综述

眼部相关全身疾病的人工智能诊断

Artificial intelligence diagnosis of eye-related systemic diseases

:222-229
 
全身疾病通过一定途径累及眼球,产生眼部病变,这些眼部病变的严重程度与全身疾病的进展密切相关。人工智能(artificial intelligence,AI)通过识别眼部病变,可以实现对全身疾病的评估,从而实现全身疾病早期诊断。检测巩膜黄染程度可评估黄疸;检测眼球后动脉血流动力学可评估肝硬化;检测视盘水肿,黄斑变性可评估慢性肾病(chronic kidney disease,CKD)进展;检测眼底血管损伤可评估糖尿病、高血压、动脉粥样硬化。临床医生可以通过眼部影像评估全身疾病的风险,其准确度依赖于临床医生的经验水平,而AI识别眼部病变评估全身疾病的准确度可与临床医生相媲美,在联合多种检测指标后,AI模型的特异性与敏感度均可得到显著提升,因此,充分利用AI可实现全身疾病的早诊早治。
Systemic diseases affect eyeballs through certain ways, resulting in eye diseases; The severity of eye diseases is closely related to the progress of systemic diseases. By identifying eye diseases, artificial intelligence (AI) can assess systemic diseases, so as to make early diagnosis of systemic diseases. For example, detection of the degree of icteric sclera can be used to assess jaundice. Detection of the hemodynamics of posterior eyeball can be used to evaluate cirrhosis. Detection of optic disc edema and macular degeneration can be used to evaluate the progress of chronic kidney disease (CKD). Detection of ocular fundus vascular injury can be used to assess diabetes, hypertension and atherosclerosis. Clinicians can estimate the risk of systemic diseases through eye images, and its accuracy depends on the experience level of clinicians, while the accuracy of AI in identifying eye diseases and evaluating systemic diseases can be comparable to clinicians. After combining various detection indexes, the specificity and sensitivity of AI model can be significantly improved, so early diagnosis and early treatment of systemic diseases can be realized by making full use of AI.
综述

基于深度学习和智能手机的眼病预防与远程诊疗

Prevention and telemedicine of eye diseases based on deep learning and smart phones

:230-237
 
随着智能手机覆盖率的增加与可用性的提升,实现智能健康管理的应用程序成为新兴研究热点。新一代智能手机可通过追踪步数,监测心率、睡眠,拍摄照片等方式进行健康分析,成为新的医学辅助工具。随着深度学习技术在图像处理领域的不断进展,基于医学影像的智能诊断已在多个学科全面开花,有望彻底改变医院传统的眼科疾病诊疗模式。眼科疾病的常规诊断往往依赖于各种形式的图像,如裂隙灯生物显微镜、眼底成像、光学相干断层扫描等。因此,眼科成为医学人工智能发展最快的领域之一。将眼科人工智能诊疗系统部署在智能手机上,有望提高疾病诊断效率和筛查覆盖率,改善医疗资源紧张的现状,具有极大的发展前景。综述的重点是基于深度学习和智能手机的眼病预防与远程诊疗的进展,以糖尿病性视网膜病变、青光眼、白内障3种疾病为例,讲述深度学习和智能手机在眼病管理方面的具体研究、应用和展望。
With the increasing coverage and availability of smart phones, the application of realizing intelligent health management has become an emerging research hotspot. The new generation of smart phones can perform health analysis by tracking the step numbers, monitoring heart rate and sleep quality, taking photos and other approaches, thereby becoming a new medical aid tool. With the continuous development of deep learning technology in the field of image processing, intelligent diagnosis based on medical imaging has blossomed in many disciplines, which is expected to completely change the traditional eye diseases diagnosis and treatment mode of hospitals. The conventional diagnosis of ophthalmic diseases often relies on various forms of images, such as slit lamp biological microscope, fundus imaging, optical coherence tomography, etc. As a result, ophthalmology has become one of the fastest growing areas of medical artificial intelligence (AI). The deployment of ophthalmological AI diagnosis and treatment system on smart phones is expected to improve the diagnostic efficiency and screening coverage to relieve the strain of medical resources, which has a great development prospect. This review focuses on the prevention and telemedicine progress of eye diseases based on deep learning and smart phones, taking diabetic retinopathy, glaucoma and cataract as examples to describe the specific research, application and prospect of deep learning and smart phones in the management of eye diseases.
综述

人工智能和区块链技术在生物样本库信息化建设的应用展望

Prospect of application of artificial intelligence and block chain in the information construction of Biobank

