect of LBP in regulating cellular autophapy against photodamage in retinal pigment epithelial cells based on the P13K/AKT/mTOR pathway[J/OL]. Liaoning Journal of Traditional Chinese Medicine, 1-16[2025-08-05].Shi RD, Xu C, Gao YY, et al. Exploring the protective effect of LBP in regulating cellular autophapy against photodamage in retinal pigment epithelial cells based on the P13K/AKT/mTOR pathway[J/OL]. Liaoning Journal of Traditional Chinese Medicine, 1-16[2025-08-05].
23、Aykutlu%20M%C5%9E%2C%20G%C3%BC%C3%A7l%C3%BC%20H%2C%20Do%C4%9Fanlar%20ZB%2C%20et%20al.%20microRNA-184%20attenuates%20hypoxia%20and%20oxidative%20stress-related%20injury%20via%20suppressing%20apoptosis%2C%20DNA%20damage%20and%20angiogenesis%20in%20an%20in%20vitro%20age-related%20macular%20degeneration%20model%5BJ%5D.%20Toxicol%20Vitro%2C%202022%2C%2083%3A%20105413.%20DOI%3A%2010.1016%2Fj.tiv.2022.105413.Aykutlu%20M%C5%9E%2C%20G%C3%BC%C3%A7l%C3%BC%20H%2C%20Do%C4%9Fanlar%20ZB%2C%20et%20al.%20microRNA-184%20attenuates%20hypoxia%20and%20oxidative%20stress-related%20injury%20via%20suppressing%20apoptosis%2C%20DNA%20damage%20and%20angiogenesis%20in%20an%20in%20vitro%20age-related%20macular%20degeneration%20model%5BJ%5D.%20Toxicol%20Vitro%2C%202022%2C%2083%3A%20105413.%20DOI%3A%2010.1016%2Fj.tiv.2022.105413.
24、Lu T, Xie F, Huang C, et al. ERp29 attenuates nicotine-induced endoplasmic reticulum stress and inhibits choroidal neovascularization[J]. Int J Mol Sci, 2023, 24(21): 15523. DOI: 10.3390/ijms242115523. Lu T, Xie F, Huang C, et al. ERp29 attenuates nicotine-induced endoplasmic reticulum stress and inhibits choroidal neovascularization[J]. Int J Mol Sci, 2023, 24(21): 15523. DOI: 10.3390/ijms242115523.
25、Nita M, Grzybowski A. Antioxidative role of heterophagy, autophagy, and mitophagy in the retina and their association with the age-related macular degeneration (AMD) etiopathogenesis[J]. Antioxidants (Basel), 2023, 12(7): 1368. DOI: 10.3390/antiox12071368. Nita M, Grzybowski A. Antioxidative role of heterophagy, autophagy, and mitophagy in the retina and their association with the age-related macular degeneration (AMD) etiopathogenesis[J]. Antioxidants (Basel), 2023, 12(7): 1368. DOI: 10.3390/antiox12071368.
26、Abokyi S, To CH, Lam TT, et al. Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models[J]. Oxid Med Cell Longev, 2020, 2020: 7901270. DOI: 10.1155/2020/7901270. Abokyi S, To CH, Lam TT, et al. Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models[J]. Oxid Med Cell Longev, 2020, 2020: 7901270. DOI: 10.1155/2020/7901270.
27、Hyttinen JMT, Kannan R, Felszeghy S, et al. The regulation of NFE2L2 (NRF2) signalling and epithelial-to-mesenchymal transition in age-related macular degeneration pathology[J]. Int J Mol Sci, 2019, 20(22): 5800. DOI: 10.3390/ijms20225800. Hyttinen JMT, Kannan R, Felszeghy S, et al. The regulation of NFE2L2 (NRF2) signalling and epithelial-to-mesenchymal transition in age-related macular degeneration pathology[J]. Int J Mol Sci, 2019, 20(22): 5800. DOI: 10.3390/ijms20225800.
28、吴国熙. 基于Nrf2信号通路探讨瑞香素防治年龄相关性黄斑变性的机制研究[D]. 长春: 吉林大学, 2024. DOI: 10.27162/d.cnki.gjlin.2024.007272.
Wu GX. The mechanism of daphnetin in prevention and treatment of age-related macular degeneration based on the Nrf2 signaling pathway[D]. Changchun: Jilin University, 2024. DOI: 10.27162/d.cnki.gjlin.2024.007272. Wu GX. The mechanism of daphnetin in prevention and treatment of age-related macular degeneration based on the Nrf2 signaling pathway[D]. Changchun: Jilin University, 2024. DOI: 10.27162/d.cnki.gjlin.2024.007272.
29、吴沛霖, 王璐, 蒋姣姣, 等. 表没食子儿茶素没食子酸酯(EGCG)对碘酸钠诱导的干性年龄相关性黄斑变性模型大鼠视网膜氧化损伤的抑制作用[J]. 眼科新进展, 2024, 44(11): 863-867. DOI: 10.13389/j.cnki.rao.2024.0163.
