1、Cruz OA, Repka MX, Hercinovic A, et al. Amblyopia
preferred practice pattern. Ophthalmology. 2023, 130(3):
P136-P178. DOI: 10.1016/j.ophtha.2022.11.003.Cruz OA, Repka MX, Hercinovic A, et al. Amblyopia
preferred practice pattern. Ophthalmology. 2023, 130(3):
P136-P178. DOI: 10.1016/j.ophtha.2022.11.003.
2、Murray J, Gupta P, Dulaney C, et al. Effect of viewing
conditions on fixation eye movements and eye alignment
in amblyopia. Invest Ophthalmol Vis Sci. 2022, 63(2): 33.
DOI: 10.1167/iovs.63.2.33.Murray J, Gupta P, Dulaney C, et al. Effect of viewing
conditions on fixation eye movements and eye alignment
in amblyopia. Invest Ophthalmol Vis Sci. 2022, 63(2): 33.
DOI: 10.1167/iovs.63.2.33.
3、Je S, Ennis FA, Woodhouse JM, et al. Spatial summation
across the visual field in strabismic and anisometropic
amblyopia. Sci Rep. 2018, 8(1): 3858. DOI: 10.1038/
s41598-018-21620-6.Je S, Ennis FA, Woodhouse JM, et al. Spatial summation
across the visual field in strabismic and anisometropic
amblyopia. Sci Rep. 2018, 8(1): 3858. DOI: 10.1038/
s41598-018-21620-6.
4、Gao TY, Ledgeway T, Lie AL, et al. Orientation tuning and
contrast dependence of continuous flash suppression in
amblyopia and normal vision. Invest Ophthalmol Vis Sci.
2018, 59(13): 5462-5472. DOI: 10.1167/iovs.18-23954.Gao TY, Ledgeway T, Lie AL, et al. Orientation tuning and
contrast dependence of continuous flash suppression in
amblyopia and normal vision. Invest Ophthalmol Vis Sci.
2018, 59(13): 5462-5472. DOI: 10.1167/iovs.18-23954.
5、Birch EE. Amblyopia and binocular vision. Prog Retin
Eye Res. 2013, 33: 67-84. DOI: 10.1016/j.preteyeres.
2012.11.001.Birch EE. Amblyopia and binocular vision. Prog Retin
Eye Res. 2013, 33: 67-84. DOI: 10.1016/j.preteyeres.
2012.11.001.
6、Niechwiej-Szwedo E, Colpa L, Wong AMF. Visuomotor
behaviour in amblyopia: deficits and compensatory adaptations. Neural Plast. 2019, 2019: 6817839. DOI:
10.1155/2019/6817839.Niechwiej-Szwedo E, Colpa L, Wong AMF. Visuomotor
behaviour in amblyopia: deficits and compensatory adaptations. Neural Plast. 2019, 2019: 6817839. DOI:
10.1155/2019/6817839.
7、Kates MM, Beal CJ. Amblyopia. JAMA. 2021, 325(4):
408. DOI: 10.1001/jama.2020.5741.Kates MM, Beal CJ. Amblyopia. JAMA. 2021, 325(4):
408. DOI: 10.1001/jama.2020.5741.
8、Fu Z, Hong H, Su Z, et al. Global prevalence of amblyopia
and disease burden projections through 2040: a systematic
review and meta-analysis. Br J Ophthalmol. 2020, 104(8):
1164-1170. DOI: 10.1136/bjophthalmol-2019-314759.Fu Z, Hong H, Su Z, et al. Global prevalence of amblyopia
and disease burden projections through 2040: a systematic
review and meta-analysis. Br J Ophthalmol. 2020, 104(8):
1164-1170. DOI: 10.1136/bjophthalmol-2019-314759.
9、Chen X, Fu Z, Yu J, et al. Prevalence of amblyopia and
strabismus in Eastern China: results from screening
of preschool children aged 36-72 months. Br J
Ophthalmol. 2016, 100(4): 515-519. DOI: 10.1136/
bjophthalmol-2015-306999.Chen X, Fu Z, Yu J, et al. Prevalence of amblyopia and
strabismus in Eastern China: results from screening
of preschool children aged 36-72 months. Br J
Ophthalmol. 2016, 100(4): 515-519. DOI: 10.1136/
bjophthalmol-2015-306999.
