1、Erping L. Natural selection contributes to the myopia epidemic[J]. Natl Sci Rev, 2021, 8(6): 122-129. DOI:10.1093/nsr/nwaa175. Erping L. Natural selection contributes to the myopia epidemic[J]. Natl Sci Rev, 2021, 8(6): 122-129. DOI:10.1093/nsr/nwaa175.
2、 Jonas JB, Ang M, Cho P, et al. IMI prevention of myopia and its progression[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 6. DOI:10.1167/iovs.62.5.6. Jonas JB, Ang M, Cho P, et al. IMI prevention of myopia and its progression[J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 6. DOI:10.1167/iovs.62.5.6.
3、Stone RA, Pardue MT, Iuvone PM, et al. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms[J]. Exp Eye Res, 2013, 114: 35-47. DOI:10.1016/j.exer.2013.01.001. Stone RA, Pardue MT, Iuvone PM, et al. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms[J]. Exp Eye Res, 2013, 114: 35-47. DOI:10.1016/j.exer.2013.01.001.
4、Fagiani F, Di Marino D, Romagnoli A, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases[J]. Sig Transduct Target Ther, 2022, 7: 41. DOI:10.1038/s41392-022-00899-y. Fagiani F, Di Marino D, Romagnoli A, et al. Molecular regulations of circadian rhythm and implications for physiology and diseases[J]. Sig Transduct Target Ther, 2022, 7: 41. DOI:10.1038/s41392-022-00899-y.
5、Jee D, Morgan IG, Kim EC. Inverse relationship between sleep duration and myopia[J]. Acta Ophthalmol, 2016, 94(3): e204-10. DOI:10.1111/aos.12776. Jee D, Morgan IG, Kim EC. Inverse relationship between sleep duration and myopia[J]. Acta Ophthalmol, 2016, 94(3): e204-10. DOI:10.1111/aos.12776.
6、周琦, 祁玉麟, 薛愚愚, 等. 眼的生物钟调控机制研究进展[J]. 国际眼科杂志, 2022, 22(3): 416-419. DOI:10.3980/j.issn.1672-5123.2022.3.13.
Qi Z, YuLin Q, YuYu X, et al. Research progress on the regulation mechanism of the eye' s biological clock[J]. Int Eye Sci, 2022, 22(3): 416-419. DOI:10.3980/j.issn.1672-5123.2022.3.13. Qi Z, YuLin Q, YuYu X, et al. Research progress on the regulation mechanism of the eye' s biological clock[J]. Int Eye Sci, 2022, 22(3): 416-419. DOI:10.3980/j.issn.1672-5123.2022.3.13.
7、Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci U S A, 2018, 115(30): E7091-E7100. DOI:10.1073/pnas.1721443115. Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. Proc Natl Acad Sci U S A, 2018, 115(30): E7091-E7100. DOI:10.1073/pnas.1721443115.
8、Wirz-Justice A, Skene DJ, Münch M. The relevance of daylight for humans[J]. Biochem Pharmacol, 2021, 191: 114304. DOI:10.1016/j.bcp.2020.114304. Wirz-Justice A, Skene DJ, Münch M. The relevance of daylight for humans[J]. Biochem Pharmacol, 2021, 191: 114304. DOI:10.1016/j.bcp.2020.114304.
9、Lauber JK, SHUTZE JV MCGINNIS J. Effects of exposure to continuous light on the eye of the growing chick[J]. Proc Soc Exp Biol Med, 1961, 106: 871-872. DOI:10.3181/00379727-106-26505. Lauber JK, SHUTZE JV MCGINNIS J. Effects of exposure to continuous light on the eye of the growing chick[J]. Proc Soc Exp Biol Med, 1961, 106: 871-872. DOI:10.3181/00379727-106-26505.
10、 Lauber JK, McGinnis J. Eye lesions in domestic fowl reared under continuous light[J]. Vision Res, 1966, 6(12): 619-626. DOI:10.1016/0042-6989(66)90073-3. Lauber JK, McGinnis J. Eye lesions in domestic fowl reared under continuous light[J]. Vision Res, 1966, 6(12): 619-626. DOI:10.1016/0042-6989(66)90073-3.
11、Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes[J]. Exp Eye Res, 1998, 66(2): 163-181. DOI:10.1006/exer.1997.0420. Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes[J]. Exp Eye Res, 1998, 66(2): 163-181. DOI:10.1006/exer.1997.0420.
12、Zhou X, An J, Wu X, et al. Relative axial myopia induced by prolonged light exposure in C57BL/6 mice[J]. Photochem & Photobiology, 2010, 86(1): 131-137. DOI:10.1111/j.1751-1097.2009.00637.x. Zhou X, An J, Wu X, et al. Relative axial myopia induced by prolonged light exposure in C57BL/6 mice[J]. Photochem & Photobiology, 2010, 86(1): 131-137. DOI:10.1111/j.1751-1097.2009.00637.x.