:91-96
 
近年来,使用人工智能(artificial intelligence,AI)技术对临床大数据及图像进行分析,对疾病做出智能诊断、预测并提出诊疗决策,AI正逐步成为辅助临床及科研的先进技术。生物样本库作为收集临床信息和样本供科研使用的平台,是临床与科研的桥梁,也是临床信息与科研数据的集成平台。影响生物样本库使用效率及合理共享的因素有信息化建设水平不均衡、获取的临床及检验信息不完全、各库之间信息不对称等。本文对AI和区块链技术在生物样本库建设中的具体应用场景进行探讨,展望大数据时代智能生物样本库信息化建设的核心方向。
In recent years, artificial intelligence (AI) technology has been applied to analyze clinical big data and images and then make intelligent diagnosis, prediction and treatment decisions. It is gradually becoming an advanced technology to assist clinical and scientific research. Biobank is a platform for collecting clinical information and samples for scientific research, serving as a bridge between clinical and scientific research. It is also an integrated platform of clinical information and scientific research data. However, there are some challenges. First, clinical and laboratory information obtained is incomplete. Additionally, the information among different databases is asymmetric, which seriously impedes the information sharing among different Biobanks. In this article, the specific application scenarios of AI technology and blockchain in the construction of a Biobank were discussed, aiming to pinpoint the core direction of the information construction of an intelligent Biobank in the era of big data.
Original Article

Machine learning methods for biological age estimation

Machine learning methods for biological age estimation

:176-189
 
Age stands as a primary risk factor for diseases and disabilities among the elderly. To effectively assess the underlying aging processes, accurate measures of biological age and rates of aging across multiple levels of aging features are essential. Biological age derives from physiological assessments of systems and organs. It has emerged as a superior predictor of age-related diseases and mortality compared to chronological age. Recent advancements in machine learning have catalyzed the development of sophisticated models capable of quantitatively characterizing biological aging with different types of data. This review explores the machine learning models in advancing our understanding of biological aging, highlighting the potential of these innovative approaches to facilitate aging research and personalized healthcare strategies.
Age stands as a primary risk factor for diseases and disabilities among the elderly. To effectively assess the underlying aging processes, accurate measures of biological age and rates of aging across multiple levels of aging features are essential. Biological age derives from physiological assessments of systems and organs. It has emerged as a superior predictor of age-related diseases and mortality compared to chronological age. Recent advancements in machine learning have catalyzed the development of sophisticated models capable of quantitatively characterizing biological aging with different types of data. This review explores the machine learning models in advancing our understanding of biological aging, highlighting the potential of these innovative approaches to facilitate aging research and personalized healthcare strategies.
Original Article

Harnessing AI–human synergy for deep learning research analysis in ophthalmology with large language models assisting humans

Harnessing AI–human synergy for deep learning research analysis in ophthalmology with large language models assisting humans

:7-25
 
Background: Research innovations inoculardisease screening, diagnosis, and management have been boosted by deep learning (DL) in the last decade. To assess historical research trends and current advances, we conducted an artifcial intelligence (AI)–human hybrid analysis of publications on DL in ophthalmology.

Methods:
All DL-related articles in ophthalmology, which were published 
between 2012 and 2022 from Web of Science, were included. 500 high-impact articles annotated with key research information were used to fne-tune alarge language models (LLM) for reviewing medical literature and extracting information. After verifying the LLM's accuracy in extracting diseases and imaging modalities, we analyzed trend of DL in ophthalmology with 2 535 articles. 

Results:
Researchers using LLM for literature analysis were 70% (p= 0.000 1) faster than those who did not, while achieving comparable accuracy (97% versus 98%, p = 0.768 1). The field of 
DL in ophthalmology has grown 116% annually, paralleling trends of the broader DL domain. The publications focused mainly on diabetic retinopathy (p = 0.000 3), glaucoma (p = 0.001 1), and age-related macular diseases (p = 0.000 1) using retinal fundus photographs (FP, p = 0.001 5) and optical coherence tomography (OCT, p = 0.000 1). DL studies utilizing multimodal images have been growing, with FP and OCT combined being the most frequent. Among the 500 high-impact articles, laboratory studies constituted the majority at 65.3%. Notably, a discernible decline in model accuracy was observed when categorizing by study design, notwithstanding its statistical insignificance. Furthermore, 43 publicly available ocular image datasets were summarized. 