10、Fu J, Li SM, Liu LR, et al. Prevalence of amblyopia and
strabismus in a population of 7th-grade junior high school
students in Central China: the Anyang Childhood Eye
Study (ACES). Ophthalmic Epidemiol. 2014, 21(3): 197-
203. DOI: 10.3109/09286586.2014.904371.Fu J, Li SM, Liu LR, et al. Prevalence of amblyopia and
strabismus in a population of 7th-grade junior high school
students in Central China: the Anyang Childhood Eye
Study (ACES). Ophthalmic Epidemiol. 2014, 21(3): 197-
203. DOI: 10.3109/09286586.2014.904371.
11、Wu JF, Bi HS, Wang SM, et al. Refractive error, visual
acuity and causes of vision loss in children in Shandong,
China. The Shandong Children Eye Study. PLoS One.
2013, 8(12): e82763. DOI: 10.1371/journal.pone.0082763.Wu JF, Bi HS, Wang SM, et al. Refractive error, visual
acuity and causes of vision loss in children in Shandong,
China. The Shandong Children Eye Study. PLoS One.
2013, 8(12): e82763. DOI: 10.1371/journal.pone.0082763.
12、He J, Lu L, Zou H, et al. Prevalence and causes of visual
impairment and rate of wearing spectacles in schools for
children of migrant workers in Shanghai, China. BMC
Public Health. 2014, 14: 1312. DOI: 10.1186/1471-2458-
14-1312.He J, Lu L, Zou H, et al. Prevalence and causes of visual
impairment and rate of wearing spectacles in schools for
children of migrant workers in Shanghai, China. BMC
Public Health. 2014, 14: 1312. DOI: 10.1186/1471-2458-
14-1312.
13、Hoyt CS. Amblyopia: a neuro-ophthalmic view. J
Neuroophthalmol. 2005, 25(3): 227-231. DOI: 10.1097/01.
wno.0000177304.67715.ba.Hoyt CS. Amblyopia: a neuro-ophthalmic view. J
Neuroophthalmol. 2005, 25(3): 227-231. DOI: 10.1097/01.
wno.0000177304.67715.ba.
14、Hubel DH, Wiesel TN. The period of susceptibility to
the physiological effects of unilateral eye closure in
kittens. J Physiol. 1970, 206(2): 419-436. DOI: 10.1113/
jphysiol.1970.sp009022.Hubel DH, Wiesel TN. The period of susceptibility to
the physiological effects of unilateral eye closure in
kittens. J Physiol. 1970, 206(2): 419-436. DOI: 10.1113/
jphysiol.1970.sp009022.
15、von Noorden GK, Crawford ML. The effects of total
unilateral occlusion vs. lid suture on the visual system of
infant monkeys. InvestOphthalmolVisSci. 1981, 21(1 Pt
1): 142-146.von Noorden GK, Crawford ML. The effects of total
unilateral occlusion vs. lid suture on the visual system of
infant monkeys. InvestOphthalmolVisSci. 1981, 21(1 Pt
1): 142-146.
16、von Noorden GK. Histological studies of the visual
system in monkeys with experimental amblyopia. Invest
Ophthalmol. 1973, 12(10): 727-738.von Noorden GK. Histological studies of the visual
system in monkeys with experimental amblyopia. Invest
Ophthalmol. 1973, 12(10): 727-738.
17、Horton JC, Stryker MP. Amblyopia induced by
anisometropia without shrinkage of ocular dominance
columns in human striate cortex. Proc Natl Acad Sci USA.
1993, 90(12): 5494-5498. DOI: 10.1073/pnas.90.12.5494.Horton JC, Stryker MP. Amblyopia induced by
anisometropia without shrinkage of ocular dominance
columns in human striate cortex. Proc Natl Acad Sci USA.
1993, 90(12): 5494-5498. DOI: 10.1073/pnas.90.12.5494.
18、Horton JC, Hocking DR. Pattern of ocular dominance
columns in human striate cortex in strabismic amblyopia.
Vis Neurosci. 1996, 13(4): 787-795. DOI: 10.1017/
s0952523800008658.Horton JC, Hocking DR. Pattern of ocular dominance
columns in human striate cortex in strabismic amblyopia.
Vis Neurosci. 1996, 13(4): 787-795. DOI: 10.1017/
s0952523800008658.
19、Horton JC, Hocking DR, Kiorpes L. Pattern of ocular
dominance columns and cytochrome oxidase activity in a
macaque monkey with naturally occurring anisometropic
amblyopia. Vis Neurosci. 1997, 14(4): 681-689. DOI:
10.1017/s0952523800012645.Horton JC, Hocking DR, Kiorpes L. Pattern of ocular
dominance columns and cytochrome oxidase activity in a
macaque monkey with naturally occurring anisometropic
amblyopia. Vis Neurosci. 1997, 14(4): 681-689. DOI:
10.1017/s0952523800012645.