Wu PL, Wang L, Jiang JJ, et al. The inhibitory effect of epigallocatechin gallate (EGCG) on retinal oxidative damage in rat models of dry age-related macular degeneration induced by sodium iodate [J]. Rec Adv Ophthalmol, 2024, 44(11): 863-867. DOI: 10.13389/j.cnki.rao.2024.0163.Wu PL, Wang L, Jiang JJ, et al. The inhibitory effect of epigallocatechin gallate (EGCG) on retinal oxidative damage in rat models of dry age-related macular degeneration induced by sodium iodate [J]. Rec Adv Ophthalmol, 2024, 44(11): 863-867. DOI: 10.13389/j.cnki.rao.2024.0163.
30、Muraleva NA, Kolosova NG. P38 MAPK signaling in the retina: effects of aging and age-related macular degeneration[J]. Int J Mol Sci, 2023, 24(14): 11586. DOI: 10.3390/ijms241411586.Muraleva NA, Kolosova NG. P38 MAPK signaling in the retina: effects of aging and age-related macular degeneration[J]. Int J Mol Sci, 2023, 24(14): 11586. DOI: 10.3390/ijms241411586.
31、Erdinest N, London N, Ovadia H, et al. Nitric oxide interaction with the eye[J]. Vision (Basel), 2021, 5(2): 29. DOI: 10.3390/vision5020029. Erdinest N, London N, Ovadia H, et al. Nitric oxide interaction with the eye[J]. Vision (Basel), 2021, 5(2): 29. DOI: 10.3390/vision5020029.
32、Bhutto IA, Baba T, Merges C, et al. Low nitric oxide synthases (NOSs) in eyes with age-related macular degeneration (AMD)[J]. Exp Eye Res, 2010, 90(1): 155-167. DOI: 10.1016/j.exer.2009.10.004. Bhutto IA, Baba T, Merges C, et al. Low nitric oxide synthases (NOSs) in eyes with age-related macular degeneration (AMD)[J]. Exp Eye Res, 2010, 90(1): 155-167. DOI: 10.1016/j.exer.2009.10.004.
33、Totan%20Y%2C%20Koca%20C%2C%20Erdurmu%C5%9F%20M%2C%20et%20al.%20Endothelin-1%20and%20nitric%20oxide%20levels%20in%20exudative%20age-related%20macular%20degeneration%5BJ%5D.%20J%20Ophthalmic%20Vis%20Res%2C%202015%2C%2010(2)%3A%20151-154.%20DOI%3A%2010.4103%2F2008-322X.163765.%20Totan%20Y%2C%20Koca%20C%2C%20Erdurmu%C5%9F%20M%2C%20et%20al.%20Endothelin-1%20and%20nitric%20oxide%20levels%20in%20exudative%20age-related%20macular%20degeneration%5BJ%5D.%20J%20Ophthalmic%20Vis%20Res%2C%202015%2C%2010(2)%3A%20151-154.%20DOI%3A%2010.4103%2F2008-322X.163765.%20
34、Finzi A, Ottoboni S, Cellini M, et al. Color Doppler imaging, endothelin-1, corneal biomechanics and scleral rigidity in asymmetric age-related macular degeneration[J]. Clin Ophthalmol, 2024, 18: 2583-2591. DOI: 10.2147/OPTH.S479225.Finzi A, Ottoboni S, Cellini M, et al. Color Doppler imaging, endothelin-1, corneal biomechanics and scleral rigidity in asymmetric age-related macular degeneration[J]. Clin Ophthalmol, 2024, 18: 2583-2591. DOI: 10.2147/OPTH.S479225.
35、Alrashdi SF, Deliyanti D, Talia DM, et al. Endothelin-2 injures the blood–retinal barrier and macroglial Müller cells interactions with angiotensin II, aldosterone, and NADPH oxidase[J]. Am J Pathol, 2018, 188(3): 805-817. DOI: 10.1016/j.ajpath.2017.11.009.Alrashdi SF, Deliyanti D, Talia DM, et al. Endothelin-2 injures the blood–retinal barrier and macroglial Müller cells interactions with angiotensin II, aldosterone, and NADPH oxidase[J]. Am J Pathol, 2018, 188(3): 805-817. DOI: 10.1016/j.ajpath.2017.11.009.
36、McHarg S, Clark SJ, Day AJ, et al. Age-related macular degeneration and the role of the complement system[J]. Mol Immunol, 2015, 67(1): 43-50. DOI: 10.1016/j.molimm.2015.02.032. McHarg S, Clark SJ, Day AJ, et al. Age-related macular degeneration and the role of the complement system[J]. Mol Immunol, 2015, 67(1): 43-50. DOI: 10.1016/j.molimm.2015.02.032.
37、Heloter%C3%A4%20H%2C%20Kaarniranta%20K.%20A%20linkage%20between%20angiogenesis%20and%20inflammation%20in%20neovascular%20age-related%20macular%20degeneration%5BJ%5D.%20Cells%2C%202022%2C%2011(21)%3A%203453.%20DOI%3A%2010.3390%2Fcells11213453.%20Heloter%C3%A4%20H%2C%20Kaarniranta%20K.%20A%20linkage%20between%20angiogenesis%20and%20inflammation%20in%20neovascular%20age-related%20macular%20degeneration%5BJ%5D.%20Cells%2C%202022%2C%2011(21)%3A%203453.%20DOI%3A%2010.3390%2Fcells11213453.%20
38、Armento A, Ueffing M, Clark SJ. The complement system in age-related macular degeneration[J]. Cell Mol Life Sci, 2021, 78(10): 4487-4505. DOI: 10.1007/s00018-021-03796-9.Armento A, Ueffing M, Clark SJ. The complement system in age-related macular degeneration[J]. Cell Mol Life Sci, 2021, 78(10): 4487-4505. DOI: 10.1007/s00018-021-03796-9.
