1、Mwende J, Bronsard A, Mosha M, et al. Delay in
presentation to hospital for surgery for congenital and
developmental cataract in Tanzania. Br J Ophthalmol.
2005, 89(11): 1478-1482. DOI: 10.1136/bjo.2005.074146.Mwende J, Bronsard A, Mosha M, et al. Delay in
presentation to hospital for surgery for congenital and
developmental cataract in Tanzania. Br J Ophthalmol.
2005, 89(11): 1478-1482. DOI: 10.1136/bjo.2005.074146.
2、Khanna RC, Foster A, Krishnaiah S, et al. Visual outcomes
of bilateral congenital and developmental cataracts
in young children in South India and causes of poor
outcome. Indian J Ophthalmol. 2013, 61(2): 65-70. DOI:
10.4103/0301-4738.107194.Khanna RC, Foster A, Krishnaiah S, et al. Visual outcomes
of bilateral congenital and developmental cataracts
in young children in South India and causes of poor
outcome. Indian J Ophthalmol. 2013, 61(2): 65-70. DOI:
10.4103/0301-4738.107194.
3、Esposito Veneruso P, Ziccardi L, Magli G, et al.
Developmental visual deprivation: long term effects on
human cone driven retinal function. Graefes Arch Clin Exp
Ophthalmol. 2017, 255(12): 2481-2486. DOI: 10.1007/
s00417-017-3780-0.Esposito Veneruso P, Ziccardi L, Magli G, et al.
Developmental visual deprivation: long term effects on
human cone driven retinal function. Graefes Arch Clin Exp
Ophthalmol. 2017, 255(12): 2481-2486. DOI: 10.1007/
s00417-017-3780-0.
4、Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global
prevalence of childhood cataract: a systematic review. Eye.
2016, 30(9): 1160-1169. DOI: 10.1038/eye.2016.156.Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global
prevalence of childhood cataract: a systematic review. Eye.
2016, 30(9): 1160-1169. DOI: 10.1038/eye.2016.156.
5、Lambert SR, Cotsonis G, DuBois L, et al. Long-term effect
of intraocular lens vs contact lens correction on visual
acuity after cataract surgery during infancy: a randomized
clinical trial. JAMA Ophthalmol. 2020, 138(4): 365-372.
DOI: 10.1001/jamaophthalmol.2020.0006.Lambert SR, Cotsonis G, DuBois L, et al. Long-term effect
of intraocular lens vs contact lens correction on visual
acuity after cataract surgery during infancy: a randomized
clinical trial. JAMA Ophthalmol. 2020, 138(4): 365-372.
DOI: 10.1001/jamaophthalmol.2020.0006.
6、Birch%20EE%2C%20Casta%C3%B1eda%20YS%2C%20Cheng-Patel%20CS%2C%20et%20al.%20Self%02perception%20in%20preschool%20children%20with%20deprivation%20%0Aamblyopia%20and%20its%20association%20with%20deficits%20in%20vision%20and%20%0Afine%20motor%20skills.%20JAMA%20Ophthalmol.%202020%2C%20138(12)%3A%201307-%0A1310.%20DOI%3A%2010.1001%2Fjamaophthalmol.2020.4363.Birch%20EE%2C%20Casta%C3%B1eda%20YS%2C%20Cheng-Patel%20CS%2C%20et%20al.%20Self%02perception%20in%20preschool%20children%20with%20deprivation%20%0Aamblyopia%20and%20its%20association%20with%20deficits%20in%20vision%20and%20%0Afine%20motor%20skills.%20JAMA%20Ophthalmol.%202020%2C%20138(12)%3A%201307-%0A1310.%20DOI%3A%2010.1001%2Fjamaophthalmol.2020.4363.
7、Cordes FC. Cataract Types. 1st ed. Rochester,
MN: American Academy of Ophthalmology and
Otolaryngology, 1961.Cordes FC. Cataract Types. 1st ed. Rochester,
MN: American Academy of Ophthalmology and
Otolaryngology, 1961.
