Background: To explore the safety and effectiveness of Sclera patch grafts in the management of scleral defects.
Methods: This is a retrospective uncontrolled study. Medical records were retrospectively reviewed for 8 eyes of 8 patients with sclera patch grafts. Two patients had necrotizing scleritis, 2 patients had scleral melting/perforation secondary to thermal burns, 4 patients had scleral staphyloma secondary to surgery. Sclera was reconstructed with allogenic sclera patch grafts, 6 in 8 patients combined autologous conjunctival pedicle flap, 1 patient combined partial medial rectus translocation, 1 patient combined autologous pedicle tenon graft, simultaneously. Treatment outcomes were evaluated using structural integrity, best corrected visual acuity (BCVA), scleritis remission, sclera rejection and melt, and ocular symptoms.
Results: Eight patients were reviewed. In all of these cases, satisfactory anatomic and functional outcomes were achieved. In the at least half a year follow-up, the BCVA of all the eight patients were no worse than that of preoperative. No eye pain, foreign body sensation and other discomforts showed in all the patients, except one woman, who showed sclera rejection and melt 1 month postoperative. In addition, one patient showed high intraocular pressure (28 mmHg), which can be controlled by a kind of medicine.
Conclusions: In this series, sclera patch grafts is an effective method for management scleral defects in the at least half a year following-up. Attention should be paid to the sclera patch rejection and melt post operatively.
Abstract: Vision loss in retinal disease is often secondary to neural cell loss. Neural loss of any type including that of the retina has always been considered irreversible as these cells rarely retain the ability to regenerate. The recent identification of stable stem cell sources and the advances in stem cell technology have transformed this area of research science into an important area of strong therapeutic possibility. These sources include human embryonic stem cells (hESC), induced pleuripotent stem cell sources (iPS) as well as adult sources. The main advantage of using a stem cell source is that there is an infinite capacity to reproduce and therefore an infinite capacity to produce cells, including neural cells for transplantation. The challenge more recently has been to transform these stem cells into differentiated cells that are useful for transplantation in disease. In terms of the retina, hESC have been successfully developed into retinal pigment epithelial cells. These cells have been characterised as identical to native human RPE cells structurally, functionally and biochemically. Previous studies of macular translocation and RPE/choroidal transplantation have shown that vision loss from AMD can be reversed. Early animal studies show that the transplanted HESC RPE survive and can prevent vision loss in animal models of disease. Initial hESC based RPE transplantation trials using suspension cultures were successful in demonstrating safety of the cells in the context of disease and sub-retinal delivery. More recently, we have carried out the first 2 transplantations of sheets of hESC based RPE on a coated artificial Bruch’s membrane, in the London Project’s RPE transplantation trial, with promising results. As well as RPE— Bruch’s transplantation I will also briefly discuss the recent advances in neuro-retinal and vascular reconstructions using stem cells.
Abstract: Blinding diseases such as photoreceptor degenerations are debilitating conditions that severely impair daily lives of affected patients. This group of diseases are amenable to photoreceptor replacement therapies and recent transplantation studies provided proof-of-principle for functional recovery at the retinal and behavioral level, though the actual mechanism of repair still needs further investigations. The immune system responds in several ways upon photoreceptor engraftment, resulting in T-cell and macrophage infiltrations and, consequently, decrease in graft survival. Most studies on the role of the immune system suggest a detrimental effect in a therapeutic setting. Conversely, the opposite idea wherein the immune system can be activated towards a protective state was also explored in other experimental paradigms. Here, Neves and colleagues explored the potential of cross-species studies and, to a certain extent, the concept of a protective immune system in retinal degeneration and therapy. Mesencephalic astrocyte-derived neurotrophic factor (MANF) was identified in this study as a novel factor that, by modulating the immune system, can slow down photoreceptor degeneration and improve transplantation outcome.
Abstract: This article reviews the history of the femtosecond laser in ophthalmology and its subsequent introduction into the field of cataract surgery. It discusses the innovations that this technology has brought to the field. The article also describes the current system of teaching cataract surgery to ophthalmology residents in the United States and then examines how femtosecond laser-assisted cataract surgery (FLACS) can be a beneficial part of residency education.
Background: The purpose of this infrastructure is to provide to the Network researchers a database and diverse related tools for the anatomical and functional analysis of the normal, pathological and surgical cornea.
Methods: This database is composed of normal and pathological individuals, totaling more than 36,000 patients. It includes anatomical and functional imaging data, physiological optics data, psychometric and clinical data (medical history, surgical parameters, acuteness, etc.). Various corneal topography tools were added, giving the database a unique character: tools for analyzing individual maps, average map tools for the study and comparison of populations, 3D modeling and visualization tools, statistical tools, etc. There are also screening tools for detecting various corneal conditions (LASIK, PRK, RK, keratoconus) and for secure data exchange between colleagues.