39、Kaarniranta K, Uusitalo H, Blasiak J, et al. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration[J]. Prog Retin Eye Res, 2020, 79: 100858. DOI: 10.1016/j.preteyeres.2020.100858. Kaarniranta K, Uusitalo H, Blasiak J, et al. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration[J]. Prog Retin Eye Res, 2020, 79: 100858. DOI: 10.1016/j.preteyeres.2020.100858.
40、Hu RY, Qi SM, Wang YJ, et al. Ginsenoside Rg3 improved age-related macular degeneration through inhibiting ROS-mediated mitochondrion-dependent apoptosis in vivo and in vitro[J]. Int J Mol Sci, 2024, 25(21): 11414. DOI: 10.3390/ijms252111414. Hu RY, Qi SM, Wang YJ, et al. Ginsenoside Rg3 improved age-related macular degeneration through inhibiting ROS-mediated mitochondrion-dependent apoptosis in vivo and in vitro[J]. Int J Mol Sci, 2024, 25(21): 11414. DOI: 10.3390/ijms252111414.
41、Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration[J]. Aging Dis, 2021, 12(2): 529-551. DOI: 10.14336/AD.2020.0912. Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration[J]. Aging Dis, 2021, 12(2): 529-551. DOI: 10.14336/AD.2020.0912.
42、Wei TT, Zhang MY, Zheng XH, et al. Interferon-γ induces retinal pigment epithelial cell Ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in Age-related Macular Degeneration[J]. FEBS J, 2022, 289(7): 1968-1983. DOI: 10.1111/febs.16272. Wei TT, Zhang MY, Zheng XH, et al. Interferon-γ induces retinal pigment epithelial cell Ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in Age-related Macular Degeneration[J]. FEBS J, 2022, 289(7): 1968-1983. DOI: 10.1111/febs.16272.
43、Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression[J]. Free Radic Biol Med, 2002, 33(3): 337-349. DOI: 10.1016/s0891-5849(02)00905-x. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression[J]. Free Radic Biol Med, 2002, 33(3): 337-349. DOI: 10.1016/s0891-5849(02)00905-x.
44、Hanus J, Anderson C, Wang S. RPE necroptosis in response to oxidative stress and in AMD[J]. Ageing Res Rev, 2015, 24(Pt B): 286-298. DOI: 10.1016/j.arr.2015.09.002. Hanus J, Anderson C, Wang S. RPE necroptosis in response to oxidative stress and in AMD[J]. Ageing Res Rev, 2015, 24(Pt B): 286-298. DOI: 10.1016/j.arr.2015.09.002.
45、Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733. DOI: 10.1016/j.bbamcr.2018.02.010. Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733. DOI: 10.1016/j.bbamcr.2018.02.010.
46、El Omari N, Bakrim S, Khalid A, et al. Unveiling the molecular mechanisms: dietary phytosterols as guardians against cardiovascular diseases[J]. Nat Prod Bioprospect, 2024, 14(1): 27. DOI: 10.1007/s13659-024-00451-1. El Omari N, Bakrim S, Khalid A, et al. Unveiling the molecular mechanisms: dietary phytosterols as guardians against cardiovascular diseases[J]. Nat Prod Bioprospect, 2024, 14(1): 27. DOI: 10.1007/s13659-024-00451-1.
47、Song W, Zhang T, Yang N, et al. Inhibition of micro RNA miR-122-5p prevents lipopolysaccharide-induced myocardial injury by inhibiting oxidative stress, inflammation and apoptosis via targeting GIT1[J]. Bioengineered, 2021, 12(1): 1902-1915. DOI: 10.1080/21655979.2021.1926201.Song W, Zhang T, Yang N, et al. Inhibition of micro RNA miR-122-5p prevents lipopolysaccharide-induced myocardial injury by inhibiting oxidative stress, inflammation and apoptosis via targeting GIT1[J]. Bioengineered, 2021, 12(1): 1902-1915. DOI: 10.1080/21655979.2021.1926201.
48、李琛. 过氧化氢酶在疾病防治中的研究进展[J]. 内蒙古医学杂志, 2016, 48(11): 1321-1323. DOI: 10.16096/J.cnki.nmgyxzz.2016.48.11.015.
Li C. Recent advances of catalase and effect of catalase on diseases[J]. Inn Mong Med J, 2016, 48(11): 1321-1323. DOI: 10.16096/J.cnki.nmgyxzz.2016.48.11.015. Li C. Recent advances of catalase and effect of catalase on diseases[J]. Inn Mong Med J, 2016, 48(11): 1321-1323. DOI: 10.16096/J.cnki.nmgyxzz.2016.48.11.015.