20、von Noorden GK, Crawford ML. The lateral geniculate
nucleus in human strabismic amblyopia. Invest
Ophthalmol Vis Sci. 1992, 33(9): 2729-2732.von Noorden GK, Crawford ML. The lateral geniculate
nucleus in human strabismic amblyopia. Invest
Ophthalmol Vis Sci. 1992, 33(9): 2729-2732.
21、von Noorden GK, Crawford ML, Levacy RA. The lateral
geniculate nucleus in human anisometropic amblyopia.
Invest Ophthalmol Vis Sci. 1983, 24(6): 788-790.von Noorden GK, Crawford ML, Levacy RA. The lateral
geniculate nucleus in human anisometropic amblyopia.
Invest Ophthalmol Vis Sci. 1983, 24(6): 788-790.
22、Peng J, Yao F, Li Q, et al. Alternations of interhemispheric
functional connectivity in children with strabismus and
amblyopia: a resting-state fMRI study. Sci Rep. 2021,
11(1): 15059. DOI: 10.1038/s41598-021-92281-1.Peng J, Yao F, Li Q, et al. Alternations of interhemispheric
functional connectivity in children with strabismus and
amblyopia: a resting-state fMRI study. Sci Rep. 2021,
11(1): 15059. DOI: 10.1038/s41598-021-92281-1.
23、Liang M, Xie B, Yang H, et al. Distinct patterns of
spontaneous brain activity between children and adults
with anisometropic amblyopia: a resting-state fMRI study.
Graefes Arch Clin Exp Ophthalmol. 2016, 254(3): 569-
576. DOI: 10.1007/s00417-015-3117-9.Liang M, Xie B, Yang H, et al. Distinct patterns of
spontaneous brain activity between children and adults
with anisometropic amblyopia: a resting-state fMRI study.
Graefes Arch Clin Exp Ophthalmol. 2016, 254(3): 569-
576. DOI: 10.1007/s00417-015-3117-9.
24、Ding K, Liu Y, Yan X, et al. Altered functional
connectivity of the primary visual cortex in subjects
with amblyopia. Neural Plast, 2013, 2013: 612086. DOI:
10.1155/2013/612086.Ding K, Liu Y, Yan X, et al. Altered functional
connectivity of the primary visual cortex in subjects
with amblyopia. Neural Plast, 2013, 2013: 612086. DOI:
10.1155/2013/612086.
25、Babu RJ, Clavagnier S, Bobier WR, et al. Regional extent
of peripheral suppression in amblyopia. Invest Ophthalmol
Vis Sci. 2017, 58(4): 2329-2340. DOI: 10.1167/iovs.16-20012Babu RJ, Clavagnier S, Bobier WR, et al. Regional extent
of peripheral suppression in amblyopia. Invest Ophthalmol
Vis Sci. 2017, 58(4): 2329-2340. DOI: 10.1167/iovs.16-20012
26、Li J, Hess RF, Chan LYL, et al. Quantitative measurement
of interocular suppression in anisometropic amblyopia: a
case-control study. Ophthalmology. 2013, 120(8): 1672-
1680. DOI: 10.1016/j.ophtha.2013.01.048.Li J, Hess RF, Chan LYL, et al. Quantitative measurement
of interocular suppression in anisometropic amblyopia: a
case-control study. Ophthalmology. 2013, 120(8): 1672-
1680. DOI: 10.1016/j.ophtha.2013.01.048.
27、Bui Quoc E, Kulp MT, Burns JG, et al. Amblyopia: a
review of unmet needs, current treatment options, and
emerging therapies. Surv Ophthalmol. 2023, 68(3): 507-
525. DOI: 10.1016/j.survophthal.2023.01.001.Bui Quoc E, Kulp MT, Burns JG, et al. Amblyopia: a
review of unmet needs, current treatment options, and
emerging therapies. Surv Ophthalmol. 2023, 68(3): 507-
525. DOI: 10.1016/j.survophthal.2023.01.001.
28、Holopigian K, Blake R, Greenwald MJ. Clinical
suppression and amblyopia. Invest Ophthalmol Vis Sci.
1988, 29(3): 444-451.Holopigian K, Blake R, Greenwald MJ. Clinical
suppression and amblyopia. Invest Ophthalmol Vis Sci.
1988, 29(3): 444-451.