Results: Several studies were made in recent years thanks to this common infrastructure. For example, this database has provided important information regarding the evolution of the 3D shape of the normal cornea with age and ametropia and has confirmed the mirror symmetry of corneas for the right and the left eyes (enantiomorphism). The different stages of Fuchs’ dystrophy were also characterized to provide essential knowledge for surgery of the posterior layer of the cornea. Our database also allowed studying the anatomy of the wounds and the shape of the cornea before and after a transfixing transplant or an endothelial transplant (DSAEK and DSEK). The data on the characterization of experimentally transplanted corneas with corneal equivalents generated by tissue engineering and the recent addition of clinical data on the replacement of a diseased cornea with a synthetic corneal equivalent (keratoprosthesis) also resulted in several publications. More recently, the database has allowed to develop innovative algorithms to determine the optimal shape of an implant according to the clinical parameters of the recipient. On the other hand, we also demonstrated that the 3D shape of the cornea can be used as a biometric characteristic (such as fingerprints) for identification of individuals for various applications ranging from forensics to secure border crossings. Consequently, a new multimodal database (cornea + iris + eventually retina) was created for the purpose of biometric identifications. This database provides a unique set of anatomical and functional tools for the analysis of the cornea. It is characterized by the scientific quality and large quantity of accumulated information on the cornea and the high-level tools to exploit its content.
Conclusions: The common infrastructure is easily accessible to all VHRN members on request. The database will also be accessible online in 2018 (see http://cvl.concordia.ca for more information).
Background: Disruption of the microstructure in corneal stroma can lead to the loss of transparency. The lack of a characterization method for the microstructure prevents such scaffolds to be implemented in tissue transplantation. The non-invasive, three-dimensional (3D) rendering multiphoton microscopy (MPM) poses the potential to solve this problem.
Methods: MPM images and data analyses were performed with three kinds of samples with known and different quality. Isosurfaces (ISOs) were constructed for the evaluation of void volume and collagen distribution.
Results: The differences in the microstructures of these samples were revealed with clear indications and links to their behaviours in rehydration and possible transparency. According to this analysis, the scaffold with the highest void space ratio amongst the three presented the highest successful rates to be thoroughly rehydrated.
Conclusions: Such a method can be developed for assessing the quality of tissue engineered corneas, or donated corneas, and be useful as a powerful research tool in cornea related research.
Abstract: Pathologic myopia is the major cause of the loss of the best-corrected visual acuity (BCVA) worldwide, especially in East Asian countries. The loss of BCVA is caused by the development of myopic macula patchy, myopic traction macula patchy, and myopic optic neuropathy (or glaucoma). The development of such vision-threatening complications is caused by eye deformity, characterized by a formation of posterior staphyloma. The recent advance in ocular imaging has greatly facilitated the clarification of pathologies and pathogenesis of pathological myopia and myopia-related complications. These technologies include ultra-wide field fundus imaging, swept-source optical coherence tomography, and 3D MRI. In addition, the new treatments such as anti-VEGF therapies for myopic choroid all neovascularization have improved the outcome of the patients. Swept-source OCT showed that some of the lesions of myopic maculopathy were not simply chorioretinal atrophy but were Bruch’s membrane holes. Features of myopic traction maculopathy have been analyzed extensively by using OCT. The understanding the pathophysiology of complications of pathologic myopia is considered useful for better management of this blinding eye disease.
Abstract: Corneal blindness represents one of the world’s three major causes of blindness, and the fundamental problem of corneal transplantation is a severe shortage of donor tissues worldwide, resulting in approximately 1.5 million new cases of blindness annually. To address the growing need for corneal transplants two main approaches are being pursued: allogenic and bioengineering cornea. Bioengineering corneas are constructed by naturally generating an extracellular matrix (ECM) component as the scaffold structure with or without corneal cells. It is well established that the scaffold structure directs the fate of cells, therefore, the fabrication of the correct scaffold structure components could produce an ideal corneal substitute, able to mimic the native corneal function. Another key factor in the construction of tissue engineering cornea is seed cells. However, unlike the epithelium and stroma cells, human cornea endothelium cells (HCECs) are notorious for having a limited proliferative capacity in vivo because of the mitotic block at the G1 phase of the cell cycle due to “contact-inhibition”. This review will focus on the main concepts of recent progress towards the scaffold and seed cells, especially endothelial cells for bioengineering cornea, along with future perspectives.