Conclusion:
This study 
has characterized the landscape of publications on DL in ophthalmology, by identifying the trends and breakthroughs among research topics and the fast-growing areas. This study provides an efcient framework for combined AI–human analysis to comprehensively assess the current status and future trends in the feld. 
Background: Research innovations inoculardisease screening, diagnosis, and management have been boosted by deep learning (DL) in the last decade. To assess historical research trends and current advances, we conducted an artifcial intelligence (AI)–human hybrid analysis of publications on DL in ophthalmology.

Methods:
All DL-related articles in ophthalmology, which were published 
between 2012 and 2022 from Web of Science, were included. 500 high-impact articles annotated with key research information were used to fne-tune alarge language models (LLM) for reviewing medical literature and extracting information. After verifying the LLM's accuracy in extracting diseases and imaging modalities, we analyzed trend of DL in ophthalmology with 2 535 articles. 

Results:
Researchers using LLM for literature analysis were 70% (p = 0.000 1) faster than those who did not, while achieving comparable accuracy (97% versus 98%, p = 0.768 1). The field of 
DL in ophthalmology has grown 116% annually, paralleling trends of the broader DL domain. The publications focused mainly on diabetic retinopathy (p = 0.000 3), glaucoma (p = 0.001 1), and age-related macular diseases (p = 0.000 1) using retinal fundus photographs (FP, p = 0.001 5) and optical coherence tomography (OCT, p = 0.000 1). DL studies utilizing multimodal images have been growing, with FP and OCT combined being the most frequent. Among the 500 high-impact articles, laboratory studies constituted the majority at 65.3%. Notably, a discernible decline in model accuracy was observed when categorizing by study design, notwithstanding its statistical insignificance. Furthermore, 43 publicly available ocular image datasets were summarized. 

Conclusion:
This study 
has characterized the landscape of publications on DL in ophthalmology, by identifying the trends and breakthroughs among research topics and the fast-growing areas. This study provides an efcient framework for combined AI–human analysis to comprehensively assess the current status and future trends in the feld. 
Review Article

Application of artificial intelligence in ocular fundus diseases

Application of artificial intelligence in ocular fundus diseases

:1-7
 
Artificial intelligence (AI) is about simulating and expanding human intelligence. AI based on deep learning (DL) can analyze images well by using their inherent features, such as outlines, frames and so on. As researchers generally diagnoses ocular fundus diseases by images, it makes sense to apply AI to fundus examination. In ophthalmology, AI has achieved doctor-like performance in detecting multiple ocular fundus diseases through optical coherence tomography (OCT) images, fundus photographs, and ultra-wide-field (UWF) images. It has also been widely used in disease progression prediction. Nonetheless, there are also some potential challenges with AI application in ophthalmology, one of which is the black-box problem. Researchers are devoted to developing more interpretable deep learning systems (DLS) and confirming their clinical feasibility. This review describes a summary of the state-of-the-art AI application in the most popular ocular fundus diseases, potential challenges and the path forward.
Artificial intelligence (AI) is about simulating and expanding human intelligence. AI based on deep learning (DL) can analyze images well by using their inherent features, such as outlines, frames and so on. As researchers generally diagnoses ocular fundus diseases by images, it makes sense to apply AI to fundus examination. In ophthalmology, AI has achieved doctor-like performance in detecting multiple ocular fundus diseases through optical coherence tomography (OCT) images, fundus photographs, and ultra-wide-field (UWF) images. It has also been widely used in disease progression prediction. Nonetheless, there are also some potential challenges with AI application in ophthalmology, one of which is the black-box problem. Researchers are devoted to developing more interpretable deep learning systems (DLS) and confirming their clinical feasibility. This review describes a summary of the state-of-the-art AI application in the most popular ocular fundus diseases, potential challenges and the path forward.
论著

智能语音随访系统在先天性白内障患儿术后随访中的应用与分析

Application and analysis of artificial intelligence voice system in postoperative follow-up of children with congenital cataract