13、赵颖熙. 光照强度对豚鼠屈光发育的影响及视网膜多巴胺变化研究[D]. 上海: 复旦大学, 2011.
Zhao YX. The research of the influence of light intensity on the refractive development and the retinal levels of dopamine in guinea pigs[D]. Shanghai: Fudan University, 2011. Zhao YX. The research of the influence of light intensity on the refractive development and the retinal levels of dopamine in guinea pigs[D]. Shanghai: Fudan University, 2011.
14、Gong Y, Zhang X, Tian D, et al. Parental myopia, near work, hours of sleep and myopia in Chinese children[J]. Health, 2014, 6(1): 64-70. DOI:10.4236/health.2014.61010. Gong Y, Zhang X, Tian D, et al. Parental myopia, near work, hours of sleep and myopia in Chinese children[J]. Health, 2014, 6(1): 64-70. DOI:10.4236/health.2014.61010.
15、许韶君, 万宇辉, 徐增辉, 等. 体育锻炼、睡眠和家庭作业时间与中小学生疑似近视的关系[J]. 中华流行病学杂志, 2016, 37(2): 183-186. DOI:10.3760/cma.j.issn.0254-6450.2016.02.006.
Xu SJ, Wan YH, Xu ZH, et al. Association between time spent on physical exercise, sleep, homework and suspected myopia among students[J]. Chin J Epidemiol, 2016, 37(2): 183-186. DOI:10.3760/cma.j.issn.0254-6450.2016.02.006.Xu SJ, Wan YH, Xu ZH, et al. Association between time spent on physical exercise, sleep, homework and suspected myopia among students[J]. Chin J Epidemiol, 2016, 37(2): 183-186. DOI:10.3760/cma.j.issn.0254-6450.2016.02.006.
16、Ostrin LA, Jnawali A, Carkeet A, et al. Twenty-four hour ocular and systemic diurnal rhythms in children[J]. Ophthalmic Physiologic Optic, 2019, 39(5): 358-369. DOI:10.1111/opo.12633.Ostrin LA, Jnawali A, Carkeet A, et al. Twenty-four hour ocular and systemic diurnal rhythms in children[J]. Ophthalmic Physiologic Optic, 2019, 39(5): 358-369. DOI:10.1111/opo.12633.
17、Rayapoullé A, Gronfier C, Forhan A, et al. Longitudinal association between sleep features and refractive errors in preschoolers from the EDEN birth-cohort[J]. Sci Rep, 2021, 11: 9044. DOI:10.1038/s41598-021-88756-w. Rayapoullé A, Gronfier C, Forhan A, et al. Longitudinal association between sleep features and refractive errors in preschoolers from the EDEN birth-cohort[J]. Sci Rep, 2021, 11: 9044. DOI:10.1038/s41598-021-88756-w.
18、Zhou X, Pardue MT, Iuvone PM, et al. Dopamine signaling and myopia development: What are the key challenges[J]. Prog Retin Eye Res, 2017, 61: 60-71. DOI:10.1016/j.preteyeres.2017.06.003.Zhou X, Pardue MT, Iuvone PM, et al. Dopamine signaling and myopia development: What are the key challenges[J]. Prog Retin Eye Res, 2017, 61: 60-71. DOI:10.1016/j.preteyeres.2017.06.003.
19、Verwey M, Dhir S, Amir S. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease[J]. F1000Res, 2016, 5: F1000FacultyRev-F1000Facult2062. DOI:10.12688/f1000research.9180.1. Verwey M, Dhir S, Amir S. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease[J]. F1000Res, 2016, 5: F1000FacultyRev-F1000Facult2062. DOI:10.12688/f1000research.9180.1.
20、Landis EG, Chrenek MA, Chakraborty R, et al. Increased endogenous dopamine prevents myopia in mice[J]. Exp Eye Res, 2020, 193: 107956. DOI:10.1016/j.exer.2020.107956. Landis EG, Chrenek MA, Chakraborty R, et al. Increased endogenous dopamine prevents myopia in mice[J]. Exp Eye Res, 2020, 193: 107956. DOI:10.1016/j.exer.2020.107956.
21、Zhang S, Yang J, Reinach PS, et al. Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4441-4448. DOI:10.1167/iovs.17-21574. Zhang S, Yang J, Reinach PS, et al. Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4441-4448. DOI:10.1167/iovs.17-21574.