49、Pei J, Pan X, Wei G, et al. Research progress of glutathione peroxidase family (GPX) in redoxidation[J]. Front Pharmacol, 2023, 14: 1147414. DOI: 10.3389/fphar.2023.1147414.Pei J, Pan X, Wei G, et al. Research progress of glutathione peroxidase family (GPX) in redoxidation[J]. Front Pharmacol, 2023, 14: 1147414. DOI: 10.3389/fphar.2023.1147414.
50、王咏梅. 自由基与谷胱甘肽过氧化物酶[J]. 解放军药学学报, 2005, 21(5): 369-371. DOI: 10.3969/j.issn.1008-9926.2005.05.017.
Wang YM. Free radicals and glutathione peroxidase[J]. Pharm J Chin People’s Liberation Army, 2005, 21(5): 369-371. DOI: 10.3969/j.issn.1008-9926.2005.05.017. Wang YM. Free radicals and glutathione peroxidase[J]. Pharm J Chin People’s Liberation Army, 2005, 21(5): 369-371. DOI: 10.3969/j.issn.1008-9926.2005.05.017.
51、Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease[J]. Free Radic Biol Med, 2022, 188: 146-161. DOI: 10.1016/j.freeradbiomed.2022.06.004. Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease[J]. Free Radic Biol Med, 2022, 188: 146-161. DOI: 10.1016/j.freeradbiomed.2022.06.004.
52、Hu J, Zhou GW, Wang N, et al. GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis[J]. Breast Cancer Res Treat, 2010, 124(2): 425-431. DOI: 10.1007/s10549-010-0841-z. Hu J, Zhou GW, Wang N, et al. GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis[J]. Breast Cancer Res Treat, 2010, 124(2): 425-431. DOI: 10.1007/s10549-010-0841-z.
53、Wang C, Zhang R, Chen N, et al. Association between glutathione peroxidase-1 (GPX1) Rs1050450 polymorphisms and cancer risk[J]. Int J Clin Exp Pathol, 2017, 10(9): 9527-9540. Wang C, Zhang R, Chen N, et al. Association between glutathione peroxidase-1 (GPX1) Rs1050450 polymorphisms and cancer risk[J]. Int J Clin Exp Pathol, 2017, 10(9): 9527-9540.
54、Takata Y, King IB, Lampe JW, et al. Genetic variation in GPX1 is associated with GPX1 activity in a comprehensive analysis of genetic variations in selenoenzyme genes and their activity and oxidative stress in humans[J]. J Nutr, 2012, 142(3): 419-426. DOI: 10.3945/jn.111.151845. Takata Y, King IB, Lampe JW, et al. Genetic variation in GPX1 is associated with GPX1 activity in a comprehensive analysis of genetic variations in selenoenzyme genes and their activity and oxidative stress in humans[J]. J Nutr, 2012, 142(3): 419-426. DOI: 10.3945/jn.111.151845.
55、Kubicka-Trz%C4%85ska%20A%2C%20%C5%BBuber-%C5%81askawiec%20K%2C%20Dziedzina%20S%2C%20et%20al.%20Genetic%20variants%20of%20complement%20factor%20H%20Y402H%20(rs1061170)%2C%20C2%20R102G%20(rs2230199)%2C%20and%20C3%20E318D%20(rs9332739)%20and%20response%20to%20intravitreal%20Anti-VEGF%20treatment%20in%20patients%20with%20exudative%20age-related%20macular%20degeneration%5BJ%5D.%20Medicina%20(Kaunas)%2C%202022%2C%2058(5)%3A%20658.%20DOI%3A%2010.3390%2Fmedicina58050658.%20Kubicka-Trz%C4%85ska%20A%2C%20%C5%BBuber-%C5%81askawiec%20K%2C%20Dziedzina%20S%2C%20et%20al.%20Genetic%20variants%20of%20complement%20factor%20H%20Y402H%20(rs1061170)%2C%20C2%20R102G%20(rs2230199)%2C%20and%20C3%20E318D%20(rs9332739)%20and%20response%20to%20intravitreal%20Anti-VEGF%20treatment%20in%20patients%20with%20exudative%20age-related%20macular%20degeneration%5BJ%5D.%20Medicina%20(Kaunas)%2C%202022%2C%2058(5)%3A%20658.%20DOI%3A%2010.3390%2Fmedicina58050658.%20
56、Urban%20A%2C%20Kowalska%20D%2C%20Stasi%C5%82oj%C4%87%20G%2C%20et%20al.%20Gain-of-function%20mutations%20R249C%20and%20S250C%20in%20complement%20C2%20protein%20increase%20C3%20deposition%20in%20the%20presence%20of%20C-reactive%20protein%5BJ%5D.%20Front%20Immunol%2C%202021%2C%2012%3A%20724361.%20DOI%3A%2010.3389%2Ffimmu.2021.724361.%20Urban%20A%2C%20Kowalska%20D%2C%20Stasi%C5%82oj%C4%87%20G%2C%20et%20al.%20Gain-of-function%20mutations%20R249C%20and%20S250C%20in%20complement%20C2%20protein%20increase%20C3%20deposition%20in%20the%20presence%20of%20C-reactive%20protein%5BJ%5D.%20Front%20Immunol%2C%202021%2C%2012%3A%20724361.%20DOI%3A%2010.3389%2Ffimmu.2021.724361.%20
57、翟瑞燕, 王长法, 仲跻峰, 等. 补体C3基因多态性与相关疾病研究进展[J]. 家畜生态学报, 2010, 31(6): 92-96. DOI: 10.3969/j.issn.1673-1182.2010.06.022.