8、Maumenee IH. Symposium: congenital cataracts.
introduction. Ophthalmology. 1979, 86(9): 1553. DOI:
10.1016/s0161-6420(79)35363-5.Maumenee IH. Symposium: congenital cataracts.
introduction. Ophthalmology. 1979, 86(9): 1553. DOI:
10.1016/s0161-6420(79)35363-5.
9、Gillespie RL, O’Sullivan J, Ashworth J, et al. Personalized
diagnosis and management of congenital cataract by nextgeneration sequencing. Ophthalmology. 2014, 121(11):
2124-2137.e1-2. DOI: 10.1016/j.ophtha.2014.06.006.Gillespie RL, O’Sullivan J, Ashworth J, et al. Personalized
diagnosis and management of congenital cataract by nextgeneration sequencing. Ophthalmology. 2014, 121(11):
2124-2137.e1-2. DOI: 10.1016/j.ophtha.2014.06.006.
10、T%C4%83taru%20CI%2C%20T%C4%83taru%20CP%2C%20Costache%20A%2C%20et%20al.%20Congenital%20%0Acataract%20-%20clinical%20and%20morphological%20aspects.%20Rom%20J%20%0AMorphol%20Embryol.%202020%2C%2061(1)%3A%20105-112.%20DOI%3A%2010.47162%2F%0ARJME.61.1.11.T%C4%83taru%20CI%2C%20T%C4%83taru%20CP%2C%20Costache%20A%2C%20et%20al.%20Congenital%20%0Acataract%20-%20clinical%20and%20morphological%20aspects.%20Rom%20J%20%0AMorphol%20Embryol.%202020%2C%2061(1)%3A%20105-112.%20DOI%3A%2010.47162%2F%0ARJME.61.1.11.
11、Bremond-Gignac D, Daruich A, Robert MP, et al. Recent
developments in the management of congenital cataract.
Ann Transl Med. 2020, 8(22): 1545. DOI: 10.21037/atm-
20-3033.Bremond-Gignac D, Daruich A, Robert MP, et al. Recent
developments in the management of congenital cataract.
Ann Transl Med. 2020, 8(22): 1545. DOI: 10.21037/atm-
20-3033.
12、Kim KH, Ahn K, Chung ES, et al. Clinical outcomes
of surgical techniques in congenital cataracts. Korean
J Ophthalmol. 2008, 22(2): 87-91. DOI: 10.3341/
kjo.2008.22.2.87.Kim KH, Ahn K, Chung ES, et al. Clinical outcomes
of surgical techniques in congenital cataracts. Korean
J Ophthalmol. 2008, 22(2): 87-91. DOI: 10.3341/
kjo.2008.22.2.87.
13、Datiles MB, Hejtmancik JF. Congenital cataracts:
classification and association with anterior segment abnormalities. Invest Ophthalmol Vis Sci. 2016, 57(14):
6396. DOI: 10.1167/iovs.16-21074.Datiles MB, Hejtmancik JF. Congenital cataracts:
classification and association with anterior segment abnormalities. Invest Ophthalmol Vis Sci. 2016, 57(14):
6396. DOI: 10.1167/iovs.16-21074.
14、Reddy MA, Francis PJ, Berry V, et al. Molecular genetic
basis of inherited cataract and associated phenotypes.
Surv Ophthalmol. 2004, 49(3): 300-315. DOI: 10.1016/
j.survophthal.2004.02.013.Reddy MA, Francis PJ, Berry V, et al. Molecular genetic
basis of inherited cataract and associated phenotypes.
Surv Ophthalmol. 2004, 49(3): 300-315. DOI: 10.1016/
j.survophthal.2004.02.013.
15、Lin H, Lin D, Liu Z, et al. A novel congenital cataract
category system based on lens opacity locations
and relevant anterior segment characteristics. Invest
Ophthalmol Vis Sci. 2016, 57(14): 6389-6395. DOI:
10.1167/iovs.16-20280.Lin H, Lin D, Liu Z, et al. A novel congenital cataract
category system based on lens opacity locations
and relevant anterior segment characteristics. Invest
Ophthalmol Vis Sci. 2016, 57(14): 6389-6395. DOI:
10.1167/iovs.16-20280.