22、Zhang J, Deng G. Protective effects of increased outdoor time against myopia: a review[J]. J Int Med Res, 2020, 48(3): 0300060519893866. DOI:10.1177/0300060519893866. Zhang J, Deng G. Protective effects of increased outdoor time against myopia: a review[J]. J Int Med Res, 2020, 48(3): 0300060519893866. DOI:10.1177/0300060519893866.
23、Yang J, Pahng J, Wang GY. Dopamine modulates the off pathway in light-adapted mouse retina[J]. J Neurosci Res, 2013, 91(1): 138-150. DOI:10.1002/jnr.23137. Yang J, Pahng J, Wang GY. Dopamine modulates the off pathway in light-adapted mouse retina[J]. J Neurosci Res, 2013, 91(1): 138-150. DOI:10.1002/jnr.23137.
24、Herrmann R, Heflin SJ, Hammond T, et al. Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA[J]. Neuron, 2011, 72(1): 101-110. DOI:10.1016/j.neuron.2011.07.030.Herrmann R, Heflin SJ, Hammond T, et al. Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA[J]. Neuron, 2011, 72(1): 101-110. DOI:10.1016/j.neuron.2011.07.030.
25、Bu JY, Li H, Gong HQ, et al. Gap junction permeability modulated by dopamine exerts effects on spatial and temporal correlation of retinal ganglion cells’ firing activities[J]. J Comput Neurosci, 2014, 36(1): 67-79. DOI:10.1007/s10827-013-0469-1.Bu JY, Li H, Gong HQ, et al. Gap junction permeability modulated by dopamine exerts effects on spatial and temporal correlation of retinal ganglion cells’ firing activities[J]. J Comput Neurosci, 2014, 36(1): 67-79. DOI:10.1007/s10827-013-0469-1.
26、Li HH, Sun YL, Cui DM, et al. Effect of dopamine on bone morphogenesis protein-2 expression in human retinal pigment epithelium[J]. Int J Ophthalmol, 2017, 10(9): 1370-1373. DOI:10.18240/ijo.2017.09.06. Li HH, Sun YL, Cui DM, et al. Effect of dopamine on bone morphogenesis protein-2 expression in human retinal pigment epithelium[J]. Int J Ophthalmol, 2017, 10(9): 1370-1373. DOI:10.18240/ijo.2017.09.06.
27、Banerjee S, Wang Q, So CH, et al. Defocused images change multineuronal firing patterns in the mouse retina[J]. Cells, 2020, 9(3): 530. DOI:10.3390/cells9030530. Banerjee S, Wang Q, So CH, et al. Defocused images change multineuronal firing patterns in the mouse retina[J]. Cells, 2020, 9(3): 530. DOI:10.3390/cells9030530.
28、Vuong HE, Hardi CN, Barnes S, et al. Parallel inhibition of dopamine amacrine cells and intrinsically photosensitive retinal ganglion cells in a non-image-forming visual circuit of the mouse retina[J]. J Neurosci, 2015, 35(48): 15955-15970. DOI:10.1523/JNEUROSCI.3382-15.2015. Vuong HE, Hardi CN, Barnes S, et al. Parallel inhibition of dopamine amacrine cells and intrinsically photosensitive retinal ganglion cells in a non-image-forming visual circuit of the mouse retina[J]. J Neurosci, 2015, 35(48): 15955-15970. DOI:10.1523/JNEUROSCI.3382-15.2015.
29、Ko GY. Circadian regulation in the retina: From molecules to network[J]. Eur J Neuroscience, 2020, 51(1): 194-216. DOI:10.1111/ejn.14185. Ko GY. Circadian regulation in the retina: From molecules to network[J]. Eur J Neuroscience, 2020, 51(1): 194-216. DOI:10.1111/ejn.14185.
30、Miller S, Hirota T. Pharmacological interventions to circadian clocks and their molecular bases[J]. J Mol Biol, 2020, 432(12): 3498-3514. DOI:10.1016/j.jmb.2020.01.003. Miller S, Hirota T. Pharmacological interventions to circadian clocks and their molecular bases[J]. J Mol Biol, 2020, 432(12): 3498-3514. DOI:10.1016/j.jmb.2020.01.003.
31、Betts CA, Jagannath A, LE van Westering T, et al. Dystrophin involvement in peripheral circadian SRF signalling[J]. Life Sci Alliance, 2021, 4(10): e202101014. DOI:10.26508/lsa.202101014. Betts CA, Jagannath A, LE van Westering T, et al. Dystrophin involvement in peripheral circadian SRF signalling[J]. Life Sci Alliance, 2021, 4(10): e202101014. DOI:10.26508/lsa.202101014.
32、Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease[J]. Nat Rev Neurosci, 2003, 4(8): 649-661. DOI:10.1038/nrn1177. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease[J]. Nat Rev Neurosci, 2003, 4(8): 649-661. DOI:10.1038/nrn1177.
