Abstract: The goal of ophthalmology residency training is to produce competent ophthalmologists. Appropriate assessments must be employed to ensure this goal is met. Valid and reliable workplace-based assessments are designed to assess competence in the many domains required of a good ophthalmologist. These assessments increase standardization and objectivity as compared to simple observational feedback. When used appropriately, workplace based assessments not only provide measures of competence but also facilitate effective formative feedback and enhance learning.
Background: The ORVIS infrastructure aims to facilitate the development and availability of valid and adapted tools that will allow functional, perceptual, cognitive and psychological evaluation of low vision clients by researchers and clinicians who work in low vision and visual impairment rehabilitation.
Methods: The tools developed or documented within ORVIS Infrastructure are tests or questionnaires which allow, or will allow to assess—in an accurate and reliable manner—characteristics related to visual impairment. The tools in development are: (I) questionnaire de repérage des hallucinations visuelles liées au syndrome de Charles-Bonnet (QR-SCB); (II) repérage des personnes agées présentant des INDices de déficience VISUELle (IndiVisuel); (III) mesure de l’impact de la déficience visuelle dans les activités quotidiennes (MIDVAQ) and (IV) M’EYE read test. The directory documents 14 tools and offers—within a descriptive sheet—characteristics, components and metrological properties as supported by cited scientific studies.
Results: The ORVIS Infrastructure, which aims at the development and availability of assessment tools, fills researchers’ and clinicians’ needs for measurement tools that are valid, effective and appropriate for use with a visually impaired clientele. Such tools are, especially in French, little known and hard to find, and represent a precious resource for those who want to evaluate the efficacy of treatments or interventions.
Conclusions: ORVIS is available at www.orvis.vision. Between November 2015 and September 2017, the directory has been accessed 1,383 times by 952 unique visitors.
Background: (I) To describe the development and components of the automobile simulator driving behavior evaluation system developed by CRIR-Institut Nazareth et Louis-Braille; (II) to present the preliminary results of the content evaluation of the driving behavior evaluation grid.
Methods: The evaluation system consists of five components: (I) the VS500M Car Simulator (Virage Simulation); (II) four VS500M driving scenarios, modified to minimize the occurrence of simulator sickness and expose subjects to commonly encountered driving situations on highways and city boulevards; (III) the Tobii Pro Glasses 2 eye tracking device; (IV) a car simulator driving behavior observation grid (DBOG); (V) a software application used during the behaviour evaluation phase, where synchronized video tracking, certain data from the simulator (e.g., speed) and the DBOG grid are presented. Initially, the expected safe driving behaviors were identified, including 235 of a visual nature, supported by literature data and consultation of the project steering committee and an expert in driving assessment. Driving behaviors were assessed in 22 subjects without visual impairment (mean age 55±20 years). Subsequently, the items were revised to determine their relevance based on their importance in terms of road safety or on the frequency with which behaviors were observed among participants. For analysis purpose, the items of the DBOG were grouped according to their content, by type of expected driving behavior (e.g., following a stop, look to the left and right before crossing the intersection) or element to be detected (e.g., pedestrians).
Results: Some visual behaviors are difficult to observe with the eye tracker device because they are more dependent on peripheral than central vision. Others are rarely observed, possibly because they are little or not realized in daily life or the representation of reality on the simulator does not stimulate their adoption. On the other hand, the visual detection behaviors expected in a situation where safety can be compromised are mostly carried out (e.g., detection of oncoming vehicles, side mirror verification when changing lanes).
Conclusions: This first phase of the study has made possible to better target the items to be kept in the car simulator driving behavior observation grid, and those that will have to be removed as they are too difficult to observe or too rarely adopted by the participants. Content validity and inter-rater reliability will be assessed from the simplified grid.
Abstract: Ophthalmology residency training programs need authentic methods of assessment to show that trainees have learned and can do what is expected upon graduation. Written and oral examinations are necessary to assess knowledge but other methods are needed to assess skill. Workplace-based assessments (WPBAs) should be utilized to observe resident skill in the clinic and during surgery. Several such assessment tools have been published and validated. These tools have the additional benefit of facilitating specific formative feedback and thus can be used for both teaching and assessing.