Zhai RY, Wang CF, Zhong JF, et al. Research progress of complement component 3(C3) gene polymorphism with related diseases[J]. Acta Ecol Animalis Domastici, 2010, 31(6): 92-96. DOI: 10.3969/j.issn.1673-1182.2010.06.022. Zhai RY, Wang CF, Zhong JF, et al. Research progress of complement component 3(C3) gene polymorphism with related diseases[J]. Acta Ecol Animalis Domastici, 2010, 31(6): 92-96. DOI: 10.3969/j.issn.1673-1182.2010.06.022.
58、Havvas I, Marioli DI, Deli A, et al. Complement C3, C2, and factor B gene polymorphisms and age-related macular degeneration in a Greek cohort study[J]. Eur J Ophthalmol, 2014, 24(5): 751-760. DOI: 10.5301/ejo.5000427. Havvas I, Marioli DI, Deli A, et al. Complement C3, C2, and factor B gene polymorphisms and age-related macular degeneration in a Greek cohort study[J]. Eur J Ophthalmol, 2014, 24(5): 751-760. DOI: 10.5301/ejo.5000427.
59、Khan AH, Pierce CO, De Salvo G, et al. The effect of systemic levels of TNF-alpha and complement pathway activity on outcomes of VEGF inhibition in neovascular AMD[J]. Eye (Lond), 2022, 36(11): 2192-2199. DOI: 10.1038/s41433-021-01824-3. Khan AH, Pierce CO, De Salvo G, et al. The effect of systemic levels of TNF-alpha and complement pathway activity on outcomes of VEGF inhibition in neovascular AMD[J]. Eye (Lond), 2022, 36(11): 2192-2199. DOI: 10.1038/s41433-021-01824-3.
60、Simon PS, Sharman SK, Lu C, et al. The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription[J]. BMC Cancer, 2015, 15: 770. DOI: 10.1186/s12885-015-1808-6. Simon PS, Sharman SK, Lu C, et al. The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription[J]. BMC Cancer, 2015, 15: 770. DOI: 10.1186/s12885-015-1808-6.
61、F%C3%B6rstermann%20U%2C%20Sessa%20WC.%20Nitric%20oxide%20synthases%3A%20regulation%20and%20function%5BJ%5D.%20Eur%20Heart%20J%2C%202012%2C%2033(7)%3A%20829-837%2C%20%20%20837a-837d.%20DOI%3A%2010.1093%2Feurheartj%2Fehr304.%20F%C3%B6rstermann%20U%2C%20Sessa%20WC.%20Nitric%20oxide%20synthases%3A%20regulation%20and%20function%5BJ%5D.%20Eur%20Heart%20J%2C%202012%2C%2033(7)%3A%20829-837%2C%20%20%20837a-837d.%20DOI%3A%2010.1093%2Feurheartj%2Fehr304.%20
62、Droho S, Cuda CM, Perlman H, et al. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis[J]. Sci Rep, 2021, 11(1): 18084. DOI: 10.1038/s41598-021-97522-x. Droho S, Cuda CM, Perlman H, et al. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis[J]. Sci Rep, 2021, 11(1): 18084. DOI: 10.1038/s41598-021-97522-x.
63、党美佳, 张小用, 李静. 细胞因子在新生血管性年龄相关性黄斑变性中的作用研究进展[J]. 陕西医学杂志, 2022, 51(9): 1174-1177.
Dang MJ, Zhang XY, Li J. Research progress on role of cytokines in neovascular age-related macular degeneration[J]. Shaanxi Med J, 2022, 51(9): 1174-1177. Dang MJ, Zhang XY, Li J. Research progress on role of cytokines in neovascular age-related macular degeneration[J]. Shaanxi Med J, 2022, 51(9): 1174-1177.
64、Bryan BA, Walshe TE, Mitchell DC, et al. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation[J]. Mol Biol Cell, 2008, 19(3): 994-1006. DOI: 10.1091/mbc.e07-09-0856. Bryan BA, Walshe TE, Mitchell DC, et al. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation[J]. Mol Biol Cell, 2008, 19(3): 994-1006. DOI: 10.1091/mbc.e07-09-0856.
65、Kurihara T, Westenskow PD, Friedlander M. Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina[J]. Adv Exp Med Biol, 2014, 801: 275-281. DOI: 10.1007/978-1-4614-3209-8_35. Kurihara T, Westenskow PD, Friedlander M. Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina[J]. Adv Exp Med Biol, 2014, 801: 275-281. DOI: 10.1007/978-1-4614-3209-8_35.
66、Koukourakis MI, Papazoglou D, Giatromanolaki A, et al. VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer[J]. Lung Cancer, 2004, 46(3): 293-298. DOI: 10.1016/j.lungcan.2004.04.037. Koukourakis MI, Papazoglou D, Giatromanolaki A, et al. VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer[J]. Lung Cancer, 2004, 46(3): 293-298. DOI: 10.1016/j.lungcan.2004.04.037.