33、DeVera%20C%2C%20Baba%20K%2C%20Tosini%20G.%20Retinal%20Circadian%20Clocks%20are%20Major%20Players%20in%20the%20Modulation%20of%20Retinal%20Functions%20and%20Photoreceptor%20Viability.%20Yale%20J%20Biol%20Med.%202019%2C%2092(2)%3A%20233-240.PMID%3A%C2%A031249484.DeVera%20C%2C%20Baba%20K%2C%20Tosini%20G.%20Retinal%20Circadian%20Clocks%20are%20Major%20Players%20in%20the%20Modulation%20of%20Retinal%20Functions%20and%20Photoreceptor%20Viability.%20Yale%20J%20Biol%20Med.%202019%2C%2092(2)%3A%20233-240.PMID%3A%C2%A031249484.
34、Stone RA, McGlinn AM, Chakraborty R, et al. Altered ocular parameters from circadian clock gene disruptions[J]. PLoS One, 2019, 14(6): e0217111. DOI:10.1371/journal.pone.0217111. Stone RA, McGlinn AM, Chakraborty R, et al. Altered ocular parameters from circadian clock gene disruptions[J]. PLoS One, 2019, 14(6): e0217111. DOI:10.1371/journal.pone.0217111.
35、Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology[J]. Mol Vis, 2016, 22: 61-72.Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology[J]. Mol Vis, 2016, 22: 61-72.
36、Rada JAS, Wiechmann AF. Melatonin receptors in chick ocular tissues: implications for a role of melatonin in ocular growth regulation[J]. Invest Ophthalmol Vis Sci, 2006, 47(1): 25-33. DOI:10.1167/iovs.05-0195. Rada JAS, Wiechmann AF. Melatonin receptors in chick ocular tissues: implications for a role of melatonin in ocular growth regulation[J]. Invest Ophthalmol Vis Sci, 2006, 47(1): 25-33. DOI:10.1167/iovs.05-0195.
37、Liu AL, Liu YF, Wang G, et al. The role of ipRGCs in ocular growth and myopia development[J]. Sci Adv, 2022, 8(23): eabm9027. DOI:10.1126/sciadv.abm9027. Liu AL, Liu YF, Wang G, et al. The role of ipRGCs in ocular growth and myopia development[J]. Sci Adv, 2022, 8(23): eabm9027. DOI:10.1126/sciadv.abm9027.
38、Panda S, Nayak SK, Campo B, et al. Illumination of the melanopsin signaling pathway[J]. Science, 2005, 307(5709): 600-604. DOI:10.1126/science.1105121. Panda S, Nayak SK, Campo B, et al. Illumination of the melanopsin signaling pathway[J]. Science, 2005, 307(5709): 600-604. DOI:10.1126/science.1105121.
39、Kofuji P, Mure LS, Massman LJ, et al. Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks[J]. PLoS One, 2016, 11(12): e0168651. DOI:10.1371/journal.pone.0168651. Kofuji P, Mure LS, Massman LJ, et al. Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks[J]. PLoS One, 2016, 11(12): e0168651. DOI:10.1371/journal.pone.0168651.
40、Chakraborty R, Landis EG, Mazade R, et al. Melanopsin modulates refractive development and myopia[J]. Exp Eye Res, 2022, 214: 108866. DOI:10.1016/j.exer.2021.108866. Chakraborty R, Landis EG, Mazade R, et al. Melanopsin modulates refractive development and myopia[J]. Exp Eye Res, 2022, 214: 108866. DOI:10.1016/j.exer.2021.108866.
41、Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI:10.1016/j.preteyeres.2009.12.002. Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI:10.1016/j.preteyeres.2009.12.002.
42、Zhang S, Zhang G, Zhou X, et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074. DOI:10.1167/iovs.18-26397. Zhang S, Zhang G, Zhou X, et al. Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074. DOI:10.1167/iovs.18-26397.
43、Chakraborty R, Ostrin LA, Nickla DL, et al. Circadian rhythms, refractive development, and myopia[J]. Ophthalmic Physiol Opt, 2018, 38(3): 217-245. DOI:10.1111/opo.12453. Chakraborty R, Ostrin LA, Nickla DL, et al. Circadian rhythms, refractive development, and myopia[J]. Ophthalmic Physiol Opt, 2018, 38(3): 217-245. DOI:10.1111/opo.12453.
44、Nickla DL, Schroedl F. Effects of autonomic denervations on the rhythms in axial length and choroidal thickness in chicks[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2019, 205(1): 139-149. DOI:10.1007/s00359-018-01310-4. Nickla DL, Schroedl F. Effects of autonomic denervations on the rhythms in axial length and choroidal thickness in chicks[J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2019, 205(1): 139-149. DOI:10.1007/s00359-018-01310-4.