Abstract: The outcomes of modern ophthalmic surgery, especially cataract surgery, continue to improve and patients now realistically expect an excellent and speedy outcome with good vision and few complications. Social and regulatory demands for greater transparency and accountability in medicine have increased, highlighting a fundamental ethical tension in medical education—balancing the needs of trainees (who have not yet mastered the technique) to gain experience by performing surgery, with patient safety and the needs of the public to be protected from risk. Patient safety and well-being are the paramount considerations in any training program and must be the first consideration in program design. A variety of different educational strategies, each implemented with the aim of improving operative skills assessment and teaching, has recently been described in the literature. Effective use of these educational tools, combined with a structured approach to teaching and providing meaningful feedback, could improve outcomes, decrease complications and improve the quality and efficiency of surgical training in ophthalmology. Supervisors must assess their teaching style and communication, as being a good surgeon does not necessarily make a good trainer. Open disclosure must be given to patients about who will be performing the surgery, and communication during surgery between supervisors and trainees must be clear, respectful and appropriate.
Abstract: Pediatric uveitis is an inflammatory ocular disease that can lead to sight-threatening complications. Pediatric patients have distinct challenges in the diagnosis and management of uveitis, secondary to difficulties in performing ophthalmic examinations in young children, delayed diagnosis due to lack of adherence with recommended screening schedules, medication side-effects, and increased burden of disease into adulthood. Measurement of outcomes in pediatric uveitis has traditionally relied upon the ophthalmic examination and general quality of life (QOL) measures. However, the ophthalmic examination does not take into account the impact of uveitis on a child’s QOL and general QOL measures do not adequately assess the specific effects of vision. Several vision-related quality of life (VR-QOL) instruments have been used to measure outcomes in both adults and children including: the National Eye Institute Visual Function Questionnaire (NEI VFQ-25), Vision-related Quality of Life of Children and Young People (VQoL_CYP), the Children’s Visual Function Questionnaire (CVFQ), and the Effect of Youngsters’ Eyesight on Quality of Life (EYE-Q). However, the NEI VFQ-25 is not a valid or applicable measure in children, and the VQoL_CYP and CVFQ are not uveitis specific and may not characterize disease specific burdens. The EYE-Q is the only uveitis-specific pediatric questionnaire that measures visual functioning and VR-QOL in 5–18 years old children and adolescents with uveitis. It has been shown to be a valid and reliable assessment tool in several cohorts of children with uveitis. A comprehensive assessment of the impact of uveitis on a child that includes a vision-specific measure, such as the EYE-Q, allows for better understanding of the true burden of uveitis in children. For this review, we describe traditional outcome measures in uveitis studies, general QOL measures and vision-specific measures in adults and in children.
Background and Objective: Vitreoretinal surgery requires fine micro-surgical training and handling of delicate tissue. To aid in the training of residents and fellows, unique educational modalities exist to help facilitate the development of these microsurgical skills. From virtual simulators to artificial eye models, simulation of the posterior segment has gained an increased focus in vitreoretinal surgical training programs. Development of surgical curricula for vitreoretinal training and attainment of surgical milestones has been a key component in integrating these educational training modalities. We will explore various simulators, eye models, and potential rubrics and discuss unique ways each may help and complement one another to train future vitreoretinal surgeons.
Methods: We conducted a systematic PubMed search of various review studies (from publications in English ranging from January 1978 to December 2020) discussing surgical simulators, eye models, and surgical rubrics for vitreoretinal surgery and their potential impacts upon training.
Key Contents and Findings: Our review assesses the benefits and applicability of various simulators, eye models, and surgical rubrics upon training.
Conclusions: Utilization of vitreoretinal surgical training tools may aid in complementing the hands-on surgical training experience for vitreoretinal surgical fellows. By using simulators and rubrics, we may better be able to standardize training for reaching vitreoretinal surgical milestones and providing adequate feedback to improve surgical competency and ultimately patient outcomes.