16、Rahi JS, Dezateux C. Congenital and infantile cataract
in the United Kingdom: underlying or associated factors.
British Congenital Cataract Interest Group. Invest
Ophthalmol Vis Sci. 2000, 41(8): 2108-2114.Rahi JS, Dezateux C. Congenital and infantile cataract
in the United Kingdom: underlying or associated factors.
British Congenital Cataract Interest Group. Invest
Ophthalmol Vis Sci. 2000, 41(8): 2108-2114.
17、Haargaard B, Wohlfahrt J, Fledelius HC, et al. A
nationwide Danish study of 1027 cases of congenital/
infantile cataracts: etiological and clinical classifications.
Ophthalmology. 2004, 111(12): 2292-2298. DOI: 10.1016/
j.ophtha.2004.06.024.Haargaard B, Wohlfahrt J, Fledelius HC, et al. A
nationwide Danish study of 1027 cases of congenital/
infantile cataracts: etiological and clinical classifications.
Ophthalmology. 2004, 111(12): 2292-2298. DOI: 10.1016/
j.ophtha.2004.06.024.
18、Messina-Baas O, Cuevas-Covarrubias SA. Inherited
congenital cataract: a guide to suspect the genetic etiology
in the cataract genesis. Mol Syndromol. 2017, 8(2): 58-78.
DOI: 10.1159/000455752.Messina-Baas O, Cuevas-Covarrubias SA. Inherited
congenital cataract: a guide to suspect the genetic etiology
in the cataract genesis. Mol Syndromol. 2017, 8(2): 58-78.
DOI: 10.1159/000455752.
19、Shiels A, Hejtmancik JF. Biology of inherited cataracts
and opportunities for treatment. Annu Rev Vis Sci. 2019, 5:
123-149. DOI: 10.1146/annurev-vision-091517-034346.Shiels A, Hejtmancik JF. Biology of inherited cataracts
and opportunities for treatment. Annu Rev Vis Sci. 2019, 5:
123-149. DOI: 10.1146/annurev-vision-091517-034346.
20、Shiels A, Hejtmancik JF. Inherited cataracts: genetic
mechanisms and pathways new and old. Exp Eye Res.
2021, 209: 108662. DOI: 10.1016/j.exer.2021.108662.Shiels A, Hejtmancik JF. Inherited cataracts: genetic
mechanisms and pathways new and old. Exp Eye Res.
2021, 209: 108662. DOI: 10.1016/j.exer.2021.108662.
21、Chen J, Ma Z, Jiao X, et al. Mutations in FYCO1
cause autosomal-recessive congenital cataracts. Am
J Hum Genet. 2011, 88(6): 827-838. DOI: 10.1016/
j.ajhg.2011.05.008.Chen J, Ma Z, Jiao X, et al. Mutations in FYCO1
cause autosomal-recessive congenital cataracts. Am
J Hum Genet. 2011, 88(6): 827-838. DOI: 10.1016/
j.ajhg.2011.05.008.
22、Chen J, Wang Q, Cabrera PE, et al. Molecular genetic
analysis of Pakistani families with autosomal recessive
congenital cataracts by homozygosity screening. Invest Ophthalmol Vis Sci. 2017, 58(4): 2207-2217. DOI:
10.1167/iovs.17-21469.Chen J, Wang Q, Cabrera PE, et al. Molecular genetic
analysis of Pakistani families with autosomal recessive
congenital cataracts by homozygosity screening. Invest Ophthalmol Vis Sci. 2017, 58(4): 2207-2217. DOI:
10.1167/iovs.17-21469.