67、Stevens A, Soden J, Brenchley PE, et al. Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter[J]. Cancer Res, 2003, 63(4): 812-816.Stevens A, Soden J, Brenchley PE, et al. Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter[J]. Cancer Res, 2003, 63(4): 812-816.
68、Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications[J]. Physiol Rev, 2006, 86(2): 583-650. DOI: 10.1152/physrev.00011.2005. Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications[J]. Physiol Rev, 2006, 86(2): 583-650. DOI: 10.1152/physrev.00011.2005.
69、Cui Y, Wu C, Li L, et al. Toward nanotechnology-enabled application of bilirubin in the treatment and diagnosis of various civilization diseases[J]. Mater Today Bio, 2023, 20: 100658. DOI: 10.1016/j.mtbio.2023.100658. Cui Y, Wu C, Li L, et al. Toward nanotechnology-enabled application of bilirubin in the treatment and diagnosis of various civilization diseases[J]. Mater Today Bio, 2023, 20: 100658. DOI: 10.1016/j.mtbio.2023.100658.
70、Averilla JN, Oh J, Kim JS. Carbon monoxide partially mediates protective effect of resveratrol against UVB-induced oxidative stress in human keratinocytes[J]. Antioxidants (Basel), 2019, 8(10): 432. DOI: 10.3390/antiox8100432. Averilla JN, Oh J, Kim JS. Carbon monoxide partially mediates protective effect of resveratrol against UVB-induced oxidative stress in human keratinocytes[J]. Antioxidants (Basel), 2019, 8(10): 432. DOI: 10.3390/antiox8100432.
71、Matsumoto H, Ishikawa K, Itabe H, et al. Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction[J]. Mol Cell Biochem, 2006, 291(1-2): 21-28. DOI: 10.1007/s11010-006-9190-y. Matsumoto H, Ishikawa K, Itabe H, et al. Carbon monoxide and bilirubin from heme oxygenase-1 suppresses reactive oxygen species generation and plasminogen activator inhibitor-1 induction[J]. Mol Cell Biochem, 2006, 291(1-2): 21-28. DOI: 10.1007/s11010-006-9190-y.
72、Huang X, Dai J, Fournier J, et al. Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells[J]. Free Radic Biol Med, 2002, 32(1): 84-92. DOI: 10.1016/s0891-5849(01)00770-5. Huang X, Dai J, Fournier J, et al. Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells[J]. Free Radic Biol Med, 2002, 32(1): 84-92. DOI: 10.1016/s0891-5849(01)00770-5.
73、Chen M, Zhou L, Ding H, et al. Short (GT) (n) repeats in heme oxygenase-1 gene promoter are associated with lower risk of coronary heart disease in subjects with high levels of oxidative stress[J]. Cell Stress Chaperones, 2012, 17(3): 329-338. DOI: 10.1007/s12192-011-0309-z. Chen M, Zhou L, Ding H, et al. Short (GT) (n) repeats in heme oxygenase-1 gene promoter are associated with lower risk of coronary heart disease in subjects with high levels of oxidative stress[J]. Cell Stress Chaperones, 2012, 17(3): 329-338. DOI: 10.1007/s12192-011-0309-z.
74、Zhang Y, Huang J, Liang Y, et al. Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE[J]. Autophagy, 2023, 19(10): 2668-2681. DOI: 10.1080/15548627.2023.2220540. Zhang Y, Huang J, Liang Y, et al. Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE[J]. Autophagy, 2023, 19(10): 2668-2681. DOI: 10.1080/15548627.2023.2220540.
75、Park C, Cha HJ, Hwangbo H, et al. β-asarone alleviates high-glucose-induced oxidative damage via inhibition of ROS generation and inactivation of the NF-κB/NLRP3 inflammasome pathway in human retinal pigment epithelial cells[J]. Antioxidants (Basel), 2023, 12(7): 1410. DOI: 10.3390/antiox12071410. Park C, Cha HJ, Hwangbo H, et al. β-asarone alleviates high-glucose-induced oxidative damage via inhibition of ROS generation and inactivation of the NF-κB/NLRP3 inflammasome pathway in human retinal pigment epithelial cells[J]. Antioxidants (Basel), 2023, 12(7): 1410. DOI: 10.3390/antiox12071410.
76、Luo S, Xu H, Gong X, et al. The complement C3a-C3aR and C5a-C5aR pathways promote viability and inflammation of human retinal pigment epithelium cells by targeting NF-κB signaling[J]. Exp Ther Med, 2022, 24(2): 493. DOI: 10.3892/etm.2022.11420. Luo S, Xu H, Gong X, et al. The complement C3a-C3aR and C5a-C5aR pathways promote viability and inflammation of human retinal pigment epithelium cells by targeting NF-κB signaling[J]. Exp Ther Med, 2022, 24(2): 493. DOI: 10.3892/etm.2022.11420.
77、Husain MA, Laurent B, Plourde M. APOE and Alzheimer’s disease: from lipid transport to physiopathology and therapeutics[J]. Front Neurosci, 2021, 15: 630502. DOI: 10.3389/fnins.2021.630502. Husain MA, Laurent B, Plourde M. APOE and Alzheimer’s disease: from lipid transport to physiopathology and therapeutics[J]. Front Neurosci, 2021, 15: 630502. DOI: 10.3389/fnins.2021.630502.