29、Baker DH, Meese TS, Georgeson MA. Binocular
interaction: contrast matching and contrast discrimination
are predicted by the same model. Spat Vis. 2007, 20(5):
397-413. DOI: 10.1163/156856807781503622.Baker DH, Meese TS, Georgeson MA. Binocular
interaction: contrast matching and contrast discrimination
are predicted by the same model. Spat Vis. 2007, 20(5):
397-413. DOI: 10.1163/156856807781503622.
30、Huang CB, Zhou J, Lu ZL, et al. Deficient binocular
combination reveals mechanisms of anisometropic
amblyopia: signal attenuation and interocular inhibition. J
Vis. 2011, 11(6): 10.1167/11.6.44. DOI: 10.1167/11.6.4.Huang CB, Zhou J, Lu ZL, et al. Deficient binocular
combination reveals mechanisms of anisometropic
amblyopia: signal attenuation and interocular inhibition. J
Vis. 2011, 11(6): 10.1167/11.6.44. DOI: 10.1167/11.6.4.
31、Huang CB, Zhou J, Lu ZL, et al. Binocular combination
in anisometropic amblyopia. J Vis. 2009, 9(3): 17.1-1716.
DOI: 10.1167/9.3.17.Huang CB, Zhou J, Lu ZL, et al. Binocular combination
in anisometropic amblyopia. J Vis. 2009, 9(3): 17.1-1716.
DOI: 10.1167/9.3.17.
32、Hess RF, Mansouri B, Thompson B. Restoration of
binocular vision in amblyopia. Strabismus. 2011, 19(3):
110-118. DOI: 10.3109/09273972.2011.600418.Hess RF, Mansouri B, Thompson B. Restoration of
binocular vision in amblyopia. Strabismus. 2011, 19(3):
110-118. DOI: 10.3109/09273972.2011.600418.
33、Li J, Thompson B, Lam CSY, et al. The role of suppression
in amblyopia. Invest Ophthalmol Vis Sci. 2011, 52(7):
4169-4176. DOI: 10.1167/iovs.11-7233.Li J, Thompson B, Lam CSY, et al. The role of suppression
in amblyopia. Invest Ophthalmol Vis Sci. 2011, 52(7):
4169-4176. DOI: 10.1167/iovs.11-7233.
34、Li J, Li J, Chen Z, et al. Spatial and global sensory
suppression mapping encompassing the central 10° field
in anisometropic amblyopia. Invest Ophthalmol Vis Sci.
2017, 58(1): 481-491. DOI: 10.1167/iovs.16-20298.Li J, Li J, Chen Z, et al. Spatial and global sensory
suppression mapping encompassing the central 10° field
in anisometropic amblyopia. Invest Ophthalmol Vis Sci.
2017, 58(1): 481-491. DOI: 10.1167/iovs.16-20298.
35、Hess RF, Mansouri B, Thompson B. A new binocular
approach to the treatment of amblyopia in adults well
beyond the critical period of visual development. Restor
Neurol Neurosci. 2010, 28(6): 793-802. DOI: 10.3233/
RNN-2010-0550.Hess RF, Mansouri B, Thompson B. A new binocular
approach to the treatment of amblyopia in adults well
beyond the critical period of visual development. Restor
Neurol Neurosci. 2010, 28(6): 793-802. DOI: 10.3233/
RNN-2010-0550.
36、Hess RF, Mansouri B, Thompson B. A binocular
approach to treating amblyopia: antisuppression therapy.
Optom Vis Sci. 2010, 87(9): 697-704. DOI: 10.1097/
OPX.0b013e3181ea18e9.Hess RF, Mansouri B, Thompson B. A binocular
approach to treating amblyopia: antisuppression therapy.
Optom Vis Sci. 2010, 87(9): 697-704. DOI: 10.1097/
OPX.0b013e3181ea18e9.
37、Thompson B, Mansouri B, Koski L, et al. From motor
cortex to visual cortex: the application of noninvasive
brain stimulation to amblyopia. Dev Psychobiol. 2012,
54(3): 263-273. DOI: 10.1002/dev.20509.Thompson B, Mansouri B, Koski L, et al. From motor
cortex to visual cortex: the application of noninvasive
brain stimulation to amblyopia. Dev Psychobiol. 2012,
54(3): 263-273. DOI: 10.1002/dev.20509.
38、Achiron LR, Witkin N, Primo S, et al. Contemporary
management of aniseikonia. Surv Ophthalmol. 1997,
41(4): 321-330. DOI: 10.1016/s0039-6257(96)00005-7.Achiron LR, Witkin N, Primo S, et al. Contemporary
management of aniseikonia. Surv Ophthalmol. 1997,
41(4): 321-330. DOI: 10.1016/s0039-6257(96)00005-7.