23、Berry V, Ionides ACW, Moore AT, et al. A novel locus for
autosomal dominant congenital cerulean cataract maps to
chromosome 12q. Eur J Hum Genet. 2011, 19(12): 1289-
1291. DOI: 10.1038/ejhg.2011.130.Berry V, Ionides ACW, Moore AT, et al. A novel locus for
autosomal dominant congenital cerulean cataract maps to
chromosome 12q. Eur J Hum Genet. 2011, 19(12): 1289-
1291. DOI: 10.1038/ejhg.2011.130.
24、Brastrom LK, Scott CA, Dawson DV, et al. A highthroughput assay for congenital and age-related eye
diseases in zebrafish. Biomedicines. 2019, 7(2): 28. DOI:
10.3390/biomedicines7020028Brastrom LK, Scott CA, Dawson DV, et al. A highthroughput assay for congenital and age-related eye
diseases in zebrafish. Biomedicines. 2019, 7(2): 28. DOI:
10.3390/biomedicines7020028
25、Shao M, Lu T, Zhang C, et al. Rbm24 controls poly(A)
tail length and translation efficiency of crystallin mRNAs
in the lens via cytoplasmic polyadenylation. Proc Natl
Acad Sci USA. 2020, 117(13): 7245-7254. DOI: 10.1073/
pnas.1917922117.Shao M, Lu T, Zhang C, et al. Rbm24 controls poly(A)
tail length and translation efficiency of crystallin mRNAs
in the lens via cytoplasmic polyadenylation. Proc Natl
Acad Sci USA. 2020, 117(13): 7245-7254. DOI: 10.1073/
pnas.1917922117.
26、Yonova-Doing E, Zhao W, Igo RP Jr, et al. Common
variants in SOX-2 and congenital cataract genes contribute
to age-related nuclear cataract. Commun Biol. 2020, 3(1):
755. DOI: 10.1038/s42003-020-01421-2.Yonova-Doing E, Zhao W, Igo RP Jr, et al. Common
variants in SOX-2 and congenital cataract genes contribute
to age-related nuclear cataract. Commun Biol. 2020, 3(1):
755. DOI: 10.1038/s42003-020-01421-2.
27、Liu H, Barnes J, Pedrosa E, et al. Transcriptome analysis
of neural progenitor cells derived from Lowe syndrome
induced pluripotent stem cells: identification of candidate
genes for the neurodevelopmental and eye manifestations.
J Neurodev Disord. 2020, 12(1): 14. DOI: 10.1186/s11689-
020-09317-2.Liu H, Barnes J, Pedrosa E, et al. Transcriptome analysis
of neural progenitor cells derived from Lowe syndrome
induced pluripotent stem cells: identification of candidate
genes for the neurodevelopmental and eye manifestations.
J Neurodev Disord. 2020, 12(1): 14. DOI: 10.1186/s11689-
020-09317-2.
28、Patel N, Anand D, Monies D, et al. Novel phenotypes
and loci identified through clinical genomics approaches
to pediatric cataract. Hum Genet. 2017, 136(2): 205-225.
DOI: 10.1007/s00439-016-1747-6.Patel N, Anand D, Monies D, et al. Novel phenotypes
and loci identified through clinical genomics approaches
to pediatric cataract. Hum Genet. 2017, 136(2): 205-225.
DOI: 10.1007/s00439-016-1747-6.
29、Rechsteiner D, Issler L, Koller S, et al. Genetic analysis
in a Swiss cohort of bilateral congenital cataract. JAMA
Ophthalmol. 2021, 139(7): 691-700. DOI: 10.1001/
jamaophthalmol.2021.0385.Rechsteiner D, Issler L, Koller S, et al. Genetic analysis
in a Swiss cohort of bilateral congenital cataract. JAMA
Ophthalmol. 2021, 139(7): 691-700. DOI: 10.1001/
jamaophthalmol.2021.0385.
30、Bastarache L, Denny JC, Roden DM. Phenome-wide
association studies. JAMA. 2022, 327(1): 75-76. DOI:
10.1001/jama.2021.20356.Bastarache L, Denny JC, Roden DM. Phenome-wide
association studies. JAMA. 2022, 327(1): 75-76. DOI:
10.1001/jama.2021.20356.
31、Wilson ME, Trivedi RH, Weakley DR Jr, et al. Globe
axial length growth at age 10.5 years in the infant aphakia
treatment study. Am J Ophthalmol. 2020, 216: 147-155.
DOI: 10.1016/j.ajo.2020.04.010.Wilson ME, Trivedi RH, Weakley DR Jr, et al. Globe
axial length growth at age 10.5 years in the infant aphakia
treatment study. Am J Ophthalmol. 2020, 216: 147-155.