78、Rabinovici%20GD%2C%20Dubal%20DB.%20Rare%20APOE%20missense%20variants-can%20we%20overcome%20APOE%20%CE%B54%20and%20Alzheimer%20disease%20risk%3F%5BJ%5D.%20JAMA%20Neurol%2C%202022%2C%2079(7)%3A%20649-651.%20DOI%3A%2010.1001%2Fjamaneurol.2022.0854.%20Rabinovici%20GD%2C%20Dubal%20DB.%20Rare%20APOE%20missense%20variants-can%20we%20overcome%20APOE%20%CE%B54%20and%20Alzheimer%20disease%20risk%3F%5BJ%5D.%20JAMA%20Neurol%2C%202022%2C%2079(7)%3A%20649-651.%20DOI%3A%2010.1001%2Fjamaneurol.2022.0854.%20
79、Zhao N, Liu CC, Van Ingelgom AJ, et al. APOE ε2 is associated with increased tau pathology in primary tauopathy[J]. Nat Commun, 2018, 9(1): 4388. DOI: 10.1038/s41467-018-06783-0. Zhao N, Liu CC, Van Ingelgom AJ, et al. APOE ε2 is associated with increased tau pathology in primary tauopathy[J]. Nat Commun, 2018, 9(1): 4388. DOI: 10.1038/s41467-018-06783-0.
80、Raffeld MR, Biffi A, Battey TWK, et al. APOE ε4 and lipid levels affect risk of recurrent nonlobar intracerebral hemorrhage[J]. Neurology, 2015, 85(4): 349-356. DOI: 10.1212/WNL.0000000000001790. Raffeld MR, Biffi A, Battey TWK, et al. APOE ε4 and lipid levels affect risk of recurrent nonlobar intracerebral hemorrhage[J]. Neurology, 2015, 85(4): 349-356. DOI: 10.1212/WNL.0000000000001790.
81、刘宇轩, 夏清艳. 铁死亡在年龄相关性黄斑变性中的研究近况[J]. 医学信息, 2024, 37(9): 173-178+183. DOI: 10.3969/j.issn.1006-1959.2024.09.036.
Liu YX, Xia QY. Recent research on ferroptosis in age-related macular degeneration[J]. J Med Inf, 2024, 37(9): 173-178+183. DOI: 10.3969/j.issn.1006-1959.2024.09.036. Liu YX, Xia QY. Recent research on ferroptosis in age-related macular degeneration[J]. J Med Inf, 2024, 37(9): 173-178+183. DOI: 10.3969/j.issn.1006-1959.2024.09.036.
82、Stockwell BR, Angeli JPF, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021. Stockwell BR, Angeli JPF, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI: 10.1016/j.cell.2017.09.021.
83、Pan Y, Fu Y, Baird PN, et al. Exploring the contribution of ARMS2 and HTRA1 genetic risk factors in age-related macular degeneration[J]. Prog Retin Eye Res, 2023, 97: 101159. DOI: 10.1016/j.preteyeres.2022.101159. Pan Y, Fu Y, Baird PN, et al. Exploring the contribution of ARMS2 and HTRA1 genetic risk factors in age-related macular degeneration[J]. Prog Retin Eye Res, 2023, 97: 101159. DOI: 10.1016/j.preteyeres.2022.101159.
84、Hu Z, Xie P, Ding Y, et al. Association between variants A69S in ARMS2 gene and response to treatment of exudative AMD: a meta-analysis[J]. Br J Ophthalmol, 2015, 99(5): 593-598. DOI: 10.1136/bjophthalmol-2014-305488. Hu Z, Xie P, Ding Y, et al. Association between variants A69S in ARMS2 gene and response to treatment of exudative AMD: a meta-analysis[J]. Br J Ophthalmol, 2015, 99(5): 593-598. DOI: 10.1136/bjophthalmol-2014-305488.
85、Lu ZG, May A, Dinh B, et al. The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD[J]. Vessel Plus, 2021, 5: 4. DOI: 10.20517/2574-1209.2020.48. Lu ZG, May A, Dinh B, et al. The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD[J]. Vessel Plus, 2021, 5: 4. DOI: 10.20517/2574-1209.2020.48.
86、Muller A, Sullivan J, Schwarzer W, et al. High-efficiency base editing in the retina in Primates and human tissues[J]. Nat Med, 2025, 31(2): 490-501. DOI: 10.1038/s41591-024-03422-8. Muller A, Sullivan J, Schwarzer W, et al. High-efficiency base editing in the retina in Primates and human tissues[J]. Nat Med, 2025, 31(2): 490-501. DOI: 10.1038/s41591-024-03422-8.
87、Otrock ZK, Mahfouz RAR, Makarem JA, et al. Understanding the biology of angiogenesis: review of the most important molecular mechanisms[J]. Blood Cells Mol Dis, 2007, 39(2): 212-220. DOI: 10.1016/j.bcmd.2007.04.001. Otrock ZK, Mahfouz RAR, Makarem JA, et al. Understanding the biology of angiogenesis: review of the most important molecular mechanisms[J]. Blood Cells Mol Dis, 2007, 39(2): 212-220. DOI: 10.1016/j.bcmd.2007.04.001.