:23-29
 
目的:探索智能语音随访系统在医疗场景中的新型应用服务模式并分析其在新冠肺炎疫情期间的应用效果,以此评估该系统应用于互联网医院开展医疗咨询服务的实际效能。方法:本研究应用智能语音随访系统针对先天性白内障患儿术后的常见问题进行回访。首先,针对随访目的,设计出完善的结构化随访内容与步骤。其次,部署智能外呼系统自动拨打用户电话,并通过语音识别技术对用户的每次应答进行识别,根据用户的应答自动跳转到下一个随访步骤,在完成一系列问答后根据用户的回答给出恰当的建议,实现电话随访的自动化与智能化。收集2020年2月24日至2月28日期间,智能语音随访系统随访的电话内容、呼叫时间、患儿资料等数据,采用描述性统计分析。结果:2020年2月24日至2月28日期间,中山大学中山眼科中心应用智能语音随访系统电话共随访1154例,其中收到有效回访数据561例,平均有效回访率48.6%。有效回访人群中,有204位(36.4%)家属认为疫情期间复诊时间延长,对宝宝眼睛的恢复有影响,309位(55.1%)家属认为对宝宝眼睛的恢复没有影响。360位(64.2%)先天性白内障患儿眼睛恢复情况良好,没有出现不良反应,169位(30.1%)患儿出现不良反应和体征,包括瞳孔区有白点,眼睛发红和有眼屎流眼泪等。统计患儿不同行为显示,有417位(74.3%)患儿佩戴眼镜,135位(24.1%)患儿没有佩戴眼镜,另有9位(1.6%)患儿佩戴眼镜情况不清楚,经常揉眼的患儿更容易出现眼睛发红(20.4%)、眼睛有眼屎或流眼泪(17.0%)和瞳孔区有白点(6.8%)等不良反应。结论:智能语音随访系统在临床随访中显示出巨大的应用潜力,可作为一种新型的智能医疗服务模式。
Objective: This study was designed to explore its potential value for new medical service model based on the intelligent voice follow-up system and analyze its application effect during the outbreak of COVID-19. The actual effectiveness of this intelligent voice follow-up system applied in the Internet hospital to carry out medical consultation service was discussed. Methods: In this study, an intelligent voice follow up system was developed for postoperative follow-up of children with congenital cataract. First, a well-designed and structured questionnaire contents were developed for postoperative follow-up. Secondly, the intelligent voice follow-up system was deployed. The system would automatically jump to the next follow-up step according to the user’s response, and give appropriate suggestions. Finally, the data of telephone recording, call time, children’s attributes were collected and statistically analyzed. Results: From February 24 to March 15, 2020, 561 families of children with congenital cataract from Zhongshan Ophthalmic Center were recruited by using the intelligent voice follow-up system. The system completed a total of 1 154 calls, of which 561 cases received follow-up data, reaching an average effective call rate of 48.6%. Among 561 cases, 204 (36.4%) thought that the extended time of follow-up visit would affect the recovery of children, while 309 (55.1%) thought that it exerted no effect on the recovery. 360 children (64.2%) achieved good ocular recovery without complications, whereas 169 cases (30.1%) developed ocular symptoms. These include white spots in the pupil area, redness and eye secretions. Statistics of different behavior of children showed that there were 417 (74.3%) children wearing glasses, 135 (24.1%) children did not wear glasses, another 9 (1.6%) children wearing glasses were not clear, often rubbing the eyes of children were more likely to appear redness (20.4%), eye secretions (17.0%) and white spots in the pupil area (6.8%) and other adverse reactions. Conclusion: The intelligent voice follow-up system shows great application potential in clinical follow-up, which can be employed as a new service mode of intelligent medical treatment.
论著

白内障人工智能辅助诊断系统在社区筛查中的应用效果

Application of artificial intelligence-assisted diagnostic system for community-based cataract screening

:4-9
 
目的:评估白内障人工智能辅助诊断系统在社区筛查中的应用效果。方法:采用前瞻性观察性研究方法对白内障人工辅助诊断系统的应用效果进行分析,结合远程医疗的模式,由社区卫生人员对居民进行病史采集、视力检查和裂隙灯眼前节检查等,将数据上传至云平台,由白内障人工智能辅助诊断系统和人类医生依次进行白内障评估。结果:受检人群中男性所占比例为35.7%,年龄中位数为66岁,裂隙灯眼前节照片有98.7%的图像质量合格。该白内障人工智能辅助诊断系统在外部验证集中检出重度白内障的曲线下面积为0.915。在人类医生建议转诊的病例中,有80.3%也由人工智能系统给出了相同的建议。结论:该白内障人工智能辅助诊断系统在白内障社区筛查的应用中具有较好的可行性和准确性,为开展社区筛查疾病提供了参考依据。