39、McCormack G, Peli E, Stone P. Differences in tests of
aniseikonia. Invest Ophthalmol Vis Sci. 1992, 33(6): 2063-
2067.McCormack G, Peli E, Stone P. Differences in tests of
aniseikonia. Invest Ophthalmol Vis Sci. 1992, 33(6): 2063-
2067.
40、Antona B, Barra F, Barrio A, et al. Validity and
repeatability of a new test for aniseikonia. Invest
Ophthalmol Vis Sci. 2007, 48(1): 58-62. DOI: 10.1167/
iovs.05-0575.Antona B, Barra F, Barrio A, et al. Validity and
repeatability of a new test for aniseikonia. Invest
Ophthalmol Vis Sci. 2007, 48(1): 58-62. DOI: 10.1167/
iovs.05-0575.
41、Liu J, Li J, Chen Z, et al. Anisometropic amblyopia:
interocular contrast and viewing luminance effects on
aniseikonia. Transl Vis Sci Technol. 2020, 9(3): 11. DOI:
10.1167/tvst.9.3.11.Liu J, Li J, Chen Z, et al. Anisometropic amblyopia:
interocular contrast and viewing luminance effects on
aniseikonia. Transl Vis Sci Technol. 2020, 9(3): 11. DOI:
10.1167/tvst.9.3.11.
42、Levi DM. Crowding: an essential bottleneck for object
recognition: a mini-review. Vision Res. 2008, 48(5): 635-
654. DOI: 10.1016/j.visres.2007.12.009.Levi DM. Crowding: an essential bottleneck for object
recognition: a mini-review. Vision Res. 2008, 48(5): 635-
654. DOI: 10.1016/j.visres.2007.12.009.
43、Pelli DG. Crowding: a cortical constraint on object
recognition. Curr Opin Neurobiol. 2008, 18(4): 445-451.
DOI: 10.1016/j.conb.2008.09.008.Pelli DG. Crowding: a cortical constraint on object
recognition. Curr Opin Neurobiol. 2008, 18(4): 445-451.
DOI: 10.1016/j.conb.2008.09.008.
44、Levi DM, Klein SA. Vernier acuity, crowding and
amblyopia. Vision Res. 1985, 25(7): 979-991. DOI:
10.1016/0042-6989(85)90208-1.Levi DM, Klein SA. Vernier acuity, crowding and
amblyopia. Vision Res. 1985, 25(7): 979-991. DOI:
10.1016/0042-6989(85)90208-1.
45、Pelli DG, Tillman KA, Freeman J, et al. Crowding and
eccentricity determine reading rate. J Vis. 2007, 7(2): 20.1-
2036. DOI: 10.1167/7.2.20.Pelli DG, Tillman KA, Freeman J, et al. Crowding and
eccentricity determine reading rate. J Vis. 2007, 7(2): 20.1-
2036. DOI: 10.1167/7.2.20.
46、Kalpadakis-Smith AV, Tailor VK, Dahlmann-Noor AH,
et al. Crowding changes appearance systematically in
peripheral, amblyopic, and developing vision. J Vis. 2022,
22(6): 3. DOI: 10.1167/jov.22.6.3.Kalpadakis-Smith AV, Tailor VK, Dahlmann-Noor AH,
et al. Crowding changes appearance systematically in
peripheral, amblyopic, and developing vision. J Vis. 2022,
22(6): 3. DOI: 10.1167/jov.22.6.3.
47、Song S, Levi DM, Pelli DG. A double dissociation of the
acuity and crowding limits to letter identification, and the
promise of improved visual screening. J Vis. 2014, 14(5):
3. DOI: 10.1167/14.5.3.Song S, Levi DM, Pelli DG. A double dissociation of the
acuity and crowding limits to letter identification, and the
promise of improved visual screening. J Vis. 2014, 14(5):
3. DOI: 10.1167/14.5.3.
48、Huang Y, Liu Z, Chen Z, et al. Visual crowding reveals
field- and axis-specific cortical miswiring after longterm axial misalignment in strabismic patients without
amblyopia. Invest Ophthalmol Vis Sci. 2023, 64(1): 10.
DOI: 10.1167/iovs.64.1.10.Huang Y, Liu Z, Chen Z, et al. Visual crowding reveals
field- and axis-specific cortical miswiring after longterm axial misalignment in strabismic patients without
amblyopia. Invest Ophthalmol Vis Sci. 2023, 64(1): 10.
