Meningeal carcinomatosis in a patient with lung adenocarcinoma consulting an ophthalmologist first : A case report and literature review

Meningeal carcinomatosis in a patient with lung adenocarcinoma consulting an ophthalmologist first: A case report and literature review

 
Background: Meningeal carcinomatosis (MC) is a rare and serious complication associated with advanced hematologic and solid tumors. It can present with various ocular manifestations, and diagnosis is typically confirmed through magnetic resonance imaging and cerebrospinal fluid (CSF) analysis. Treatment often involves a combination of surgery, chemotherapy, and/or radiation; however, the disease is incurable, with a very low survival rate.
Case presentation: A 46-year-old woman presented to the ophthalmology department with complaints of vision loss. Funduscopy revealed a severely swollen optic disc (Frisen grade 5) with no visible optic disc margin and splinter hemorrhages. A contrast-enhanced chest computed tomography scan showed pulmonary nodules in the apex of the left lung. Analysis of CSF obtained through lumbar puncture confirmed the presence of malignant cells compatible with a diagnosis of MC.
Conclusions: MC is a severe complication of systemic cancer with a poor prognosis. Given that ocular symptoms can occasionally be the initial presentation, MC should be considered in patients experiencing vision loss or diplopia, even in the absence of an intraocular cause, neurologic symptoms, or a known history of systemic cancer. Comprehensive systemic examinations of major organs are crucial for early detection, diagnosis, and management of MC.
Background: Meningeal carcinomatosis (MC) is a rare and serious complication associated with advanced hematologic and solid tumors. It can present with various ocular manifestations, and diagnosis is typically confirmed through magnetic resonance imaging and cerebrospinal fluid (CSF) analysis. Treatment often involves a combination of surgery, chemotherapy, and/or radiation; however, the disease is incurable, with a very low survival rate.
Case presentation: A 46-year-old woman presented to the ophthalmology department with complaints of vision loss. Funduscopy revealed a severely swollen optic disc (Frisen grade 5) with no visible optic disc margin and splinter hemorrhages. A contrast-enhanced chest computed tomography scan showed pulmonary nodules in the apex of the left lung. Analysis of CSF obtained through lumbar puncture confirmed the presence of malignant cells compatible with a diagnosis of MC.
Conclusions: MC is a severe complication of systemic cancer with a poor prognosis. Given that ocular symptoms can occasionally be the initial presentation, MC should be considered in patients experiencing vision loss or diplopia, even in the absence of an intraocular cause, neurologic symptoms, or a known history of systemic cancer. Comprehensive systemic examinations of major organs are crucial for early detection, diagnosis, and management of MC.

Classification of congenital cataracts and prospects for treatment and diagnosis

Classification of congenital cataracts and prospects for treatment and diagnosis

 
The congenital cataract is one of the leading causes of treatable childhood blindness. Existing classification systems for congenital cataracts are primarily utilized for the diagnosis of the disease. However, these systems provide limited information necessary for the evaluation, formulation, and optimization of treatment plans. Furthermore, research on the classification of congenital cataracts still requires exploration to provide additional evidence supporting molecular diagnosis and syndromic disease diagnosis. This paper reviews relevant studies on the classification of congenital cataracts and discusses the prospects for future research in this area.
The congenital cataract is one of the leading causes of treatable childhood blindness. Existing classification systems for congenital cataracts are primarily utilized for the diagnosis of the disease. However, these systems provide limited information necessary for the evaluation, formulation, and optimization of treatment plans. Furthermore, research on the classification of congenital cataracts still requires exploration to provide additional evidence supporting molecular diagnosis and syndromic disease diagnosis. This paper reviews relevant studies on the classification of congenital cataracts and discusses the prospects for future research in this area.

Advances in single-cell sequencing technology and its application in eye diseases

Advances in single-cell sequencing technology and its application in eye diseases

 
Vision serves as the cornerstone of rountine human life activities, wherein approximately 80% of information is perceived visually. Eye diseases, however, frequently culminate in vision impairment or blindness, severely affecting the quality of life. Due to the obscurity of the underlying molecular mechanisms, therapeutic outcomes for various blinding eye diseases remain suboptimal. Over the past decade, the development of single-cell genomics technology has made it possible to obtain multi-dimensional insights into genomes, epigenomes, transcriptomes, and proteomes of tissues and organs at the single-cell level, providing a potent tool for elucidating the molecular mechanisms of eye diseases and advancing precision diagnosis. Meanwhile, single-cell genomics technology has also been harnessed in drug discovery and screening, promising to transform traditional drug development paradigm that is often characterized by high cost [1], time-consuming [2], and substantial failure rate. This review aims to describe the cutting-edge advances in single-cell omics technology  and its applications in precision diagnosis of eye diseases as well as drug discovery and screening.

Vision serves as the cornerstone of rountine human life activities, wherein approximately 80% of information is perceived visually. Eye diseases, however, frequently culminate in vision impairment or blindness, severely affecting the quality of life. Due to the obscurity of the underlying molecular mechanisms, therapeutic outcomes for various blinding eye diseases remain suboptimal. Over the past decade, the development of single-cell genomics technology has made it possible to obtain multi-dimensional insights into genomes, epigenomes, transcriptomes, and proteomes of tissues and organs at the single-cell level, providing a potent tool for elucidating the molecular mechanisms of eye diseases and advancing precision diagnosis. Meanwhile, single-cell genomics technology has also been harnessed in drug discovery and screening, promising to transform traditional drug development paradigm that is often characterized by high cost [1],time-consuming [2], and substantial failure rate. This review aims to describe the cutting-edge advances in single-cell omics technology  and its applications in precision diagnosis of eye diseases as well as drug discovery and screening.
出版者信息