88、Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays[J]. Iran J Basic Med Sci, 2012, 15(6): 1110-1126.Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays[J]. Iran J Basic Med Sci, 2012, 15(6): 1110-1126.
89、Yang HJ, Hu R, Sun H, et al. 4-HNE induces proinflammatory cytokines of human retinal pigment epithelial cells by promoting extracellular efflux of HSP70[J]. Exp Eye Res, 2019, 188: 107792. DOI: 10.1016/j.exer.2019.107792.Yang HJ, Hu R, Sun H, et al. 4-HNE induces proinflammatory cytokines of human retinal pigment epithelial cells by promoting extracellular efflux of HSP70[J]. Exp Eye Res, 2019, 188: 107792. DOI: 10.1016/j.exer.2019.107792.
90、陈永昌, 刘小平, 肖浦豪. 腺相关病毒载体及其在基因治疗研究中的应用[J]. 昆明理工大学学报(自然科学版), 2024, 49(3): 188-201. DOI: 10.16112/j.cnki.53-1223/n.2024.03.661.
Chen YC, Liu XP, Xiao PH. Adeno-associated virus vectors and their application in gene therapy research[J]. J Kunming Univ Sci Technol Nat Sci, 2024, 49(3): 188-201. DOI: 10.16112/j.cnki.53-1223/n.2024.03.661. Chen YC, Liu XP, Xiao PH. Adeno-associated virus vectors and their application in gene therapy research[J]. J Kunming Univ Sci Technol Nat Sci, 2024, 49(3): 188-201. DOI: 10.16112/j.cnki.53-1223/n.2024.03.661.
91、Biswal MR, Wang Z, Paulson RJ, et al. Erythropoietin gene therapy delays retinal degeneration resulting from oxidative stress in the retinal pigment epithelium[J]. Antioxidants (Basel), 2021, 10(6): 842. DOI: 10.3390/antiox10060842. Biswal MR, Wang Z, Paulson RJ, et al. Erythropoietin gene therapy delays retinal degeneration resulting from oxidative stress in the retinal pigment epithelium[J]. Antioxidants (Basel), 2021, 10(6): 842. DOI: 10.3390/antiox10060842.
92、Ildefonso CJ, Jaime H, Rahman MM, et al. Gene delivery of a viral anti-inflammatory protein to combat ocular inflammation[J]. Hum Gene Ther, 2015, 26(1): 59-68. DOI: 10.1089/hum.2014.089. Ildefonso CJ, Jaime H, Rahman MM, et al. Gene delivery of a viral anti-inflammatory protein to combat ocular inflammation[J]. Hum Gene Ther, 2015, 26(1): 59-68. DOI: 10.1089/hum.2014.089.
93、Liu D, Liu Z, Liao H, et al. Ferroptosis as a potential therapeutic target for age-related macular degeneration[J]. Drug Discov Today, 2024, 29(4): 103920. DOI: 10.1016/j.drudis.2024.103920.Liu D, Liu Z, Liao H, et al. Ferroptosis as a potential therapeutic target for age-related macular degeneration[J]. Drug Discov Today, 2024, 29(4): 103920. DOI: 10.1016/j.drudis.2024.103920.
94、Tan G, Liu D, Zhu R, et al. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina[J]. Acta Biomater, 2021, 134: 605-620. DOI: 10.1016/j.actbio.2021.07.053. Tan G, Liu D, Zhu R, et al. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina[J]. Acta Biomater, 2021, 134: 605-620. DOI: 10.1016/j.actbio.2021.07.053.
95、Wu Q, Zhu J, Zhang X, et al. The antioxidant effect of tetrahedral framework nucleic acid-based delivery of small activating RNA targeting DJ-1 on retinal oxidative stress injury[J]. Cell Prolif, 2024, 57(8): e13635. DOI: 10.1111/cpr.13635. Wu Q, Zhu J, Zhang X, et al. The antioxidant effect of tetrahedral framework nucleic acid-based delivery of small activating RNA targeting DJ-1 on retinal oxidative stress injury[J]. Cell Prolif, 2024, 57(8): e13635. DOI: 10.1111/cpr.13635.
96、Shakeel L, Khan A, Akilimali A. “Izervay (avacincaptad pegol): paving the way for vision preservation in geographic atrophy”[J]. Ann Med Surg (Lond), 2024, 86(5): 2413-2416. DOI: 10.1097/MS9.0000000000002021. Shakeel L, Khan A, Akilimali A. “Izervay (avacincaptad pegol): paving the way for vision preservation in geographic atrophy”[J]. Ann Med Surg (Lond), 2024, 86(5): 2413-2416. DOI: 10.1097/MS9.0000000000002021.
97、Katschke KJ Jr, Wu P, Ganesan R, et al. Inhibiting alternative pathway complement activation by targeting the factor D exosite[J]. J Biol Chem, 2012, 287(16): 12886-12892. DOI: 10.1074/jbc.M112.345082.
Katschke KJ Jr, Wu P, Ganesan R, et al. Inhibiting alternative pathway complement activation by targeting the factor D exosite[J]. J Biol Chem, 2012, 287(16): 12886-12892. DOI: 10.1074/jbc.M112.345082.