DOI: 10.1016/j.ajo.2020.04.010.
32、Solebo AL, Cumberland P, Rahi JS, et al. 5-year outcomes
after primary intraocular lens implantation in children aged
2 years or younger with congenital or infantile cataract:
findings from the IoLunder2 prospective inception cohort
study. Lancet Child Adolesc Health. 2018, 2(12): 863-871.
DOI: 10.1016/S2352-4642(18)30317-1.Solebo AL, Cumberland P, Rahi JS, et al. 5-year outcomes
after primary intraocular lens implantation in children aged
2 years or younger with congenital or infantile cataract:
findings from the IoLunder2 prospective inception cohort
study. Lancet Child Adolesc Health. 2018, 2(12): 863-871.
DOI: 10.1016/S2352-4642(18)30317-1.
33、He S. Diseases of the Lens. 2nd ed. Beijing: People's
Medical Publishing House, 2014.He S. Diseases of the Lens. 2nd ed. Beijing: People's
Medical Publishing House, 2014.
34、Repka MX. Visual acuity outcome at age 10.5 years for
treatment of monocular infantile cataract-it is worth the
effort. JAMA Ophthalmol. 2020, 138(4): 372-373. DOI:
10.1001/jamaophthalmol.2020.0018.Repka MX. Visual acuity outcome at age 10.5 years for
treatment of monocular infantile cataract-it is worth the
effort. JAMA Ophthalmol. 2020, 138(4): 372-373. DOI:
10.1001/jamaophthalmol.2020.0018.
35、Tan Y, Zou YS, Yu YL, et al. Classification of congenital
cataracts based on multidimensional phenotypes and its
association with visual outcomes. Int J Ophthalmol. 2024,
17(3): 473-479. DOI: 10.18240/ijo.2024.03.08.Tan Y, Zou YS, Yu YL, et al. Classification of congenital
cataracts based on multidimensional phenotypes and its
association with visual outcomes. Int J Ophthalmol. 2024,
17(3): 473-479. DOI: 10.18240/ijo.2024.03.08.
36、BatemanB, MaumeneeI.Re:Patelet al.:the Oculome
Panel Test: next-generation sequencing to diagnose a
diverse range of genetic developmental eye disorders
(Ophthalmology. 2019;126: 888-907). Ophthalmology.
2020, 127(4): e22. DOI: 10.1016/j.ophtha.2019.12.018.BatemanB, MaumeneeI.Re:Patelet al.:the Oculome
Panel Test: next-generation sequencing to diagnose a
diverse range of genetic developmental eye disorders
(Ophthalmology. 2019;126: 888-907). Ophthalmology.
2020, 127(4): e22. DOI: 10.1016/j.ophtha.2019.12.018.
37、Li J, Chen X, Yan Y, et al. Molecular genetics of congenital
cataracts. Exp Eye Res. 2020, 191: 107872. DOI: 10.1016/
j.exer.2019.107872.Li J, Chen X, Yan Y, et al. Molecular genetics of congenital
cataracts. Exp Eye Res. 2020, 191: 107872. DOI: 10.1016/
j.exer.2019.107872.
38、Unlu G, Qi X, Gamazon ER, et al. Phenome-based
approach identifies RIC1-linked Mendelian syndrome
through zebrafish models, biobank associations and
clinical studies. Nat Med. 2020, 26(1): 98-109. DOI:
10.1038/s41591-019-0705-y.Unlu G, Qi X, Gamazon ER, et al. Phenome-based
approach identifies RIC1-linked Mendelian syndrome
through zebrafish models, biobank associations and
clinical studies. Nat Med. 2020, 26(1): 98-109. DOI:
10.1038/s41591-019-0705-y.
39、Gurovich Y, Hanani Y, Bar O, et al. Identifying facial
phenotypes of genetic disorders using deep learning. Nat
Med. 2019, 25(1): 60-64. DOI: 10.1038/s41591-018-0279-0.Gurovich Y, Hanani Y, Bar O, et al. Identifying facial
phenotypes of genetic disorders using deep learning. Nat
Med. 2019, 25(1): 60-64. DOI: 10.1038/s41591-018-0279-0.