DOI: 10.1167/iovs.64.1.10.
49、Huang Y, Liu Z, Wang M, et al. Cortical reorganization
after optical alignment in strabismic patients outside of
critical period. Invest Ophthalmol Vis Sci. 2023, 64(11): 5.
DOI: 10.1167/iovs.64.11.5.Huang Y, Liu Z, Wang M, et al. Cortical reorganization
after optical alignment in strabismic patients outside of
critical period. Invest Ophthalmol Vis Sci. 2023, 64(11): 5.
DOI: 10.1167/iovs.64.11.5.
50、Liu Zitian C Z, Hu Jingyi, Huang Yiru, et al. Effect of
peripheral patching on binocular dominance in adult visual
cortex . Yan Ke Xue Bao. 2022, 37(7): 527-36.Liu Zitian C Z, Hu Jingyi, Huang Yiru, et al. Effect of
peripheral patching on binocular dominance in adult visual
cortex . Yan Ke Xue Bao. 2022, 37(7): 527-36.
51、Hu J, Chen J, Yu M, et al. Binocular imbalance measured
by SSVEP predicts impaired stereoacuity in amblyopia.
Heliyon. 2024, 10(20): e39358. DOI: 10.1016/
j.heliyon.2024.e39358.Hu J, Chen J, Yu M, et al. Binocular imbalance measured
by SSVEP predicts impaired stereoacuity in amblyopia.
Heliyon. 2024, 10(20): e39358. DOI: 10.1016/
j.heliyon.2024.e39358.
52、Zhou J, Baker DH, Simard M, et al. Short-term monocular
patching boosts the patched eye’s response in visual
cortex. Restor Neurol Neurosci. 2015, 33(3): 381-387.
DOI: 10.3233/RNN-140472.Zhou J, Baker DH, Simard M, et al. Short-term monocular
patching boosts the patched eye’s response in visual
cortex. Restor Neurol Neurosci. 2015, 33(3): 381-387.
DOI: 10.3233/RNN-140472.
53、Zhou J, He Z, Wu Y, et al. Inverse occlusion: a binocularly
motivated treatment for amblyopia. Neural Plast. 2019,
2019: 5157628. DOI: 10.1155/2019/5157628.Zhou J, He Z, Wu Y, et al. Inverse occlusion: a binocularly
motivated treatment for amblyopia. Neural Plast. 2019,
2019: 5157628. DOI: 10.1155/2019/5157628.
54、Lunghi C, Burr DC, Morrone C. Brief periods of
monocular deprivation disrupt ocular balance in human
adult visual cortex. Curr Biol. 2011, 21(14): R538-R539.
DOI: 10.1016/j.cub.2011.06.004.Lunghi C, Burr DC, Morrone C. Brief periods of
monocular deprivation disrupt ocular balance in human
adult visual cortex. Curr Biol. 2011, 21(14): R538-R539.
DOI: 10.1016/j.cub.2011.06.004.
55、Hu J, Chen J, Ku Y, et al. Reduced interocular suppression
after inverse patching in anisometropic amblyopia.
Front Neurosci. 2023, 17: 1280436. DOI: 10.3389/
fnins.2023.1280436.Hu J, Chen J, Ku Y, et al. Reduced interocular suppression
after inverse patching in anisometropic amblyopia.
Front Neurosci. 2023, 17: 1280436. DOI: 10.3389/
fnins.2023.1280436.
56、Li J, Thompson B, Deng D, et al. Dichoptic training
enables the adult amblyopic brain to learn. Curr Biol.
2013, 23(8): R308-R309. DOI: 10.1016/j.cub.2013.01.059.Li J, Thompson B, Deng D, et al. Dichoptic training
enables the adult amblyopic brain to learn. Curr Biol.
2013, 23(8): R308-R309. DOI: 10.1016/j.cub.2013.01.059.
57、Liu Z, Chen Z, Gao L, et al. A new dichoptic training
strategy leads to better cooperation between the two eyes
in amblyopia. Front Neurosci. 2020, 14: 593119. DOI:
10.3389/fnins.2020.593119.Liu Z, Chen Z, Gao L, et al. A new dichoptic training
strategy leads to better cooperation between the two eyes
in amblyopia. Front Neurosci. 2020, 14: 593119. DOI:
10.3389/fnins.2020.593119.