Objective: To evaluate the effectiveness of an artificial intelligence-assisted diagnostic system for cataract screening in community. Methods: A prospective observational study was carried out based on a telemedicine platform. Patient history, medical records and anterior ocular segment images were collected and transmitted from community healthcare centers to Zhongshan Ophthalmic Center for evaluation by both ophthalmologists and artificial intelligence-assisted cataract diagnostic system. Results: Of all enumerated subjects, 35.7% were male and the median age was 66 years old. Of all enumerated slit-lamp images, 98.7% met the requirement of acceptable quality. This artificial intelligence-assisted diagnostic system achieved an AUC of 0.915 for detection of severe cataracts in the external validation dataset. For subjects who were advised to be referred to tertiary hospitals by doctors, 80.3% of them received the same suggestion from this artificial intelligence-assisted diagnostic system.Conclusion: This artificial intelligence-assisted cataract diagnostic system showed high applicability and accuracy in community-based cataract screening and could be a potential model of care in community-based disease screening.
综述

人工智能在眼科药物研发的契机与挑战

Opportunities and challenges of artificial intelligence in ophthalmic drug discovery and development

:595-602
 
近年来随着人类生活方式的改变、用眼频率的增加,眼科药物的市场需求持续增长,但是目前眼病治疗仍面临“缺医少药”的困境。由于新药研发面临成本高、周期长、成功率低的风险,眼科药物创新迭代的进程日趋缓慢。人工智能(artificial intelligence,AI)作为一种全新的技术手段,有望赋能眼科药物研发的全过程,包括药物靶点发现、化合物筛选、药物动力学模型创新与临床试验开展等,以期为眼科药物研发“降本增效”。且随着大数据体系的完善、硬件计算力的提升以及生命科学与智能科学的深度融合,AI在眼科药物研发中的作用将进一步得到提升,助力眼科药物研发实现从精准化到智能化的跨越。
With the change of human lifestyle and overuse of eyes in recent years, the market demand for ophthalmic drugs continues to grow. However, the ocular therapy is still facing the shortage of doctors and drugs. Due to the risk of high cost, long lead time and low success rate, the process of novel ophthalmic drug innovation and iteration is getting slower. As an emerging technology, artificial intelligence is expected to enable the whole process of ophthalmic drug discovery and development, including drug target discovery, compound screening, pharmacokinetic model innovation and clinical trials, thus reducing R&D costs and increase efficiency for ophthalmic drug discovery and development. In addition, with the improvement of big data, hardware calculation and the deep integration of life science and intelligent science, the role of artificial intelligence in ophthalmic drug discovery and development will be significant improved , contributing to achieve the leap from precision to intelligence.
业界动态

精简眼科手术前常规检查:大数据时代的契机和挑战

Simplifying routine tests before ophthalmic surgeries: Opportunities and challenges in the era of big data

:104-110
 
手术前常规检查在临床诊疗中被广泛应用,但在一些低风险择期手术前对患者进行常规检查,对提高医疗质量并无帮助,反而降低了医疗效率,增加了医疗费用。为提高效率,一些地区、机构和专家学者陆续通过宣传教育、发表共识、制定指南等方式控制无指征术前常规检查,但效果仍依赖于执业者的重视程度和专业水平。大数据机器学习方法以其标准化、自动化的特点为解决这一问题提供了新的思路。在回顾已有研究的基础上,我们抽取2017至2019年在中山大学中山眼科中心进行眼科手术的3.4万名患者的病史和体格检查资料大数据,涵盖年龄、性别等口学信息,诊断、既往疾病等病史信息,视功能、入院时身体质量指数(BMI)等体格检查信息。并以此为基础使用机器学习方法预测术前胸部X线检查是否存在异常,受试者操作特性曲线(receiver operating characteristic curve,ROC)曲线下面积达到0.864,预测准确率可达到81.2%,对大数据机器学习精简术前常规检查的新方式进行了先期探索。
Preoperative routine tests are widely prescribed in clinical settings. However, these tests do not help improving the quality of medical care in low-risk elective surgery. Instead, they are associated with lower efficiency and increasing fees. To improve the efficiency, many regions, institutions, and scholars have attempted to reduce preoperative routine tests without indications through propaganda, education, consensus, and guidelines. Nevertheless, the effects are still highly dependent on the expertise and emphasis of practitioners. Machine learning based on big data provide a new solution with its standardization and automation. Through literature review, we extracted the big data, including demographic features such as sex and age, histories including diagnosis and chronic diseases, and physical examination features such as visual function and body mass index. A total of 34 000 patients undergone ocular surgeries in Zhongshan Ophthalmic Center, Sun Yat-sen university from 2017 to 2019. Machine learning was adopted to predict the risk of finding abnormalities in chest X-ray examination, with an accuracy of 81.2%. Area under the Receiver Operating Characteristic curve was 0.864. The study could be an early exploration into the field of simplifying preoperative tests by machine learning.
出版者信息