58、Holmes JM, Manh VM, Lazar EL, et al. Effect of a
binocular iPad game vs part-time patching in children
aged 5 to 12 years with amblyopia: a randomized clinical
trial. JAMA Ophthalmol. 2016, 134(12): 1391-1400. DOI:
10.1001/jamaophthalmol.2016.4262.Holmes JM, Manh VM, Lazar EL, et al. Effect of a
binocular iPad game vs part-time patching in children
aged 5 to 12 years with amblyopia: a randomized clinical
trial. JAMA Ophthalmol. 2016, 134(12): 1391-1400. DOI:
10.1001/jamaophthalmol.2016.4262.
59、Gao TY, Guo CX, Babu RJ, et al. Effectiveness of
a binocular video game vs placebo video game for
improving visual functions in older children, teenagers,
and adults with amblyopia: a randomized clinical trial.
JAMA Ophthalmol. 2018, 136(2): 172-181. DOI: 10.1001/
jamaophthalmol.2017.6090.Gao TY, Guo CX, Babu RJ, et al. Effectiveness of
a binocular video game vs placebo video game for
improving visual functions in older children, teenagers,
and adults with amblyopia: a randomized clinical trial.
JAMA Ophthalmol. 2018, 136(2): 172-181. DOI: 10.1001/
jamaophthalmol.2017.6090.
60、Manh VM, Holmes JM, Lazar EL, et al. A randomized
trial of a binocular iPad game versus part-time patching
in children aged 13 to 16 years with amblyopia. Am
J Ophthalmol. 2018, 186: 104-115. DOI: 10.1016/
j.ajo.2017.11.017.Manh VM, Holmes JM, Lazar EL, et al. A randomized
trial of a binocular iPad game versus part-time patching
in children aged 13 to 16 years with amblyopia. Am
J Ophthalmol. 2018, 186: 104-115. DOI: 10.1016/
j.ajo.2017.11.017.
61、Pineles SL, Aakalu VK, Hutchinson AK, et al. Binocular
treatment of amblyopia: a report by the American academy
of ophthalmology. Ophthalmology. 2020, 127(2): 261-272.
DOI: 10.1016/j.ophtha.2019.08.024.Pineles SL, Aakalu VK, Hutchinson AK, et al. Binocular
treatment of amblyopia: a report by the American academy
of ophthalmology. Ophthalmology. 2020, 127(2): 261-272.
DOI: 10.1016/j.ophtha.2019.08.024.
62、Group PEDI, Holmes JM, Manny RE, et al. A randomized
trial of binocular dig rush game treatment for amblyopia in
children aged 7 to 12 years. Ophthalmology. 2019, 126(3):
456-466. DOI: 10.1016/j.ophtha.2018.10.032.Group PEDI, Holmes JM, Manny RE, et al. A randomized
trial of binocular dig rush game treatment for amblyopia in
children aged 7 to 12 years. Ophthalmology. 2019, 126(3):
456-466. DOI: 10.1016/j.ophtha.2018.10.032.
63、Kelly KR, Jost RM, Dao L, et al. Binocular iPad
game vs patching for treatment of amblyopia
in children: a randomized clinical trial. JAMA
Ophthalmol. 2016, 134(12): 1402-1408. DOI: 10.1001/
jamaophthalmol.2016.4224.Kelly KR, Jost RM, Dao L, et al. Binocular iPad
game vs patching for treatment of amblyopia
in children: a randomized clinical trial. JAMA
Ophthalmol. 2016, 134(12): 1402-1408. DOI: 10.1001/
jamaophthalmol.2016.4224.
64、Wygnanski-Jaffe T, Kushner BJ, Moshkovitz A, et al.
High-adherence dichoptic treatment versus patching in
anisometropic and small angle strabismus amblyopia: a
randomized controlled trial. Am J Ophthalmol. 2024, 269:
293-302. DOI: 10.1016/j.ajo.2024.08.011.Wygnanski-Jaffe T, Kushner BJ, Moshkovitz A, et al.
High-adherence dichoptic treatment versus patching in
anisometropic and small angle strabismus amblyopia: a
randomized controlled trial. Am J Ophthalmol. 2024, 269:
293-302. DOI: 10.1016/j.ajo.2024.08.011.
65、Wygnanski-Jaffe T, Kushner BJ, Moshkovitz A, et al.
An eye-tracking-based dichoptic home treatment for
amblyopia: a multicenter randomized clinical trial.
Ophthalmology. 2023, 130(3): 274-285. DOI: 10.1016/
j.ophtha.2022.10.020.Wygnanski-Jaffe T, Kushner BJ, Moshkovitz A, et al.
An eye-tracking-based dichoptic home treatment for
amblyopia: a multicenter randomized clinical trial.
Ophthalmology. 2023, 130(3): 274-285. DOI: 10.1016/
j.ophtha.2022.10.020.
66、Wygnanski-Jaffe T, Moshkovitz A, Kushner BJ, et al.
Binocular home treatment for amblyopia: gains stable for
one year. Am J Ophthalmol. 2024, 262: 199-205. DOI:
10.1016/j.ajo.2024.02.004.Wygnanski-Jaffe T, Moshkovitz A, Kushner BJ, et al.
Binocular home treatment for amblyopia: gains stable for
one year. Am J Ophthalmol. 2024, 262: 199-205. DOI:
10.1016/j.ajo.2024.02.004.
67、Sloper J. Answers and questions about the digital dichoptic
treatment of amblyopia. Ophthalmology. 2022, 129(1): 86.
DOI: 10.1016/j.ophtha.2021.08.015.Sloper J. Answers and questions about the digital dichoptic
treatment of amblyopia. Ophthalmology. 2022, 129(1): 86.
DOI: 10.1016/j.ophtha.2021.08.015.
68、Tootell RB,Silverman MS, Hamilton SL, et al. Functional
anatomy of macaque striate cortex. V. Spatialfrequency.
J Neurosci. 1988, 8(5): 1610-1624. DOI: 10.1523/
JNEUROSCI.08-05-01610.1988.Tootell RB,Silverman MS, Hamilton SL, et al. Functional
anatomy of macaque striate cortex. V. Spatialfrequency.
J Neurosci. 1988, 8(5): 1610-1624. DOI: 10.1523/
JNEUROSCI.08-05-01610.1988.
69、Sloper J. The other side of amblyopia. J AAPOS. 2016,
20(1): 1.e1-1.13. DOI: 10.1016/j.jaapos.2015.09.013.Sloper J. The other side of amblyopia. J AAPOS. 2016,
20(1): 1.e1-1.13. DOI: 10.1016/j.jaapos.2015.09.013.
70、Liu Z, Chen Z, Xu Y, et al. Objective assessment of
the effect of optical treatment on magnocellular and
parvocellular-biased visual response in anisometropic
amblyopia. Invest Ophthalmol Vis Sci. 2020, 61(2): 21.
DOI: 10.1167/iovs.61.2.21.Liu Z, Chen Z, Xu Y, et al. Objective assessment of
the effect of optical treatment on magnocellular and
parvocellular-biased visual response in anisometropic
amblyopia. Invest Ophthalmol Vis Sci. 2020, 61(2): 21.
DOI: 10.1167/iovs.61.2.21.
71、Baroncelli L, Lunghi C. Neuroplasticity of the visual
cortex: in sickness and in health. Exp Neurol. 2021, 335:
113515. DOI: 10.1016/j.expneurol.2020.113515.Baroncelli L, Lunghi C. Neuroplasticity of the visual
cortex: in sickness and in health. Exp Neurol. 2021, 335:
113515. DOI: 10.1016/j.expneurol.2020.113515.
72、Hensch TK, Fagiolini M, Mataga N, et al. Local GABA
circuit control of experience-dependent plasticity in
developing visual cortex. Science. 1998, 282(5393): 1504-
1508. DOI: 10.1126/science.282.5393.1504.Hensch TK, Fagiolini M, Mataga N, et al. Local GABA
circuit control of experience-dependent plasticity in
developing visual cortex. Science. 1998, 282(5393): 1504-
1508. DOI: 10.1126/science.282.5393.1504.
73、Kuhlman SJ, Olivas ND, Tring E, et al. A disinhibitory
microcircuit initiates critical-period plasticity in the visual
cortex. Nature. 2013, 501(7468): 543-546. DOI: 10.1038/
nature12485.Kuhlman SJ, Olivas ND, Tring E, et al. A disinhibitory
microcircuit initiates critical-period plasticity in the visual
cortex. Nature. 2013, 501(7468): 543-546. DOI: 10.1038/
nature12485.
74、Pfeffer CK, Xue M, He M, et al. Inhibition of inhibition
in visual cortex: the logic of connections between
molecularly distinct interneurons. Nat Neurosci. 2013,
16(8): 1068-1076. DOI: 10.1038/nn.3446.Pfeffer CK, Xue M, He M, et al. Inhibition of inhibition
in visual cortex: the logic of connections between
molecularly distinct interneurons. Nat Neurosci. 2013,
16(8): 1068-1076. DOI: 10.1038/nn.3446.